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Abstract

In Theoria motus corporum coelestium in sectionibus conicis solem am-
bientum Gauss presents, as a theorem and with emphasis, the rule to up-
date the ratio of probabilities of complementary hypotheses, in the light
of an observed event which could be due to either of them. Although he
focused on a priori equally probable hypotheses, in order to solve the prob-
lem on which he was interested in, the theorem can be easily extended to
the general case. But, curiously, I have not been able to find references to
his result in the literature.

“I play with a gentleman whom I do not know.

He has dealt ten times,

and he has turned the king up six times.

What is the chance that he is a sharper?

This is a problem in the probability of causes.

It may be said that it is the essential problem

of the experimental method.”

(H. Poincaré)

1 Introduction

As it is becoming rather well known, the only sound way to solve what Poincaré
called “the essential problem of the experimental method” is to tackle it using
probability theory, as it should be rather obvious for “a problem in the probability

of causes”. The mathematical tool to perform what is also known as ‘probability
inversion’ is called Bayes rule (or theorem), although due to Laplace, at least in
one of the most common formulations:1

P (Ci |E, I) =
P (E |Ci, I) · P (Ci | I)

∑

k P (E |Ck, I) · P (Ck | I)
, (1)

1“The greater the probability of an observed event given any one of a number of causes to

which that event may be attributed, the greater the likelihood of that cause [given that event].
The probability of the existence of any one of these causes [given the event] is thus a fraction

1

http://arxiv.org/abs/2003.10878v2
http://www.roma1.infn.it/~dagos


where E is the observed event and Ci are its possible causes, forming a complete
class (i.e. exhaustive and mutually exclusive). ‘I’ stands for the background
state of information, on which all probability evaluations do depend (‘I’ is often
implicit, as it will be later in this paper, but it is important to remember of its
existence).

Considering also an alternative cause Cj, the ratio of the two posterior prob-

abilities, that is how the two hypotheses are re-ranked in degree of belief, in the
light of the observation E, is given by

P (Ci |E, I)

P (Cj |E, I)
=

P (E |Ci, I)

P (E |Cj, I)
×

P (Ci | I)

P (Cj | I)
, (2)

in which we have factorized the r.h. side into the initial ratio of probabilities of
the two causes (second term) and the updating factor

P (E |Ci, I)

P (E |Cj, I)
, (3)

known as Bayes factor, or ‘likelihood ratio’.2 The advantage of Eq. (2) with
respect to Eq. (1) is that it highlights the two contributions to the posterior ratio
of the hypothesis of interest: the prior probabilities of the ‘hypotheses’, on which
there could be a large variety of opinions; the ratio of the probabilities of the
observed event, under the assumption to each hypothesis of interest, which can
often be rather intersubjective, in the sense that there is usually a larger, or
unanimous consensus, if the conditions under they have been evaluated (‘I’) are
clearly stated and shared (and in critical cases we have just to rely on the well
argued and documented opinion of experts.3)

whose numerator is the probability of the event given the cause, and whose denominator is

the sum of similar probabilities, summed over all causes. If the various causes are not equally

probable a priory, it is necessary, instead of the probability of the event given each cause, to

use the product of this probability and the possibility of the cause itself.”[1]
2The alternative name likelihood ratio is preferred in some communities of researchers be-

cause numerator and denominator of Eq. (3) are called likelihood by statisticians. My preference
to ‘Bayes factor’ (or even Bayes-Turing Factor [2, 3, 4]) is due to the fact that, since in the com-
mon parlance ‘likelihood’ and ‘probability’ are in practice equivalent, ‘likelihood ratio’ tends to
generate confusion as it were the ratio of the probabilities of the hypotheses of interest (and
the value that maximizes the ‘likelihood function’ tends to be considered by itself the most
probable value).

3For example the European Network of Forensic Science Institutes strongly recommends [5]
forensic scientists to report the ‘likelihood ratio’ of the findings in the light of the hypothesis
of the prosecutor and the hypothesis of the defense, abstaining to assess which hypothesis
they consider more probable, task left to the judicial system (but then I have strong worries,
shared by other researchers, about the ability of the members of judicial system of making
the proper use of such a quantitative information!). To those interested on the details of how
this Guideline can be turned into practice, a Coursera offered by the University of Lausanne is
recommended [6]
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Recently, going after years through the third section of the second ‘book’ of
Gauss’ Theoria motus corporum coelestium in sectionibus conicis solem ambi-

entum [7, 8], of which I had read with the due care only the part in which the
Prince Mathematicorum derives in his peculiar way what is presently known as
the Gaussian (or ‘normal’) error function, I have realized that Gauss had also
illustrated, a few pages before, a theorem on how to update the probability ratio
of two alternative hypotheses, based on experimental observations. Indeed the
theorem is not exactly Eq.(2), because it is only formulated for the case in which
P (Ci | I) and P (Cj | I) are equal, but the reasoning Gauss had setup would have
led naturally to the general case. It seems that he focused into the sub-case of
a priori equally likely hypotheses just because he had to apply his result to a
problem in which he consider the values to be inferred a priori equally likely
(“valorum harum incognitarum ante illa observationes aeque probabilia fuisse”).

But let us proceed in order.

2 Probability of observations vs probability of

the values of physical quantities

The third section of ‘book 2’ of the Gauss’ tome [7] is dedicated to “the deter-

mination of an orbit satisfying as nearly as possible any number of observations

whatever”.4 After ‘articles’ 5 172-174, which introduce the specific problem of
evaluating the elements of an orbit from the measurements of geocentric quanti-
ties related to those elements, with article 175 Gauss ascends 6 to methodological
issues of general interest for the Sciences:

“let us leave our special problem, and enter upon a very general dis-

cussion and one of the most fruitful in every application of the calculus

to the natural philosophy.”

The general problem is how to determine the µ unknown quantities p, q, r, s, etc.
(e.g. the elements of the orbit of a planet or a comet) and evaluate the functions
Vi of these variables from ν measurements Vmi

(e.g. the geocentric quantities of

4All English quotes are taken from the C.H. Davis translation [8].
5This publication is divided into two ‘books’, each of them subdivided in four ‘sections’.

Then the entire text is divided in numeri (translated into ‘articles’ by Davies [8]) running
through the ‘books’. In particular, Section 3 of Book 2, consisting of 22 printed pages in the
original Latin edition, contains ‘articles’ 172 to 189.

6“. . . ad disquisitionem generassimam in omni calculi ad philosophiam naturalem applica-
tione fecundissima ascendemus.”
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that celestial body measured at different times):7

Vi(p, q, r, s, . . . ) −−−−−−−−−−→
measured as

Vmi
, (4)

or, indicating the set of unknown quantities by θ, that is θ = {p, q, r, s, . . . }, we
can rewrite Eq. (4) as

Vi(θ) −−−−−−−−−−→
measured as

Vmi
. (5)

The most interesting case, Gauss explains, is when ν > µ. Being over-determined,
this case has a solution only if Vmi

are affected by experimental errors, described
by the probability density function8 (pdf) ϕ, that in article 177 will came out to
be the well known Gaussian function.9 Therefore,10

“Supposing, therefore, any determinate system of the values of the

quantities p, q, r, s, etc., the probability that the observation would

give for V the value M will be expressed by ϕ(M−V ), substituting
in V for p, q, r, s, etc., their values; in the same manner ϕ(M ′−V ′),
ϕ(M ′′−V ′′), etc, will express the probability that observation would

give the values M ′, M ′′, etc. of the functions V ′, V ′′, etc. Wherefore,

since we are authorized to regard all observations as event independent

of each other, the product

ϕ(M−V )ϕ(M ′−V ′)ϕ(M ′′−V ′′) etc, = Ω (G1)

will express the expectation or probability that all those values will

result together from observation.”

What Gauss calls Ω is thus the joint pdf of the differences Vmi
−Vi given a precise

set of values for the physical quantities of interest, which we would rewrite as

f(Vm−V | θ) =
∏

i

ϕ(Vmi
−Vi | θ) (6)

7For the reader’ convenience (hopefully) the functions are called here, except when they
appear in quotes, V1, V2, V3, etc., and the measured values Vm1

, Vm2
, Vm3

, etc., while Gauss
uses V , V ′, V ′′. . . and M , M ′, M ′′ . . . , respectively.

8Note how Gauss simply speaks of ‘probabilities’, obviously meaning probability density
functions, as clear from the use he makes of them: “the probability to be assigned to each error

∆ will be expressed by a function of ∆ that we shall denote as ϕ∆” – a few lines later it is
clear that Gauss had in mind a ’pdf’ since, when he wrote “the probability generally, that the

error lies between D and D′, will be given by the integral
∫

ϕ∆ d∆ extended from ∆ = D to

∆ = D′”. [Note also that in the case a function had only one argument, parentheses were not

used. Therefore ϕ∆ stands for ϕ(∆).]
9For an account of Gauss’ derivation in modern notation see Sec. 6.12 of Ref. [9] (some

intermediate steps needed to reach the solution are sketched in http://www.roma1.infn.it/

~dagos/history/Gauss_Gaussian.pdf).
10As clarified in footnote 8, it is clear that in the following quotes the generic term “proba-

bility” stands for probability density function.
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where Vm and V stand for the set of observations and of functions.11

Article 175 ends so with the expression of the joint probability of the obser-
vations given any set of values of the quantities of interest, that is a problem in
direct probabilities:

θ −−−−−−−−−−−−−−→
deterministic link

V −−−−−−−−−−−−−→
probabilistic link

Vm

Article 176 begins with what we could call nowadays a ‘Bayesian manifesto’:

“Now in the same manner as, when any determinate values what-

ever of the unknown quantities being taken, a determinate probability

corresponds, previous to observations, to any system of values of the

functions V , V ′, V ′′, etc; so, inversely, after determinate values of the

functions have resulted from observation, a determinate probability

will belong to every system of values of the unknown quantities, from

which the values of the functions could possibly have resulted.”

That is, in our notation, as when we assume “determinate values” of the physical
quantities we are interested in the joint pdf of the values that will be observed,

f(Vm−V | θ) , (7)

similarly, once the observations have been made, we are interested in the joint
pdf of the values of the physical quantities,

f(θ |Vm−V ) . (8)

The question is now how to go from Eq. (7) to Eq. (8), reasoning “inversely”.

3 Updating the probabilities of hypotheses

We are finally at the core of the problem. Let Gauss speak:

“For, evidently, those systems will be regarded as the more probable in

which the greater expectation had existed of the event which actually

occurred. The estimation of this probability rests upon the following

theorem:

If, any hypothesis H being made, the probability of any determinate

11The reason why in the argument appears the differences and not simply the observed values
is that for Gauss ϕ() was the error function, i.e. ‘probability density function’ of the errors (see
also footnote 8). Since, later in ‘article’ 177, the function ϕ() will become the ‘Gaussian’ error
function, we could rewrite directly the joint pdf of the observations in modern notation as

f(Vm | θ) =
∏

i

1√
2π σ

exp

[

−
(Vmi

−Vi(θ))
2

2σ2

]

.
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Figure 1: Extract of Theoria motus corporum. . . [7] in which Gauss enunciates his the-
orem on how to update probability ratios of incompatible hypotheses in the light of an
experimental observation. Note “tum dico” (“than I say”).

event E is h, and if, another hypothesis H’ being made excluding the

former and equally probable in itself, the probability of the same event

is h’: then I say, when the event E has actually occurred, that the

probability that H was the true hypothesis, is to the probability that

H’ was the true hypothesis, as h to h’.” (Italic original, also put in
evidence in the text as a quote – see Fig. 1.)

In modern notation:

P (E |H) = h

P (E |H ′) = h′

P (H |E)

P (H ′ |E)
=

P (E |H)

P (E |H ′)
, if P0(H) = P0(H

′) . (9)

There are no doubts that Gauss presents this result as original (“then I say”,
in Latin tum dico), although it might be curious that it did not refer to results
by Laplace, who had been writing on probabilities of causes more than thirty
years before12 [10]. (For comparison, a few pages later, in article 177, Gauss
acknowledges Laplace for having calculated the integral needed to normalize the
‘Gaussian’ distribution.) It is also curious the fact that Gauss starts saying that
“evidently, those systems will be regarded as the more probable in which the

greater expectation had existed of the event which actually occurred”, considering
thus “evident” what is presently known as ‘maximum likelihood principle’, but

12The historian of statistics Stephen Stigler refers to Laplace’s 1774 Mémoire as “arguably

the most influential article this field [mathematical statistics(∗)] to appear before 1800, being

the first widely read presentation of inverse probability and its application to both binomial and

location parameter estimation.” [11] (note that in this reference there is no mention to Gauss).
(∗) As far as I know, neither Gauss nor Laplace were using the word ‘statistics’, but they were
talking about probability.
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Figure 2: Partition of the space of possibilities as it appears in the original work of Gauss [7].
The English translations of the three columns are [8]: “that among them may be found”; “in
which should be assumed the hypothesis”; “in such a mode as would give occasion to the
event”. Then: “ab E diuersus”= “different from E”; “ab H ′ et H ′ diuersa”= “different
from H and H ′ ”.

then taking care of proving it as a theorem (under the well stated assumption of
initially equally probable hypotheses).

The reasoning upon which the theorem is proved is based on an inventory of
equiprobable cases. This might seems to limit the application to situations in
which this inventory is in practice feasible, like in games of cards and of dice.
Instead, this was the way of reasoning of those times to partition the space of
possibilities, as it is clear from the use that Gauss makes of his result, certainly
not limited to simple games. Figure 2 shows the original version of such a parti-
tion. The six numbers of the first column, normalized to their sum, provide the
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following probabilities:

P (E ∩H) =
m

m+ n+m′ + n′ +m′′ + n′′

P (E ∩H) =
n

m+ n+m′ + n′ +m′′ + n′′

P (E ∩H ′) =
m′

m+ n+m′ + n′ +m′′ + n′′

P (E ∩H ′) =
n′

m+ n+m′ + n′ +m′′ + n′′

P (E ∩H ∪H ′) =
m′′

m+ n+m′ + n′ +m′′ + n′′

P (E ∩H ∪H ′) =
n′′

m+ n+m′ + n′ +m′′ + n′′

The probabilities which enter the proof are those of the H and H ′

P (H) =
m+ n

m+ n+m′ + n′ +m′′ + n′′
(10)

P (H ′) =
m′ + n′

m+ n+m′ + n′ +m′′ + n′′
(11)

and those of the event E given either hypothesis:

P (E |H) =
m

m+ n
= h (12)

P (E |H ′) =
m′

m′ + n′
= h′ (13)

The probability of H is modified by the observation of E observing that, with
reference to Eqs. (10) and (11),

“after the event is known, when the cases n, n′, n′′ disappear from

the number of possible cases, the probabilities of the same hypothesis

will be
m

m+m′ +m′′
;

in the same way the probability of the hypothesis H ′ before and after

the event, respectively, will be expressed by

m′ + n′

m+ n +m′ + n′ +m′′ + n′′
and

m′

m+m′ +m′′
:
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since, therefore, the same probability is assumed for the hypotheses

H and H ′ before the event is known, we shall have

m+n = m′+n′ , (G2)

hence the truth of the theorem is readily inferred.”

That is, in our notation,

P (H |E) =
m

m+m′ +m′′

P (H ′ |E) =
m′

m+m′ +m′′
,

from which

P (H |E)

P (H ′ |E)
=

m

m′
.

Using then Eqs. (12) and (13), yielding m = (m+ n) · P (E |H) and
m′ = (m′ + n′) · P (E |H ′), we obtain

P (H |E)

P (H ′ |E)
=

P (E |H) · (m+ n)

P (E |H ′) · (m′ + n′)
(14)

Applying finally the condition (G2), theorem (9) is proved.
In reality, it is easy to see that, being

m+ n

m′ + n′
=

P (H)

P (H ′)
,

Eq. (14) contains the most general case

P (H |E)

P (H ′ |E)
=

P (E |H)

P (E |H ′)
·
P (H)

P (H ′)
.

But Gauss contented himself with the sub-case of initially probable hypotheses.
Why? The reason is most likely that he focused on the inference of the unknown
values of the physical quantities of interest, that he assumed a priori equally
likely, a very reasonable assumption for this kind of inferences, if we compare the
prior knowledge with the information provided by observations (see e.g. Ref. [9]).

4 Application to the inference of unknown val-

ues of physical quantities

In fact, immediately after the proof of his theorem, Gauss continues:

9



“Now, so far as we suppose that no other data exist for the determi-

nation of the unknown quantities besides the observations V = M ,

V ′ = M ′, V ′′ = M ′′ etc., and, therefore, that all systems of values

of these unknown quantities were equally probable previous to the

observations, the probabilities, evidently, of any determinate system

subsequent to the observations will be proportional to Ω. This is to

be understood to mean that the probability that the values of the un-

known quantities lie between the infinitely near limits p and p+dp, q
and q+ dq, r and r+ dr, s and s+ ds,, etc. respectively, is expressed
by

λΩ dp dq dr ds · · · , etc., (G3)

where the quantity λ will be a constant quantity independent of p, q,
r, s, etc.: and, indeed,, 1/λ will, evidently, be the value of the integral

of order ν ,

∫ ν

Ω dp dq dr ds · · · , etc., (G4)

for each of the variables p, q, r, s, etc, extended from the value −∞
to the value +∞.”

As we can see, it is well stated the assumption of ‘flat priors’, as we use to say
nowadays (with the original words of Gauss, in Latin: “valorum harum incogni-

tarum ante illa observationes aeque probabilia fuisse”).13

It is, instead, less clear how he uses the result of his theorem (the quote at the
beginning of this section follows immediately the end of the proof of the theorem,
with no single word in between). The implicit intermediate step is

P (H |E) ∝ P (E |H) , (15)

extended to set of continuous uncertain values (‘uncertain vector’) θ as

P (θ | data) ∝ P (data | θ) . (16)

Then, remembering that Ω was the joint pdf of the observations [see Eq. (G1)],
which we have rewritten in more compact notation as Eq. (6), we have

f(θ |Vm − V ) ∝ f(Vm − V | θ)

or

f(θ |Vm − V ) = λ · f(Vm − V | θ) ,

13It is clear that what is unknown are the numeric values of the quantities and not the
‘quantities’ themselves, at it could seem from the English translation, because in that case
there would be little to infer.
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being λ just the normalization constant, i.e.14

1

λ
=

∫

Rν

f(Vm − V | θ) dθ . (17)

5 Conclusions

Reading Gauss’ work, there are no doubts that the Prince Mathematicorum had
clear ideas on how to tackle inverse probability problems, i.e. what goes presently
under the name Bayesian inference. In particular, he presented as original what is
now called Bayes factor, i.e the factor to update the odds in favor of an hypothesis
with respect to the alternative one, in the light of a new observation. However, it
is curious that, as far as I could find, this result is not acknowledged in the current
literature. For example, his name appears only once in the Sharon Mcgrayne
rather comprehensive book on the history of Bayesian reasoning[13], as being
cited by Enrico Fermi, who was teaching his students data analysis methods
derived from his Bayes’ theorem.15

At this point a long discussion could follow on the question if Gauss could
be classified as a Bayesian and why, later on in his book, he did not proceed
applying consistently the probabilistic reasoning he had setup, getting the joint
probability distribution of the values of the orbital elements given the observed
geocentric measurements, but he derived, instead, the least square method to get
(relatively) simple formulae for the most probable values (this aim was clearly
stated). And all this in the same text, just a few pages after, and not in a later
stage of his life.

Well, I am not an historian, and therefore I can only state my impressions
based on a limited amount of reading. Gauss appears in the section of the book
upon which this modest note is based not only as the genius he is famous to be,
but also a very practical scientist going straight to his goals. Trying to set a multi-
dimensional inference to write down the joint pdf of parameters of a non-linear
problem and exploiting it at best, something that we can do nowadays, thanks to
unprecedented computing power and novel mathematical methods, would have
just been a waste of time two centuries ago. We have also seen that he didn’t
even care to state the general rule to update probability ratios, which would
have required just a couple of lines of text, because he had in mind a problem
for which the priors were reasonable ‘flat’. Moreover, he was also well aware of

14Note: the reason of using in the formulae Vm − V , instead than just Vm is simply due to
the way Gauss wrote the error function, but, obviously, this function could be redefined and V

would disappear from the above equations, then getting for example f(θ |Vm) ∝ f(Vm | θ), as
we would write it nowadays (see also footnote 11).

15Indeed Ref. [13] cites Ref. [14], writing which I had realized that Gauss was using a ‘Bayesian
reasoning’, but I had at that time completely skipped the ‘details’ in which he derived, as a
theorem, the rule to update the ratio of probabilities of hypotheses, subject of this paper.
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the practical meaning and limits of the mathematical functions, as when, later
in the same section, he commented in ‘article’ 177 on the “defect” of his error

function, because “the function just found cannot, it is true, express rigorously

the probabilities of the errors”. Indeed, the ‘error function’ ϕ() was not specified
up to the end of ’article’ 176. Only in the following article he showed that a good
candidate for it was, under well stated conditions, . . . the Gaussian, a function
having the “defect” of contemplating values ranging from minus infinity to plus
infinity. Then other interesting articles follow,16 but I don’t want to spoil you
the pleasure of the reading.17

Finally, someone might be intrigued about what Gauss meant by probability.
“Probabilitas”. What else?18
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