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The least squares principle

A model with parameters is assumed to describe the data.

Principle of parameter estimation: minimize sum of squares of deviations ∆yi between model
and data!

Solution: derivatives of S w.r.t. parameters = zero!

Different forms: sum of squared deviations, weighted sum of squared deviations, sum of squared
deviations weighted with inverse covariance matrix:

S =

n∑
i=1

∆y2
i S =

n∑
i=1

(
∆yi

σi

)2

S = ∆yT V −1 ∆y

Example: mean value of n measured values yi:

S =

n∑
i=1

(y − yi)
2 = minimum ŷ =

n∑
i=1

yi/n
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Systems of linear equations

A · a = y A · a ∼= y

with n elements of the measured vector y and p elements of the parameter vector a.
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Linear least squares

The model of Linear Least Squares: y = A a

y = vector of measured data (n elements)

A = matrix (fixed)

a = vector of parameters (p elements)

r = y −Aa = vector of residuals

V [y] = covariance matrix of the data

W = V [y]
−1

weight matrix

Least Squares Principle: minimize the expression

S(a) = rTWr = (y −Aa)
T

W (y −Aa)

with respect to a.
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Least Squares solution

Derivatives of expression S(a):

1

2

∂S

∂a
=
(
−ATWy +

(
ATWA

)
a
)

1

2

∂2S

∂a2
=
(
ATWA

)
= constant

Solution (from ∂S/∂a = 0)

−ATWy +
(
ATWA

)
a = 0

is linear transformation of the data vector y:

â =
(
ATWA

)−1
ATW y = By

Covariance matrix of a by ”error” propagation (V [y] = W −1):

V [â] = B V [y] BT =
(
ATWA

)−1ATW W −1 WA
(
ATWA

)−1

=
(
ATWA

)−1 = inverse of second derivate of S
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Properties of solution

General scheme

Starting from Principles properties of the solution are derived, which are valid under certain
conditions.

Conditions:

• Data are unbiased: E[y] = A atrue (atrue = true parameter vector)

• Covariance matrix V [y] is known (correct) and finite

Properties:

• Estimated parameters are unbiased:

E[â] =
(
ATWA

)−1
ATW E[y] = atrue

• In the class of unbiased estimates a∗, which are linear in the data, the Least Squares
estimates â have the smallest variance (Gauß-Markoff theorem)

Properties are not valid, if conditions violated.
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Simplification for independent (=uncorrelated) data

. . . assuming same variance σ2 for all data.

Covariance matrix and weight matrix are diagonal:

V (y) = σ2In W =
1

σ2
In

(In is n-by-n unit matrix).

solution â = C−1ATy with C = ATA

covariance matrix V (â) = σ2C−1

Note: the solution â does not depend on σ2, but the covariance matrix is proportional to σ2.
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Properties of least square estimates

Basic assumptions on the properties of the data:

1. the data are unbiased: E [y] = Aatrue or E [y −Aatrue] = 0

2. the variances are all the same: V [y −Aatrue] = σ2In

(i.e. special case of independent data of same precision is assumed).

No assumption is made on the distribution of the residuals (i.e. a Gaussian distribution is not
required!)

Least squares estimates:

â = C−1ATy with C = ATA V [â] = σ2 C−1

First property: Least square estimates are unbiased.

Proof:
E [â] =C−1ATE [y] = C−1ATA atrue = atrue
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Gauß-Markoff Theorem

Consider class of linear estimates a∗ = Uy, which are unbiased:

E [a∗] = UE [y] = UA︸︷︷︸
=Ip

atrue = atrue V [a∗] = σ2UU T

Case of least squares: ULS = C−1AT with V [â] = σ2 C−1.

Theorem: The least square estimate â has the property

V [a∗]jj ≥ V [â]jj for all j ,

i. e., the least squares estimate has the smallest possible error.

Proof: product UU T can be written in the form

UU T = C−1 + (U −C−1AT )(U −C−1AT )T

= C−1 + UU T −UAC−1 −C−1ATU T + C−1ATAC−1

For the covariance matrix follows:

V [a∗] = V [â] + σ2(U −C−1AT )(U −C−1AT )T

Product on the right has diagonal elements ≥ 0 (→ Theorem).
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Sum of squares of residuals

Third property: The expectation of the sum of squares of the residuals is Ŝ = σ2(n− p).

Definition of Ŝ in terms of the fitted vector â:

Ŝ = (y −Aâ)T (y −Aâ) = yTy − yTAâ

This equation is rewritten in terms of atrue (instead of â) using the matrix U = In−AC−1AT

and the vector z = y −Aatrue.

Ŝ = (y −Aatrue)
TU (y −Aatrue) = zTUz

(check the agreement with Ŝ above by multiplication).

Properties of z: E [z] = 0 and covariance matrix

V [z] = σ2In i.e. V [zi] = E
[
z2

i

]
= σ2 and E [zizk] = 0 .
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. . . contnd.

Ŝ =

n∑
i=1

n∑
k=1

Uik zi zk E
[
Ŝ
]

=

n∑
i=1

Uii E
[
z2

i

]
= σ2

n∑
i=1

Uii = σ2 trace(U )

(the trace of a square matrix is the sum of the diagonal elements). Calculation of the trace of
U :

trace(U ) = trace(In −AC−1AT ) = trace(In)− trace(AC−1AT )

= trace(In)− trace(C−1ATA)

= trace(In)− trace(Ip) = n− p. → Proof

Application: estimate data variance (for n � p) by σ̂2 = Ŝ/(n− p)

Special case of Gaussian distributed measurement errors:

Ŝ/σ2 distributed according to the χ2
n−p distribution

to be used for goodness-of-fit test.
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Summary of properties

Distribution-free properties of least squares estimates in linear problems:

1. Least square estimates are unbiased.

2. The least square estimate â has the property

V [a∗]jj ≥ V [â]jj for all j ,

i. e., the least squares estimate has the smallest possible error. (Gauß-Markoff Theorem)

3. The expectation of the sum of squares of the residuals is Ŝ = σ2(n− p).

Valid under the condition that the data are unbiased!
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Independent data

Often the direct measurements, which are input to a least squares problem, are independent,
i.e. the covariance matrix V (y) and the weight matrix W are diagonal.

This property, which is assumed here, simplifies the computation of the matrix products

C = ATWA and b = ATWy

which are necessary for the solution

â = C−1b V (â) = C−1

Note: the parameters a will be correlated through the model y = Aa and the covariance
matrix V (â) will be non-diagonal.
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Normal equations for independent data

The diagonal elements of the weight matrix W are denoted by wi, with wi = 1/σ2
i . Each data

value yi with its weight wi makes an independent contribution to the final matrix products.
Calling the i-th row Ai, with

i-th row of A Ai = (d1, d2, . . . , dp) y = d1a1 + d2a2 + . . . + dpap

the contributions of this row to C and b can be written as the p× p-matrix wiA
T
i ·Ai and the

p-vector wiA
T
i · yi. The contributions of a single row are:

d1 d2 . . . dp

d1 wid
2
1 wid1d2 . . . wid1dp

d2 wid
2
2 . . . wid2dp

. . . . . . . . .
dp wid

2
p

yi

d1 wid1yi

d2 wid2yi

. . . . . .
dp widpyi

,

where the symmetric elements in the lower half are not shown.
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Straight line fit

Example: track fit of y (measured) vs. abscissa x

yi = a0 + a1 · xi

Matrix A and parameter vector a

A =


1 x1
1 x2
... ...
1 xn

 a =

(
a0
a1

)

Weight matrix is diagonal (independent measurements):

C = ATWA =

( ∑
wi

∑
wixi∑

wixi

∑
wix

2
i

)
b = ATWy =

( ∑
wiyi∑

wixiyi

)
If one measured yi-value is shifted (biased), then

• parameters biased, and

• χ2-value very high.
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Straight line fit
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The full line is a straight line fit to three well aligned data points (black dots).

The dashed curve is the straight line fit, if the middle point is ”badly aligned” (circle).
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Recipe for robust least square fit

Assume estimate for the standard error of yi (or of ri) to be si.
Do least square fit on observations yi, yielding fitted values ŷi, and residuals ri = yi − ŷi.

• ”Clean” the data by pulling outliers towards their fitted values: winsorize the observations
yi and replace them by pseudo-observations y∗i :

y∗i = yi , if |ri| ≤ c si ,

= ŷi − c si , if ri < −c si ,

= ŷi + c si , if ri > +c si .

The factor c regulates the amount of robustness, a goid choice is c = 1.5.

• Refit iteratively: the pseudo-observations y∗i are used to calculate new parameters and new
fitted values ŷi.
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Robust least square fit

Classical estimate of si, if all observations are equally accurate:

s2 =
1

n− p

n∑
i=1

r2
i

((n− p) = number of observations minus the number of parameters). Estimate standard error

of residual si by si =
√

1−Hiis, where Hii is the diagonal element of H = X
(
XTX

)−1
XT .

Using modified (reduced) residuals r∗i = y∗i − ŷi instead of ri, the (bias corrected) estimate of
s2 is

s2 =
( n

m

)2 1

n− p

n∑
i=1

r∗2i

where m is the number of unmodified observations (y∗i = yi).
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Least squares and Maximum Likelihood method

Example: straight line fit of y (measured data) vs. abscissa x

yi = a0 + a1 · xi .

In the Maximum Likelihood method, assuming a Gaussian distribution of the data:

p(xi|a0, a1) =
1√
2πσi

exp

(
−(yi − a0 − a1xi)

2

2σ2
i

)
,

the Likelihood function is

L(a0, a1) = p(x1|a0, a1) · p(x2|a0, a1) · · · p(xn|a0, a1) =

n∏
i=1

p(xi|a0, a1) .

Maximizing the L(a0, a1) w.r.t. a0, a1 is equivalent to minimizing

−2 lnL(a0, a1) =

n∑
i=1

(yi − a0 − a1xi)
2

σ2
i

+ const.
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Relation between χ2 and probability

Assume x follows the density f (x). The cumulative probability F (x) is defined as integral:∫ x

−∞
f (x′) dx′ = F (x) = u.

If the random variable x is transformed to the random variable u, then the random variable u
(and also 1− u) will follow the uniform distribution U(0, 1).

For the χ2 distribution: probability P = 1− Fn(χ
2) should follow a uniform distribution (n =

number of degrees of freedom).
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χ2 minimisation

Confusion in terminology: A popular method for parameter estimation is χ2 minimisation
χ2 = ∆TV −1∆ – is this identical to least squares?
The minimum value of the objective function in Least Squares follows often (not always) a χ2

distribution.
In contrast to the well-defined standard methods
• in χ2 minimisation a variety of different non-standard concepts is used,
• often apparently motivated by serious problems to handle the experimental data in a

consistent way;
• especially for the error estimation there are non-standard concepts and methods.

From publications:

To determine these parameters one must minimize a χ2 which compares the measured
values . . . to the calculated ones . . .

Our analysis is based on an effective global chi-squared function that measures the
quality of the fit between theory and experiment . . .

Two examples are given, which demonstrate that χ2 minimisation can give biased results:

• Calorimeter calibration

• Averaging data with common normalisation error
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Calorimeter calibration 1. example

Calorimeters for energy measurements in a particle detector require a calibration, usually based
on test beam data (measured cell energies yik) with known energy E. A common method
[?, ?, ?, ?, ?, ?, ?, ?] based on the χ2 minimisation of

χ2 =
1

N

N∑
k=1

(a1y1,k + a2y2,k + . . . + anyn,k − E)
2

for the determination of the aj can produce biased results, as pointed out by D. Lincoln et al.
[?].

If there would be one cell only, one would have data yk with standard deviation σ, with a mean
value of y =

∑
k yk/N , and the intended result is simply a = E/y

A one-cell version of the above χ2 definition is

χ2 =
1

N

N∑
k=1

(a · yk − E)
2

and minimizing this χ2 has the biased result

a =
E · y

(
∑

k y2
k) /N

=
E · y

y2 + σ2
6= E/y

V. Blobel – University of Hamburg Least square methods page 22



. . . contnd.

The bias mimics a non-linear response of the calorimeter.
A known bias in fitted parameters is easily corrected for.

Example: for a hadronic calorimeter one may have

Energy resolution
σ

E
=

0.7√
E

which will result in a biased ratio =
E

E + 0.72

(at E = 10 GeV the resolution is 22 % and the bias is 5 %).

There would be no bias, if the inverse constant ainv would have been determined from

χ2 =
1

N

N∑
k=1

(yk − ainvE)
2

General principle: In a χ2 expression the measured values yk should not be modified; instead
the expectation has to take into account all known effects.
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Common normalisation errors 2. example

There are N data xk with different standard deviations σk and a common relative normalisation
error of ε. Apparently the mean value y can not be affected by the normalisation error, but its
standard deviation is.
One method is to use the full covariance matrix for the correlated data, e.g. in the case N = 2:

V a =

(
σ2

1 0
0 σ2

2

)
+ ε2 ·

(
y2

1 y1y2
y1y2 y2

2

)
=

(
σ2

1 + ε2y2
1 ε2y1y2

ε2y1y2 σ2
2 + ε2y2

2

)
and minimising

χ2 = ∆TV −1∆ with ∆ =

(
y1 − y
y2 − y

)
Example (from [?]): Data are
y1 = 8.0± 2% and y2 = 8.5± 2%, with a common (relative) normalisation error of ε = 10%.
The mean value resulting from χ2 minimisation is:

7.87± 0.81 i.e. < y1 and < y2

- this is apparently wrong.

. . . that including normalisation errors in the correlation matrix will produce a fit which
is biased towards smaller values . . . [?]

. . . the effect is a direct consequence of the hypothesis to estimate the empirical co-
variance matrix, namely the linearisation on which the usual error propagation relies.
[?, ?]
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Origin of the apparent problem . . . the used covariance matrix!

The contribution to V from the normalisation error was calculated from the measured values,
which were different; the result is a covariance ellipse with axis different from 45◦ and this
produces a biased mean value.

The correct model is: y1 and y2 have the same true value, then the normalisation errors ε ·value
are identical, with

V b =

(
σ2

1 0
0 σ2

2

)
+ ε2 ·

(
y2 y2

y2 y2

)
=

(
σ2

1 + ε2y2 ε2y2

ε2y σ2
2 + ε2y2

)
i.e. the covariance matrix depends on the resulting parameter.
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Ellipses

Covariance ellipse for V a

6 8 10
6

8

10

Axis of ellipse is tilted w.r.t. the diagonal and
ellipse touches the diagonal at a biased point.

Covariance ellipse for V b

6 8 10
6

8

10

Axis of the ellipse is ≈ 45◦ and ellipse touches
the diagonal at the correct point.

The result may depend critically on certain details of the model implementation.

V. Blobel – University of Hamburg Least square methods page 26



The method with one additional parameter . . .

Another method often used is to define

χ2
a =

∑
k

(f · yk − y)
2

σ2
k

+
(f − 1)

2

ε2
,

which will also produce a biased result.

The χ2 definition for this problem

χ2
b =

∑
k

(yk − f · y)
2

σ2
k

+
(f − 1)

2

ε2

will give the correct result (data unchanged and
fitted value according to the model), as seen by
blue curve.

6 7 8 9

4

6

8

mean Y

ch
i s

qu
ar

e

chi square(b)

chi square(a)
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Standard methods

Standard statistical methods for parameter determination are
• Method of Least Squares S(a) • χ2 minimisation is equivalent: χ2 ≡ S(a)
• Maximum Likelihood method F (a)

. . . improves the parameter estimation if the detailed probability density is known.

Least squares and Maximum Likelihood can be combined, e.g

Ftotal(a) =
1

2
S(a) + Fspecial(a)

Doubts about justification of χ2 minimisation from publications:

The justification for using least squares lies in the assumption that the measurement
errors are Gaussian distributed. [?]

However it is doubtful that Gaussian errors are realistic.

A bad χ2 . . . Finally the data may very well not be Gaussian distributed.
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The standard linear least squares method

The model of Linear Least Squares: y = A a
y = measured data A = matrix (fixed) a = parameters V y = covariance matrix of y

Least Squares Principle: minimize the expression (W = V −1
y )

S(a) = (y −Aa)
T

W (y −Aa) or F (a) =
1

2
S(a)

with respect to a.
Derivatives of expression F (a):

g =
∂F

∂a
= −ATWy +

(
ATWA

)
a

H =
∂2F

∂ajak

=
(
ATWA

)
= constant

Solution (from ∂F/∂a = 0) is linear transformation of the data vector y:

â =
[(

ATWA
)−1

ATW
]

y = B y

Covariance matrix of a by ”error” propagation

V [â] = B V [y] BT =
(
ATWA

)−1 = inverse of H
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Properties of the solution

Starting from Principles properties of the solution are derived, which are valid under certain
conditions:

• Data are unbiased: E[y] = A ā (ā = true parameter vector)

• Covariance matrix V y of the data is known (and correct).

Distribution-free properties of least squares estimates in linear problems are:

• Estimated parameters are unbiased:

E[â] =
(
ATWA

)−1
ATW E[y] = ā

• In the class of unbiased estimates, which are linear in the data, the Least Squares estimates
â have the smallest variance (Gauß-Markoff theorem).

• The expectation of the sum of squares of the residuals is Ŝ = (n− p).

Special case of Gaussian distributed measurement errors:

Ŝ/σ2 distributed according to the χ2
n−p distribution

to be used for goodness-of-fit test. Properties are not valid, if conditions violated.
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Test of non-Gaussian data

MC test of least squares fit of 20 data points to straight line (two parameters), generated with
data errors from different distributions, but always mean = 0 and same standard deviation
σ = 0.5.

uniform errors

-1 0 1
0

5000

1E4

Uniform errors
Gaussian errors

-2 0 2
0

1E4

20

30

E 03 Gaussian errors

double exponential errors

-2 0 2
0

20

40

60

E 03 Double exponential errors
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Results for slope parameters 25000 entries

uniform errors

0.95 1 1.05 1.1
0

500

1000

slope

Uniform errors

m = 0.9998 +- 0.12E-03

s = 0.01935 +- 0.09E-03

σ = 0.0194

Gaussian errors

0.95 1 1.05 1.1
0

500

1000

slope

m = 1 +- 0.13E-03

s = 0.01949 +- 0.09E-03

Gaussian errors

σ = 0.0195

double exponential errors

0.95 1 1.05 1.1
0

500

1000

slope

m = 1 +- 0.12E-03

s = 19.004E-03 +- 0.09E-03

Double exponential errors

σ = 0.0190

• All parameter distributions are Gaussian, and of the width, expected from the standard
error calculation.

• This is valid for both fitted parameters.
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χ2 and χ2-probability 25000 entries

• Mean χ2-values are all equal to ndf = 20− 2 = 18, as expected, but
• χ2-probabilities have different distributions, as expected.

uniform errors

0 0.5 1
0

200

400

chi square probability

Uniform errors
Gaussian errors

0 0.5 1
0

100

200

300

chi square probability

Gaussian errors

double exponential errors

0 0.5 1
0

500

1000

1500

chi square probability

Double exponential errors

Conclusion: Least squares works fine and as expected, also for non-Gaussian data,
if . . . and only if

• data are unbiased and covariance matrix is complete and correct.
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Orthogonal polynomials

If data interpolation required, but no parametrization known: fit of normal general p-th poly-
nomial to the data

f (xi) ∼= yi with f (x) =

p∑
j=0

aj xj

Generalization of straight-line fit to general p-th order polynomial straightforward: matrix
ATWA contains sum of all powers of xi up to x2p

i .

Disadvantage:

• fit numerically unstable

• determination of optimal order p difficult

• value of coefficients aj depend on highest exponent p

Better: fit of orthogonal polynomial.

V. Blobel – University of Hamburg Least square methods page 34



Straight line fit

Parametrization

f (x) = a0 + a1x replaced by f (x) = a0 · p0(x) + a1 · p1(x)

The orthogonal polynomials p0(x) and p1(x) are defined by

p0(x) = b00

p1(x) = b10 + b11x = b11 (x− 〈x〉) .

with coefficients b00 and b11

b00 =

(
n∑

i=1

wi

)−1/2

b11 =

(
n∑

i=1

wi (xi − 〈x〉)2

)−1/2

with the coefficient b10 = −〈x〉 b11.
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Advantage of new ansatz

ATWA =

( ∑
wip

2
0(xi)

∑
wip0(xi)p1(xi)∑

wip0(xi)p1(xi)
∑

wip
2
1(xi)

)
=

(
1 0
0 1

)
ATWy =

( ∑
wip0(xi)yi∑
wip1(xi)yi

)
=

(
a0
a1

)
i.e. covariance matrix is unit matrix and parameters a are calculated by sums (no matrix
inversion).

General orthogonal polynomial:

f (x) =

p∑
j=0

ajpj(x) with ATWA = unit matrix

. . . means construction of orthogonal polynomial from (for) the data!
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Recurrence relation for pj(x)

Construction of higher order polynomial pj(x) by recurrence relation:

γpj(x) = (xi − α) pj−1(x)− βpj−2(x)

from the two previous functions pj−1(x) and pj−2(x) with parameters α and β defined by

α =

n∑
i=1

wixip
2
j−1(xi) β =

n∑
i=1

wixipj−1(xi)pj−2(xi)

Normalization factor γ given by

γ2 =

n∑
i=1

wi [(xi − α) fj−1 (xi)− βfj−2 (xi)]
2

Parameters âj are determined from data by

âj =

n∑
i=1

wipj(xi) yi
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Third order polynomial fit
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5

Data points and 3. order polynomial fit
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Spectrum of coefficients

0 5 10
0

5

10

15

Coefficients of orthogonal polynomials

index of coefficient j

co
ef

fi
ci

en
t a
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Example: High precision aligment of a track detector

• Motivation for alignment

• Solution by partitioning

• Simultaneous fit of global and local parameters

• Example: MC

• Example: Alignment of a central track detectors (H1)

V. Blobel – University of Hamburg Least square methods page 40



(a) Motivation for alignment

Example: Residuals of track fit versus ϕ for a silicon tracker before . . . and after alignment:

Aim:

• smaller residuals!

• more accurate track parameters!!!
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A simple method

An approximate alignment method:

• perform least squares fits on the e.g.track data ignoring initially the alignment parameters

• the deviations between the fitted and measured data, the residuals, are used to determine
the alignment parameters afterwards.

The result of applying the alignment parameters on e.g. fits on the track data

• improved track residuals

• same track parameter values as before.

. . . because least squares alignment fits were based on a wrong track model.
The alignment problem is more general: in addition to pure alignment parameters there are
drift velocities, variations of drift velocities, Lorentz angle . . . , which can not determined with
residuals.
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A better method?

The calculation of space coordinates from electronic signals requires alignment and many other
parameters.

A better idea: perform a simultaneous least squares fit to the parameters of e.g. 20 000 tracks
(each track has 50 hits and is described by three parameters) and all (e.g. 1000) alignment
parameters i.e. solve normal equations Ca = b
Add all necessary constraints e.g. zero average displacement and rotation of the detector.

Now the track model is correct, but . . .

• 3× 20 000 + 1000 parameters = 61 000 parameters

• 20 000 ×50 hits = 1 Mio hits

Can such a simultanenous fit be performed on a standard PC?
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Constraints

Explicit relations between the parameters have to be taken into account e.g. zero average
displacement and zero rotation of the whole detector.

Case of a single linear constraint between parameters:

fT · a = f0

Modification of system of equations by Lagrange multiplier (λ) method:
add equation λ

(
fT · a− f0

)
to system of equations C f

fT 0


 a

λ

 =

 b

f0

 ,

Each constraint adds another parameter and equation to the whole system.
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(b) Solution by partitioning

Structure of the matrix equation: Ca = b

or

 C11 C12

C21 C22


 a1

a2

 =

 b1

b2


where the submatrix C11 is a p-by-p square matrix and the submatrix C22 is a q-by-q square
matrix, with p + q = n.

If the sub-vector a1 would not exist:

C22 a∗
2 = b2 a∗

2 = C−1
22 b2

The solution a∗
2 requires only inversion of C22 and is called the local solution.
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Solution by partitioning contnd.

Submatrix B of the complete inverse matrix correponding to the upper left part C11 is easy
to calculate afterwards:

B =
(
C11 −C12C

−1
22 CT

12

)−1

Complete inverse matrix equation in terms of B: a1

a2

 =

 B −BC12C
−1
22

−C−1
22 CT

12B C−1
22 −C−1

22 CT
12BC12C

−1
22


 b1

b2



Solution for subvector: a1 = Bb1 −BC12 C−1
22 b2︸ ︷︷ ︸
a∗

2

= B (b1 −C12a
∗
2)
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(c) Simultaneous fit of global and local parameters

Local parameters αj are e.g. direct track parameters (belonging to a single track).
For measurement zk with (known) constant factors δj:

zk = α1 · δ1k + α2 · δ2k + . . . αν · δνk =

ν∑
j=1

αj · δjk

Normal equation of linear least squares:

Γα = β , solved by α = Γ−1β

Global parameters are e.g. alignment parameters and contribute to all the measurements. They
represent corrections to ideal (design) values.

z = a1 · d1 + a2 · d2 + . . . an · dn︸ ︷︷ ︸
global parameters

+ α1 · δ1 + α2 · δ2 + . . . αν · δν︸ ︷︷ ︸
local parameters

V. Blobel – University of Hamburg Least square methods page 47



Complete matrix equation for global and local parameters . . .

. . . has huge matrices: n-by-n matrices C for n global parameters + N of small ν-by-ν matrices
Γ. 

∑
C i · · · Gi · · ·

... . . . 0 0

GT
i 0 Γi 0

... 0 0 . . .



.



a

...

αi

...



= .



∑
bi

...

βi

...



Example: 3.7× 109 matrix elements for n = 1000, ν = 3 and N = 20 000.
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How to solve this linear system of equations?

The matrix of normal equations has a special structure with many vanishing sub-matrices.
Only the global parameters a have to be calculated.

Use N times the partitioning method for the N sets of local parameters:

α∗
i = Γ−1

i βi

Finally the n normal equations  C ′


 a

 =

 b′


are obtained with modified matrix and vector:

C ′ =
∑

i

C i −
∑

i

GiΓ
−1
i GT

i b′ =
∑

i

bi −
∑

i

Gi

(
Γ−1

i βi

)
The solution a is the complete solution.
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Solution of final system

The solution requires no iterations. Even the case n = 5000 will not take much time (but: use
special solution method, where undetermined parameters are set to zero).

Iterations may be necessary for other reasons, namely

• the equations depend non-linearly on the global parameters; the equations have to be
linearized;

• the data contain outliers, which have to be removed in a sequence of cuts, becoming
narrower during the iteration;

• the accuracy of the data is not known before, and has to be determined from the data
(after the alignment).

Method realized in the program Millepede. It provides a set of subroutines for the mathe-
matical methods and allows to adapt the method to a particular problem with introduction of
linear constraints.
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(d) Monte Carlo simulation

• Track detector with ten planes is simulated by Monte Carlo methods.

• Straight tracks hit the ten planes and allow to measure one coordinate z per plane trans-
verse to the axis of the detector, with an efficiency around 90 %.

• Each plane may be displaced perpendicular to the detector axis.

The parametrization of the track in terms of the local parameters is

z = α1 + α2 x

Three methods are used:

• Millepede with constraints

• Millepede without constraints

• Simple residual method
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Result of Millepede in alignment simulation

∆ simulated shift of detector plane

∆f Millepede result with constraints: no overall rotation

∆n Millepede result without constraints

∆r result of simple residual method

σ [cm] ∆ [cm] ∆f ∆n ∆r

0.0020 0.0000 0.0000± 0.0000 0.0000± 0.0000 −0.0274
0.0020 −0.0400 −0.0399± 0.0001 −0.0407± 0.0012 −0.0636
0.0300 0.1500 0.1495± 0.0009 0.1465± 0.0047 0.1269
0.0300 0.0300 0.0293± 0.0009 0.0252± 0.0062 0.0099
0.0300 −0.0750 −0.0755± 0.0012 −0.0806± 0.0078 −0.0921
0.0300 0.0450 0.0483± 0.0010 0.0423± 0.0093 0.0346
0.0300 0.0350 0.0342± 0.0010 0.0271± 0.0108 0.0216
0.0300 −0.0800 −0.0814± 0.0010 −0.0895± 0.0123 −0.0954
0.0300 0.0900 0.0902± 0.0011 0.0811± 0.0139 0.0840
0.0300 −0.0500 −0.0494± 0.0011 −0.0595± 0.0154 −0.0513
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(e) Alignment of a track detector

Alignment in the rϕ-plane (perpendicular to the beam) of a 56-plane drift chamber and a
2-plane silicon vertex detector in the H1 detector

Components:

• drift chamber has a length (z) of about 2 m, and extending from 20.3 cm to 84.4 cm in
radius r – resolution σ = 150µm

• silicon vertex detector with two planes around the beampipe – resolution σ = 15µm
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Alignment fit . . .

. . . using ten thousands of track from ep-data, from cosmics with and without B-field.

Large number of correction parameters with small values:

• geometrical shifts

• drift velocity and (relative) velocity corrections

• Lorentz angle corrections

• time corrections

• special correction for distortions of E field due to bad HV

• drift velocity change by electron beam current

• . . .
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Table of parameters and precision

row. number parameter σ unit
1 2 ∆x 1 µm
2 2 ∆x/∆zr 2 µm
3 2 ∆y 1 µm
4 2 ∆y/∆zr 2 µm
5 2 ∆ϕ 10 µrad
6 2 ∆ϕ/∆zr 10 µrad
7 2 ∆αLor 100 µrad
8 2 ∆vdrift−/vdrift 10−5

9 2 ∆vdrift+/vdrift 10−5

10 2 ∆T0 × vdrift < 1 µm
11 2 wire staggering in wire plane few µm
12 2 wire staggering perp wire plane few µm
13 2 sagging in wire plane few µm
14 2 sagging perp. wire plane few µm
15 180 ∆vdrift/vdrift per cell half few 10−4

16 112 ∆vdrift/vdrift per layer half few 10−4

17 330 ∆T0 × vdrift per group 10 µm
18 56 wire position in driftdir. per layer 10 µm
19 56 ∆T0 × vdrift per layer 10 µm
20 56 wire pos. perp. driftdir. per layer few 10 µm
21 112 ∆vdrift/vdrift for Ie/50 mA few 10−4

22 90 ∆vdrift/vdrift per layer few 10−4

23 90 ∆yW per layer few 10 µm
24 90 ∆yW per layer2 few 10 µm

25 64 ∆ in ladder few µm
26 64 ∆ perp. ladder few µm
27 64 rel. ∆ in ladder (zr) few µm
28 64 rel. ∆ perp. ladder (zr) 10 µm
29 64 rel. ∆ perp. ladder (ϕ) few µm
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Improvement of drift chamber hit resolution

Mean track residuals from the pure drift chamber fit as function of the drift length – before
and after improved alignment

→ improvement from σ = 180 µm to σ = 125 µm
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Improvement of track parameter accuracy

Standard deviation of track parameters as a
function of log10 pt/GeV:

top distance of closest approach to center

middle azimuthal angle

bottom inverse transverse momentum
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Difference of two parts of cosmic muon track

Residual distribution, calculated from two parts
of cosmic muons

• for dca (distance of closeest approach to cen-
ter) [left]

• for 1/pt (inverse transverse momentum)
[right]

top fit without silicon tracker (drift chamber
resolution)

middle with at least 1 silicon tracker hit (ac-
curacy due to silicon tracker)

bottom with at least 2 silicon tracker hits
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Summary

Method allows accurate determination of detector parameters and can even run on a PC.

Experience shows:

• it is important to use different (all available) data sets

• it is essential to make a simultaneous alignment of all track detector components, which
are also used for the measurement of tracks

• independent internal alignment of single track detector components may not lead to a good
overall result

• introduce constraints or fix certain global parameters to get stable results

A warning: do not print the whole covariance matrix of the detector parameters!

A program description for Millepede and the code is available via http:/www.desy.de/~blobel/.
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Nonlinear least squares

In practice quite often the function f (x, a) for the expectation of the measured values y depends
nonlinearly on the parameters aj.

Example: f (x, a) = a1 · exp(a2x) both 1. derivatives non-constant)

(a + ε)
2 ≈ a2 + 2aε (a + ε)

n ≈ an + nan−1ε
1

a + ε
≈ 1

a
− ε

a2

√
a + ε ≈

√
a +

ε

2
√

a

ea+ε ≈ ea (1 + ε) ln (a + ε) ≈ ln a +
ε

a
sin (a + ε) ≈ sin a + ε cos a cos (a + ε) ≈ cos a− ε sin a

tan (a + ε) ≈ tan a +
ε

cos2 a

Linearization formulas, showing the linear change of a function for a small change of the
argument.
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Linearization

Linearization of the function f (x, a) requires reasonable starting values for the parameters a,
these are denoted by a∗. The function f (x, a) is replaced by a (linear) Taylor expansion,

f (x, a) ≈ f (x, a∗) +

p∑
j=1

∂f

∂aj

(aj − a∗j),

where the partial derivatives are taken at a∗,

r = y −A∆a− f

A =


∂f (x1)/∂a1 ∂f (x1)/∂a2 . . . ∂f (x1)/∂ap

∂f (x2)/∂a1 ∂f (x2)/∂a2 . . . ∂f (x2)/∂ap

. . .
∂f (xn)/∂a1 ∂f (xn)/∂a2 ∂f (xn)/∂ap)
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Solution of one iteration

From the linearized problem

S = rTWr = (y −A∆a− f )TW (y −A∆a− f−) = min

the normal equations
(ATWA)∆a = ATW (y − f )

follow,

which are solved by
∆a = (ATWA)−1

[
ATW (y − f )

]
.
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Converging?

S(a∗ + ∆a) ≤ S(a∗) is required

It can be shown, that there is a certain λ, such that

S(a∗ + τ∆a) ,

considered as a function of τ , is a monotonically decreasing function for 0 ≤ τ ≤ λ, in particular

S(a∗ + λ∆a) < S(a∗) .

∂S

∂τ

∣∣∣∣
τ=0

= −2 ∆aT
(
ATWA

)
∆a < 0 , ,

(if ATWA is positive definite), because the expression in parentheses is a quadratic form.
From continuity, there exists a λ > 0 satisfying

∂S

∂τ
< 0 for 0 ≤ τ ≤ λ
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Divergent iteration what to do?

A simple method in cases, where after solution of the linearized problem the new value of
S, S(a∗ + ∆a) is larger than S(a∗):

∆a is reduced by some factor, say 1/2, and the test is repeated, until a value smaller than
S(a∗) is reached.

A better (more stable and faster) method: use optimal numerical method to minimize the
one-dimensional function

f (τ ) = S(a∗ + τ ·∆a)

w.r.t. the argument τ .

(see chapter on Function minimization.)
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Recognition of convergence

The scalar product of the vectors ∆a and
[
ATW (y − f )

]
,

∆S = ∆aT ·
[
ATW (y − f )

]
measures (in the linear case) the distance in S to the minimum (called EDM = estimated
distance to the minimum in Minuit).

For ∆S < 1 the step ∆a is within one standard deviation from the minimum; the linear
approximation is usually good for this small distance, and the convergence to the minimum is
fast (doubling correct digits in one iteration).

Method: assume convergence to be reached after

∆S < 0.01 and actual function change < 0.01

(valid, independent of number of parameters).

V. Blobel – University of Hamburg Least square methods page 65



Least squares with constraints

Linear or non-linear (equality) constraints:

fk(atrue, ytrue) = 0 k = 1, 2, . . . m

with

y = n-vector of measured data

V [y] = covariance matrix of the data

W = V [y]
−1

weight matrix

a = p-vector of parameters, unmeasured

Least squares principle: minimize with respect to ∆y and a

S(a,∆y) = ∆yTW ∆y

under the conditions

fk(a, y + ∆y) = 0 k = 1, 2, . . . m
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Example: π0 decay

Assume decay
π0 → γ1 γ2

with both photons measured in a calorimeter.

Simple method: use 4-vector Pπ0 = P1 + P2 for the π0 to look for resonances of the π0

with other particles.

Better method: use constraint

(P1 + P2)
2

= m2
π0 = 0.1352 GeV/c2

to improve and check the calorimeter measurement:

• 6 measured values (E1, θ1, ϕ1, E2, θ2, ϕ2)

• no unknown parameter

• 1 constraint (= one degree of freedom)
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Kinematical constraints

Example: reconstruction of kinematic variables is often overconstrained – kinematical fit pos-
sible.

A different analysis style is standard at Desy:

• measurement errors are ignored,

• several formulas are used, based on subsets of data (no fit),

• comparison of alternatives (electron method, hadron method, double angle method, Σ
method) by MC.

e.g. yel = 1− E ′
e

2Ee

(1− cos θ′e) yJB =
δh

2Ee

yDA =
sin θ′e (1− cos γh)

sin θ′e + sin γh − sin (θ′e + γh)
yΣ =

δh

δ

Should there be an optimal method, which uses all measured data?
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Method of Lagrange multipliers

Additional m parameters λk, the Lagrange multipliers, are introduced, one for each equation
and a new function is defined:

L(a, ∆y) = S(a, ∆y) + 2

m∑
k=1

λkfk(a, y + ∆y)

The necessary condition for a local extremum of this function with respect to all parameters ∆y,
a and λ is equivalent to the condition of a minimum of S(a, ∆y) under conditions fk(a, y +
∆y) = 0.

Number of unknowns

n measured parameters and corrections ∆yi

p parameters aj

m constraints, multipliers λk

n + p + m parameters in total
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Linearization

Non-linear conditions fk(y + ∆y) = 0 have to be linearized. The linear equation has to be
written in terms of the correction ∆y

fk (y + ∆y∗ + (∆y −∆y∗)) = 0

fk|y+∆y∗ + (∆y −∆y∗)
∂f

∂y

∣∣∣∣
y+∆y∗

= 0(
∂f ∗

∂y

)
∆y =

(
∂f ∗

∂y

)
∆y∗ − f ∗k

Previous correction is ∆y∗. Function f ∗k and derivative ∂∗/∂y is evaluated at y + ∆y∗, where
∆y∗ is previous correction.

Linearization of fk w.r.t. the parameters a in the same way, i.e. introducing ∆a and ∆a∗.

→ same treatment of measured (y) and unmeasured (a) parameters.
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Linearization – vector notation

f + A(∆a−∆a∗) + B(∆y −∆y∗) = 0

or
A∆a + B∆y = c with c = A∆a∗ + B∆y∗ − f

A =


∂f1/∂a1 ∂f1/∂a2 . . . ∂f1/∂ap

∂f2/∂a1 ∂f2/∂a2 . . . ∂f2/∂ap

. . .
∂fm/∂a1 ∂fm/∂a2 . . . ∂fm/∂ap

 f =


f1(a

∗, y∗)
f2(a

∗, y∗)

. . .
fm(a∗, y∗)


B =

 ∂f1/∂y1 ∂f1/∂y2 . . . ∂f1/∂yn

∂f2/∂y1 ∂f2/∂y2 . . . ∂f2/∂yn

. . .
∂fm/∂y1 ∂fm/∂y2 . . . ∂fm/∂yn
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. . . contnd.

Function L with linearization of constraints:

L = ∆yTW ∆y + 2λT (A∆a + B∆y − c)

The necessary conditions for an extremum are obtained by differentiation:

W ∆y + BTλ = 0
ATλ = 0

B∆y + A∆a = c

This system of coupled matrix equations (in total n + p + m equations) has to be solved for
the unknowns ∆y, ∆a and λ.
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Case of no unknowns

W ∆y + BTλ = 0
B∆y = c

Solution: multiply first equation with W −1

. . . from the left ∆y = −W −1BTλ (∗)
insert into second equation

(
BW −1BT

)
λ = −c

solve for λ by λ = −WB c with W B =
(
BW −1BT

)−1

insert into equation (∗) ∆y =
(
W −1BTW B

)
c

For linear problems with constant B this is the solution; for non-linear problems iterations
are necessary.

ŷ = y + ∆y V (ŷ) = W −1 −W −1 (BTW BB
)
W −1

with covariance matrix by error propagation.
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Pulls = normalized corrections

On average all corrections ∆yi have the same magnitude w.r.t. their standard deviation. A
check of systematic deviations is possible by looking at distributions of pulls (= normalized
corrections).

Covariance matrix of the corrections ∆y:

V (∆y) = W −1 (BTW BB
)
W −1 = V (y)− V (ŷ)

Normalized pull values are obtained by

pi =
∆yi√

V (y)ii − V (ŷ)ii

The pulls should follow the standardized Gaussian distribution N(0, 1), if the measured data
are normally distributed and the conditions are linear.
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The general case

System of equations to be solved in the general case: W 0 BT

0 0 AT

B A 0

 ∆y
∆a
λ

 =

 0
0
c


What is the difference between measured and unmeasured parameters?
Elements of weight matrix w.r.t. to unmeasured parameters is zero!

Inverse of partitioned matrix: W 0 BT

0 0 AT

B A 0

−1

=

 C11 CT
21 CT

31
C21 C22 CT

32
C31 C32 C33
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Solution

Elements of the inverse matrix:

C11 = W −1 −W −1BTW BBW −1

+W −1BTW BAW −1
A ATW BBW −1

C21 = −W −1
A ATW BBW −1

C22 = W −1
A

C31 = W BBW −1 −W BAW −1
A ATW BBW −1

C32 = W BAW −1
A

C33 = −W B + W BAW −1
A ATW B

with abbreviations

W B = (BW −1BT )−1

W −1
A = (ATW BA)−1

Note: the weight matrix W appears only as inverse: W −1 = V [y] = covariance matrix of the
measured data.
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Corrections and covariance matrix

Corrections ∆y, ∆a and the Lagrangian multipliers λ are obtained by multiplication:

∆y = CT
31 c = (W −1BTW B −W −1BTW BAW −1

A AW B) c
∆a = CT

32 c = W −1
A ATW B c

λ = C33 c = (−W B + W BAW −1
A ATW B) c

Iteration: convergence reached if change ∆S small and e.g.

F =
∑

k

|fk(a + ∆a, y + ∆y)| < ε ,

(requires same scale for all conditions).

Covariance matrix of the combined vector ŷ, â is

V

(
ŷ
â

)
=

(
C11 CT

21
C21 C22

)
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Checks

• Check pulls: if they follow N(0, 1), the input covariance matrix is probably correct. Oth-
erwise all pulls are distorted, even if only one element of the input covariance matrix is
incorrect.

• Check value of squares of deviations:

E(Ŝ) = (m− p)

Note: the model may be incorrect!

On average S is 1.0 per degree of freedom, independent of type of the distribution, and

Ŝ distributed χ2
n−p

if and only if the measured data are Gaussian distributed and the conditions are linear.
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How to do such a fit in practice?

Use Aplcon (”apply constraints”):

• all matrix operations hidden from the user

• matrices of derivatives calculated numerically from the constraints

• specific user code reduced to the minimum

• example: only 11 statements for π0 fit

A program description for APLCON and the code is available via http:/www.desy.de/~blobel/.
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The program code for π0 fit, using APLCON

* 6 parameters and 1 constraint equations
CALL SIMNIT(6,1,IDEB,1.E-5)

* add four vectors
20 EN = X(1) + X(4)

PX = X(1)*SIN(X(2))*COS(X(3)) + X(4)*SIN(X(5))*COS(X(6))
PY = X(1)*SIN(X(2))*SIN(X(3)) + X(4)*SIN(X(5))*SIN(X(6))
PZ = X(1)*COS(X(2)) + X(4)*COS(X(5))

* mass squared by square of four vector
FM2 = EN**2 - PX**2 - PY**2 - PZ**2

* constraint = calculated mass**2 - pi zero mass**2
F(1) = FM2 - 0.135**2

* call fit program
CALL APLCON(X,VX,F,IREP)
IF(IREP.LT.0) GOTO 20
PMF=SQRT(PX**2+PY**2+PZ**2)
XMF=SQRT(FM2)
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Weighted least squares

The model of Linear Least Squares: y = A a

y = vector of measured data

A = matrix (fixed)

a = vector of parameters

r = y −Aa = vector of residuals

V [y] = covariance matrix of the data

W = V [y]
−1

weight matrix

Least Squares Principle: minimize the expression

S(a) = rTWr = (y −Aa)
T

W (y −Aa)

with respect to a.
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Least Squares solution

Derivatives of expression S(a):

∂S

∂a
= 2

(
−ATWy +

(
ATWA

)
a
)

∂2S

∂a2
=
(
ATWA

)
= constant

Solution (from ∂S/∂a = 0) is linear transf. of the data vector y:

â =
(
ATWA

)−1
ATW y = By

Covariance matrix of a by ”error” propagation (V [y] = W −1):

V [â] = B V [y] BT =
(
ATWA

)−1

(identical to inverse of second derivate of S).
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Properties of solution

General scheme

Starting from Principles properties of the solution are derived, which are valid under certain
conditions.

Conditions:

• Data are unbiased: E[y] = A ā (ā = true parameter vector

• Covariance matrix V [y] is known (correct) and finite

Properties:

• Estimated parameters are unbiased: E[a] = â

E[â] =
(
ATWA

)−1
ATW E[y] = ā

• In the class of unbiased estimates a∗, which are linear in the data, the Least Squares
estimates â have the smallest variance (Gauß-Markoff theorem)

Properties are not valid, if conditions violated.
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Straight line fit

Example: track fit of y (measured) vs. abscissa x

yi = a0 + a1 · xi

Matrix A and parameter vector a

A =


1 x1
1 x2
... ...
1 xn

 a =

(
a0
a1

)

Weight matrix is diagonal (independent measurements):

ATWA =

( ∑
wi

∑
wixi∑

wixi

∑
wix

2
i

)
ATWy =

( ∑
wiyi∑

wixiyi

)
If one measured yi-value is shifted (biased), then

• parameters biased, and

• χ2-value very high.
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Straight line fit
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The full line is a straight line fit to three well aligned data points (black dots).

The dashed curve is the straight line fit, if the middle point is ”badly aligned” (circle).
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Normal equations for uncorrelated data

Usually the direct measurements, which are input to a least squares problem, are uncorrelated,
i.e. the covariance matrix V (y) and the weight matrix W are diagonal. This property, which
is assumed here, simplifies the computation of the matrix products

C = ATWA and b = ATWy

which are necessary for the solution
â = C−1b
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Normal equations for uncorrelated data contnd.

The diagonal elements of the weight matrix W are denoted by wi, with wi = 1/σ2
i . Each data

value yi with its weight wi makes an independent contribution to the final matrix products.
Calling the i-th row Ai, with

i-th row of A Ai = (d1, d2, . . . , dp)

the contributions of this row to C and b can be written as the p× p-matrix wiA
T
i ·Ai and the

p-vector wiA
T
i · yi. The contributions of a single row are:

d1 d2 . . . dp

d1 wid
2
1 wid1d2 . . . wid1dp

d2 wid
2
2 . . . wid2dp

. . . . . . . . .
dp wid

2
p

yi

d1 wid1zi

d2 wid2zi

. . . . . .
dp widpzi

,

where the symmetric elements in the lower half are not shown.
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Robust least square fit

Least square fit on observations yi, yielding fitted values ŷi, and residuals ri = yi− ŷi. Estimate
for the standard error of yi (or of the ri) is si.

• ”Clean” the data by pulling outliers towards their fitted values: winsorize the observations
yi and replace them by pseudo-observations y∗i :

y∗i = yi , if |ri| ≤ c si ,

= ŷi − c si , if ri < −c si ,

= ŷi + c si , if ri > +c si .

The factor c regulates the amount of robustness, a goid choice is c = 1.5.

• Refit iteratively: the pseudo-observations y∗i are used to calculate new parameters and new
fitted values ŷi.
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Robust least square fit

Classical estimate of si, if all observations are equally accurate:

s2 =
1

n− p

n∑
i=1

r2
i

((n− p) = number of observations minus the number of parameters). Estimate standard error

of residual si by si =
√

1−Hiis, where Hii is the diagonal element of H = X
(
XTX

)−1
XT .

Using modified (reduced) residuals r∗i = y∗i − ŷi instead of ri, the (bias corrected) estimate of
s2 is

s2 =
( n

m

)2 1

n− p

n∑
i=1

r∗2i

where m is the number of unmodified observations (y∗i = yi).
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