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“Probability is good sense reduced to a calculus” (S. Laplace)

“All models are wrong but some are useful” (G. Box)
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Outline

“Science and hypothesis” (Poincaré)

Uncertainty, probability, decision.

Causes←→Effects
“The essential problem of the experimental method” (Poincaré).

A toy model and its physics analogy: the six box game
“Probability is either referred to real cases or it is nothing” (de Finetti).

Probabilistic approach [ but . . . What is probability?]

Basic rules of probability and Bayes rule.

Bayesian inference and its graphical representation:
⇒ Bayesian networks

From ball and boxes to real measurements

Conclusions

G. D’Agostini, Bayesian Reasoning in Measurements (Pisa, 11 May 2015) – p. 2



What is measurement?
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What is measurement?

Higgs→ γγ
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What is measurement?

ATLAS Experiment at LHC
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What is measurement?

ATLAS Experiment at LHC [ length: 46 m; � 25 m ]

≈ 3000 km cables
≈ 7000 tonnes ≈ 100millions electronic channels
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What is measurement?
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What is measurement?

Higgs→ γγ

⇒

{

Mass

Production rate
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What is measurement?

Higgs→ γγ

⇒

{

Mass

Production rate

Quite indirect measurements of something we do not “see”!
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Can we “see” physics quantities?

But, can we see our mass?
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Can we “see” physics quantities?

. . . or a voltage?
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Can we “see” physics quantities?

. . . or our blood pressure?
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Can we “see” physics quantities?

Certainly not!
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Can we “see” physics quantities?

Certainly not!

. . . although for some quantities we can have

a ‘vivid impression’ (in the David Hume’s sense)
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Measuring a mass on a balance

Equilibrium:

mg − k∆x = 0

∆x → θ → scale reading

From the reading to the value of the mass:

scale reading −−−−−−−−−−−−−→
given g, k, “etc.”. . .

m
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Measuring a mass on a balance

scale reading −−−−−−−−−−−−−→
given g, k, “etc.”. . .

m

Dependence on ‘g’:
g

?
=

GM♁

R2
♁
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Measuring a mass on a balance

scale reading −−−−−−−−−−−−−→
given g, k, “etc.”. . .

m

Dependence on ‘g’:
g

?
=

GM♁

R2
♁

Position is usually not at “R♁” from the Earth center;

Earth not spherical. . .

. . . not even ellipsoidal. . .

. . . and not even homogenous.

Moreover we have to consider centrifugal effects

. . . and even the effect from the Moon

G. D’Agostini, Bayesian Reasoning in Measurements (Pisa, 11 May 2015) – p. 6



Measuring a mass on a balance

scale reading −−−−−−−−−−−−−→
given g, k, “etc.”. . .

m

Dependence on ‘g’:
g

?
=

GM♁

R2
♁

Position is usually not at “R♁” from the Earth center;

Earth not spherical. . .

. . . not even ellipsoidal. . .

. . . and not even homogenous.

Moreover we have to consider centrifugal effects

. . . and even the effect from the Moon

Certainly not to watch our weight
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Measuring a mass on a balance

scale reading −−−−−−−−−−−−−→
given g, k, “etc.”. . .

m

Dependence on ‘g’:
g

?
=

GM♁

R2
♁

Position is usually not at “R♁” from the Earth center;

Earth not spherical. . .

. . . not even ellipsoidal. . .

. . . and not even homogenous.

Moreover we have to consider centrifugal effects

. . . and even the effect from the Moon

Certainly not to watch our weight
But think about it!
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Measuring a mass on a balance

scale reading −−−−−−−−−−−−−→
given g, k, “etc.”. . .

m

Dependence on ‘k’:

temperature

non linearity

. . .
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Measuring a mass on a balance

scale reading −−−−−−−−−−−−−→
given g, k, “etc.”. . .

m

Dependence on ‘k’:

temperature

non linearity

. . .

∆x→ θ → scale reading:

left to your imagination. . .
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Measuring a mass on a balance

scale reading −−−−−−−−−−−−−→
given g, k, “etc.”. . .

m

Dependence on ‘k’:

temperature

non linearity

. . .

∆x→ θ → scale reading:

left to your imagination. . .

+ randomic effects:

stopping position of damped oscillation;

variability of all quantities of influence (in the ISO-GUM
sense);

reading of analog scale.
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Measuring a mass on a balance

scale reading −−−−−−−−−−−−−→
given g, k, “etc.”. . .

m

Dependence on ‘k’:

temperature

non linearity

. . .

∆x→ θ → scale reading:

left to your imagination. . .

+ randomic effects:

stopping position of damped oscillation;

variability of all quantities of influence (in the ISO-GUM
sense);

reading of analog scale.
⇒ m??
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Sources of uncertainties (from ISO GUM)

1 incomplete definition of the measurand;†

→ g
→where?

→inertial effects subtracted?

2 imperfect realization of the definition of the measurand;

→ scattering on neutron

→how to realize a neutron target?

3 non-representative sampling — the sample measured may not

represent the measurand;

4 inadequate knowledge of the effects of environmental conditions on

the measurement, or imperfect measurement of environmental

conditions;

5 personal bias in reading analogue instruments;
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Sources of uncertainties (from ISO GUM)

6 finite instrument resolution or discrimination threshold;

7 inexact values of measurement standards and reference materials;

8 inexact values of constants and other parameters obtained from

external sources and used in the data-reduction algorithm;

9 approximations and assumptions incorporated in the measurement

method and procedure;

10 variations in repeated observations of the measurand under

apparently identical conditions.

→ “statistical errors”

Note

Sources not necessarily independent

In particular, sources 1-9 may contribute to 10
(e.g. not-monitored electric fluctuations)
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Pure empirical information?

A number, outside a contest, and denuted of all information
the physicist or engineer has about its ‘production’ provides
little (or zero) information: is not a measurement.
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Pure empirical information?

A number, outside a contest, and denuted of all information
the physicist or engineer has about its ‘production’ provides
little (or zero) information: is not a measurement.

mistrust the dogma of the dogma

Immaculate Observation!
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Comparing hypotheses

We do measurements not only to ‘estimate’ the numeric
value of a quantity.

Experimental observations are also used in order to

“check hypotheses”
(a generic expression that needs clarification. . . )
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Experimental observations are also used in order to

“check hypotheses”
(a generic expression that needs clarification. . . )

make decisions accordingly

Diagnostics, reliability, etc.
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Comparing hypotheses

We do measurements not only to ‘estimate’ the numeric
value of a quantity.

Experimental observations are also used in order to

“check hypotheses”
(a generic expression that needs clarification. . . )

make decisions accordingly

Diagnostics, reliability, etc.

Diagnostics concerning health helps to clarify the issues⇒

G. D’Agostini, Bayesian Reasoning in Measurements (Pisa, 11 May 2015) – p. 10



AIDS test

An Italian citizen is selected at random
to undergo an AIDS test.
→ Performance of clinical trial is not perfect, as customary:

P (Pos |HIV) = 100%

P (Pos |HIV) = 0.2%

P (Neg |HIV) = 99.8%

H1=’HIV’ (Infected) E1 = Positive

H2=’HIV’ (Healthy) E2 = Negative
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AIDS test

An Italian citizen is selected at random
to undergo an AIDS test.
→ Performance of clinical trial is not perfect, as customary:

P (Pos |HIV) = 100%

P (Pos |HIV) = 0.2%

P (Neg |HIV) = 99.8%

H1=’HIV’ (Infected) E1 = Positive

H2=’HIV’ (Healthy) E2 = Negative

Result: ⇒ Positive
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AIDS test

An Italian citizen is selected at random
to undergo an AIDS test.
→ Performance of clinical trial is not perfect, as customary:

P (Pos |HIV) = 100%

P (Pos |HIV) = 0.2%

P (Neg |HIV) = 99.8%

? H1=’HIV’ (Infected) E1 = Positive

? H2=’HIV’ (Healthy) E2 = Negative

Result: ⇒ Positive
Infected or healthy?
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AIDS test: how to interpret the result?

Being P (Pos |HIV) = 0.2% and having observed ‘Positive’,
can we say?

”It is practically impossible that the person is healthy,
since it was practically impossible that an healthy
person would result positive”
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AIDS test: how to interpret the result?

Being P (Pos |HIV) = 0.2% and having observed ‘Positive’,
can we say

”It is practically impossible that the person is healthy,
since it was practically impossible that an healthy
person would result positive”

“There is only 0.2% probability that the person has no
HIV”

“We are 99.8% confident that the person is infected?”

“The hypothesis H1=Healthy is ruled out with 99.8%
C.L.”

?
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AIDS test: how to interpret the result?

Being P (Pos |HIV) = 0.2% and having observed ‘Positive’,
can we say

”It is practically impossible that the person is healthy,

since it was practically impossible that an healthy
person would result positive”

“There is only 0.2% probability that the person has no
HIV”

“We are 99.8% confident that the person is infected?”

“The hypothesis H1=Healthy is ruled out with 99.8%

C.L.”

NO
Instead, P (HIV |Pos, random Italian) ≈ 45%
(We will learn in the sequel how to evaluate it correctly)
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AIDS test: how to interpret the result?

Being P (Pos |HIV) = 0.2% and having observed ‘Positive’,
can we say

”It is practically impossible that the person is healthy,

since it was practically impossible that an healthy
person would result positive”

“There is only 0.2% probability that the person has no
HIV”

“We are 99.8% confident that the person is infected?”

“The hypothesis H1=Healthy is ruled out with 99.8%

C.L.”

NO
Instead, P (HIV |Pos, random Italian) ≈ 45%
⇒ Serious mistake! (not just 99.8% instead of 98.3% or so)

G. D’Agostini, Bayesian Reasoning in Measurements (Pisa, 11 May 2015) – p. 12



AIDS test

???
Where is the problem?
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AIDS test
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The previous statements, although dealing with
probabilistic issues, are not grround on probability theory
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AIDS test

???
Where is the problem?

The previous statements, although dealing with
probabilistic issues, are not grround on probability theory

. . . and in these issues intuition can be fallacious!
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AIDS test

???
Where is the problem?

The previous statements, although dealing with
probabilistic issues, are not grround on probability theory

. . . and in these issues intuition can be fallacious!

⇒ A sound formal guidance can rescue us

G. D’Agostini, Bayesian Reasoning in Measurements (Pisa, 11 May 2015) – p. 13



Learning from data

Observations

Value of
a quantity

Theory
(model)

(*)

Hypotheses discretecontinuous
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Learning from data

Observations

Value of
a quantity

Theory
(model)

(*)

Hypotheses discretecontinuous

(*) A quantity might be meaningful only within a
theory/model
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From past to future

Our task:

Describe/understand the physical world

⇒ inference of laws and their parameters

Predict observations

⇒ forecasting
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From past to future

Process

neither automatic

nor purely contemplative

→ ‘scientific method’

→ planned experiments (‘actions’)⇒ decision.
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From past to future

Observations

(past)

Theory

Observations

(future)

? ?

parameters

?

⇒ Uncertainty:

1. Given the past observations, in general we are not sure
about the theory parameters (and/or the theory itself)

2. Even if we were sure about theory and parameters,
there could be internal (e.g. Q.M.) or external effects
(initial/boundary conditions, ‘errors’, etc) that make the
forecasting uncertain.
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Inferential-predictive process
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Inferential-predictive process
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Inferential-predictive process

(S. Raman, Science with a smile)
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Inferential-predictive process

(S. Raman, Science with a smile)

Even if the (ad hoc) model fits perfectly the data,
we do not believe the predictions
because we don’t trust the model!

[Many ‘good’ models are ad hoc models!]
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2011 IgNobel prize in Mathematics

D. Martin of USA (who predicted the world would end in
1954)

P. Robertson of USA (who predicted the world would
end in 1982)

E. Clare Prophet of the USA (who predicted the world
would end in 1990)

L.J. Rim of KOREA (who predicted the world would end
in 1992)

C. Mwerinde of UGANDA (who predicted the world
would end in 1999)

H. Camping of the USA (who predicted the world would
end on September 6, 1994 and later predicted that the
world will end on October 21, 2011)

G. D’Agostini, Bayesian Reasoning in Measurements (Pisa, 11 May 2015) – p. 17



2011 IgNobel prize in Mathematics

“For teaching the world to be
careful when making
mathematical assumptions
and calculations”
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Deep source of uncertainty

Observations

(past)

Theory

Observations

(future)

? ?

parameters

?

Uncertainty:

Theory — ? −→ Future observations

Past observations — ? −→ Theory

Theory — ? −→ Future observations
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Deep source of uncertainty

Observations

(past)

Theory

Observations

(future)

? ?

parameters

?

Uncertainty:

Theory — ? −→ Future observations

Past observations — ? −→ Theory

Theory — ? −→ Future observations

=⇒ Uncertainty about causal connections

CAUSE⇐⇒ EFFECT
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Causes→ effects

The same apparent cause might produce several,different
effects

C1 C2 C3 C4

E1 E2 E3 E4

Causes

Effects

Given an observed effect, we are not sure about the exact
cause that has produced it.
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Causes

Effects
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Causes→ effects

The same apparent cause might produce several,different
effects

C1 C2 C3 C4

E1 E2 E3 E4

Causes

Effects

Given an observed effect, we are not sure about the exact
cause that has produced it.

E2 ⇒ {C1, C2, C3}?

G. D’Agostini, Bayesian Reasoning in Measurements (Pisa, 11 May 2015) – p. 19



The “essential problem” of the Sciences

“Now, these problems are classified as probability of
causes, and are most interesting of all their scientific
applications. I play at écarté with a gentleman whom I
know to be perfectly honest. What is the chance that he
turns up the king? It is 1/8. This is a problem of the
probability of effects.
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The “essential problem” of the Sciences

“Now, these problems are classified as probability of
causes, and are most interesting of all their scientific
applications. I play at écarté with a gentleman whom I
know to be perfectly honest. What is the chance that he
turns up the king? It is 1/8. This is a problem of the
probability of effects.

I play with a gentleman whom I do not know. He has
dealt ten times, and he has turned the king up six times.
What is the chance that he is a sharper? This is a
problem in the probability of causes. It may be said that
it is the essential problem of the experimental method.”

(H. Poincaré – Science and Hypothesis)
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The “essential problem” of the Sciences

“Now, these problems are classified as probability of
causes, and are most interesting of all their scientific
applications. I play at écarté with a gentleman whom I
know to be perfectly honest. What is the chance that he
turns up the king? It is 1/8. This is a problem of the
probability of effects.

I play with a gentleman whom I do not know. He has
dealt ten times, and he has turned the king up six times.
What is the chance that he is a sharper? This is a
problem in the probability of causes. It may be said that
it is the essential problem of the experimental method.”

(H. Poincaré – Science and Hypothesis)

Why we (or most of us) have not been
taught how to tackle this kind of problems?
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From ‘true value’ to observations

x

Μ0

Experimental

response

?

Given µ (exactly known) we are uncertain about x
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From ‘true value’ to observations

x

Μ

Uncertain Μ

Experimental

response

?

Uncertainty about µ makes us more uncertain about x

G. D’Agostini, Bayesian Reasoning in Measurements (Pisa, 11 May 2015) – p. 21



. . . and back: Inferring a true value

x

Μ

Uncertain Μ

Experimental

observation

x0

The observed data is certain: → ‘true value’ uncertain.
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. . . and back: Inferring a true value

x

Μ

Uncertain Μ

Experimental

observation

x0

The observed data is certain: → ‘true value’ uncertain.

“data uncertainty” ?
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. . . and back: Inferring a true value

x

Μ

Uncertain Μ

Experimental

observation

x0

The observed data is certain: → ‘true value’ uncertain.

“data uncertainty” ? Data corrupted?
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. . . and back: Inferring a true value

x

Μ

Uncertain Μ

Experimental

observation

x0

The observed data is certain: → ‘true value’ uncertain.

“data uncertainty” ? Data corrupted?
Even if the data were corrupted, the data were the
corrupted data!! . . .

G. D’Agostini, Bayesian Reasoning in Measurements (Pisa, 11 May 2015) – p. 22



. . . and back: Inferring a true value

x

Μ

Which Μ?

Experimental

observation

x0

?

Where does the observed value of x comes from?
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. . . and back: Inferring a true value

x

Μ

x0

?

Inference

We are now uncertain about µ, given x.
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. . . and back: Inferring a true value

x

Μ

x0

Μ given x

x given Μ

Note the symmetry in reasoning.
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A very simple experiment

Let’s make an experiment
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Let’s make an experiment
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Now
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A very simple experiment

Let’s make an experiment

Here
Now

For simplicity

µ can assume only six possibilities:

0,1, . . . ,5

x is binary:

0,1

[ (1, 2); Black/White; Yes/Not; . . . ]
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A very simple experiment

Let’s make an experiment

Here
Now

For simplicity

µ can assume only six possibilities:

0,1, . . . ,5

x is binary:

0,1

[ (1, 2); Black/White; Yes/Not; . . . ]

⇒ Later we shall make µ continous.

G. D’Agostini, Bayesian Reasoning in Measurements (Pisa, 11 May 2015) – p. 23



Which box? Which ball?

H0 H1 H2 H3 H4 H5

Let us take randomly one of the boxes.
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Which box? Which ball?

H0 H1 H2 H3 H4 H5

Let us take randomly one of the boxes.

We are in a state of uncertainty concerning several events,
the most important of which correspond to the following
questions:

(a) Which box have we chosen, H0, H1, . . . , H5?

(b) If we extract randomly a ball from the chosen box, will
we observe a white (EW ≡ E1) or black (EB ≡ E2) ball?

Our certainties: ∪5j=0 Hj = Ω

∪2i=1Ei = Ω .
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Which box? Which ball?

H0 H1 H2 H3 H4 H5

Let us take randomly one of the boxes.

What happens after we have extracted one ball and
looked its color?

Intuitively feel how to roughly change our opinion
about

the possible cause
a future observation
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Which box? Which ball?
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What happens after we have extracted one ball and
looked its color?

Intuitively feel how to roughly change our opinion
about

the possible cause
a future observation

Can we do it quantitatively, in an ‘objective way’?
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Which box? Which ball?

H0 H1 H2 H3 H4 H5

Let us take randomly one of the boxes.

What happens after we have extracted one ball and
looked its color?

Intuitively feel how to roughly change our opinion
about

the possible cause
a future observation

Can we do it quantitatively, in an ‘objective way’?

And after a sequence of extractions?
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The toy inferential experiment

The aim of the experiment will be to guess the content of
the box without looking inside it, only extracting a ball,
record its color and reintroducing in the box
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The toy inferential experiment

The aim of the experiment will be to guess the content of
the box without looking inside it, only extracting a ball,
record its color and reintroducing in the box

This toy experiment is conceptually very close to what we
do in the pure and applied sciences

⇒ try to guess what we cannot see (the electron mass, a
magnetic field, etc)

. . . from what we can see (somehow) with our senses.

The rule of the game is that we are not allowed to watch
inside the box! (As we cannot open and electron and read
its properties, unlike we read the MAC address of a PC
interface.)

G. D’Agostini, Bayesian Reasoning in Measurements (Pisa, 11 May 2015) – p. 25



Where is probability?

We all agree that the experimental results change

the probabilities of the box compositions;

the probabilities of a future outcomes,
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We all agree that the experimental results change

the probabilities of the box compositions;

the probabilities of a future outcomes,

although the box composition remains unchanged
(‘extractions followed by reintroduction’).

G. D’Agostini, Bayesian Reasoning in Measurements (Pisa, 11 May 2015) – p. 26



Where is probability?

We all agree that the experimental results change

the probabilities of the box compositions;

the probabilities of a future outcomes,

although the box composition remains unchanged
(‘extractions followed by reintroduction’).

Where is the probability?
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Where is probability?

We all agree that the experimental results change

the probabilities of the box compositions;

the probabilities of a future outcomes,

although the box composition remains unchanged
(‘extractions followed by reintroduction’).

Where is the probability?

Certainly not in the box!

G. D’Agostini, Bayesian Reasoning in Measurements (Pisa, 11 May 2015) – p. 26



Subjective nature of probability

“Since the knowledge may be different with
different persons
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Subjective nature of probability

“Since the knowledge may be different with
different persons or with the same person
at different times,
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different persons or with the same person
at different times, they may anticipate the
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Subjective nature of probability

“Since the knowledge may be different with
different persons or with the same person
at different times, they may anticipate the
same event with more or less confidence,
and thus different numerical probabilities
may be attached to the same event”
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Subjective nature of probability

“Since the knowledge may be different with
different persons or with the same person
at different times, they may anticipate the
same event with more or less confidence,
and thus different numerical probabilities
may be attached to the same event”

(Schrödinger, 1947)
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Subjective nature of probability

“Since the knowledge may be different with
different persons or with the same person
at different times, they may anticipate the
same event with more or less confidence,
and thus different numerical probabilities
may be attached to the same event”

(Schrödinger, 1947)

Probability depends on the status of
information of the subject who evaluates it.
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Probability is always conditional probability

“Thus whenever we speak loosely of ‘the
probability of an event’, it is always to be
understood: probability with regard to a
certain given state of knowledge”

G. D’Agostini, Bayesian Reasoning in Measurements (Pisa, 11 May 2015) – p. 28
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certain given state of knowledge”

(Schrödinger, 1947)
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Probability is always conditional probability

“Thus whenever we speak loosely of ‘the
probability of an event’, it is always to be
understood: probability with regard to a
certain given state of knowledge”

(Schrödinger, 1947)

P (E) −→ P (E | Is)

where Is is the information available to subject s.
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What are we talking about?

“Given the state of our knowledge about
everything that could possible have any
bearing on the coming true. . .
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What are we talking about?

“Given the state of our knowledge about
everything that could possible have any
bearing on the coming true. . . the
numerical probability P of this event is to
be a real number by the indication of which
we try in some cases to setup a
quantitative measure of the strength of our
conjecture or anticipation, founded on the
said knowledge, that the event comes true”

(Schrödinger, 1947)
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What are we talking about?

“Given the state of our knowledge about
everything that could possible have any
bearing on the coming true. . . the
numerical probability P of this event is to
be a real number by the indication of which
we try in some cases to setup a
quantitative measure of the strength of our
conjecture or anticipation, founded on the
said knowledge, that the event comes true”

⇒ How much we believe something
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What are we talking about?

“Given the state of our knowledge about
everything that could possible have any
bearing on the coming true. . . the
numerical probability P of this event is to
be a real number by the indication of which
we try in some cases to setup a
quantitative measure of the strength of our
conjecture or anticipation, founded on the
said knowledge, that the event comes true”

→ ‘Degree of belief’←
G. D’Agostini, Bayesian Reasoning in Measurements (Pisa, 11 May 2015) – p. 29



Beliefs and ‘coherent’ bets

Remarks:

Subjective does not mean arbitrary!
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How to force people to assess how much they are
confident on something?
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Subjective does not mean arbitrary!

How to force people to assess how much they are
confident on something?

Coherent bet
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Beliefs and ‘coherent’ bets

Remarks:

Subjective does not mean arbitrary!

How to force people to assess how much they are
confident on something?

Coherent bet:

you state the odds according on your beliefs;

somebody else will choose the direction of the bet.
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Beliefs and ‘coherent’ bets

Remarks:

Subjective does not mean arbitrary!

How to force people to assess how much they are
confident on something?

Coherent bet:

you state the odds according on your beliefs;

somebody else will choose the direction of the bet.

“His [Bouvard] calculations give him the mass of
Saturn as 3,512th part of that of the sun. Applying
my probabilistic formulae to these observations, I
find that the odds are 11,000 to 1 that the error in
this result is not a hundredth of its value.” (Laplace)
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Subjective does not mean arbitrary!
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somebody else will choose the direction of the bet.

“His [Bouvard] calculations give him the mass of
Saturn as 3,512th part of that of the sun. Applying
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Beliefs and ‘coherent’ bets

Remarks:

Subjective does not mean arbitrary!

How to force people to assess how much they are
confident on something?

Coherent bet:

you state the odds according on your beliefs;

somebody else will choose the direction of the bet.

“His [Bouvard] calculations give him the mass of
Saturn as 3,512th part of that of the sun. Applying
my probabilistic formulae to these observations, I
find that the odds are 11,000 to 1 that the error in
this result is not a hundredth of its value.” (Laplace)

→ P (3477 ≤MSun/MSat ≤ 3547 | I(Laplace)) = 99.99%
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Standard textbook definitions

p =
# favorable cases

#possible equiprobable cases

p =
# times the event has occurred

# independent trials under same conditions
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Standard textbook definitions

It is easy to check that ‘scientific’ definitions suffer of
circularity

p =
# favorable cases

#possible equiprobable cases

p =
# times the event has occurred

# independent trials under same conditions
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Standard textbook definitions

It is easy to check that ‘scientific’ definitions suffer of
circularity

p =
# favorable cases

#possible equally possible cases

p =
# times the event has occurred

# independent trials under same conditions

Note!: “lorsque rien ne porte à croire que l’un de ces cas doit
arriver plutot que les autres” (Laplace)

Replacing ‘equi-probable’ by ‘equi-possible’ is just
cheating students (as I did in my first lecture on the
subject. . . ).
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Standard textbook definitions

It is easy to check that ‘scientific’ definitions suffer of
circularity, plus other problems

p =
# favorable cases

#possible equiprobable cases

p = limn→∞
# times the event has occurred

# independent trials under same condition

Future⇔ Past (belief!)

n→∞: → “usque tandem?”
→ “in the long run we are all dead”
→ It limits the range of applications
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‘Definitions’→ evaluation rules

Very useful evaluation rules

A) p =
# favorable cases

#possible equiprobable cases

B) p =
# times the event has occurred

#independent trials under same condition

If the implicit beliefs are well suited for each case of
application.
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‘Definitions’→ evaluation rules

Very useful evaluation rules

A) p =
# favorable cases

#possible equiprobable cases

B) p =
# times the event has occurred

#independent trials under same condition

If the implicit beliefs are well suited for each case of
application.

BUT they cannot define the concept of probability!
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‘Definitions’→ evaluation rules

Very useful evaluation rules

A) p =
# favorable cases

#possible equiprobable cases

B) p =
# times the event has occurred

#independent trials under same condition

In the probabilistic approach we are following

Rule A is recovered immediately (under the assumption
of equiprobability, when it applies).

Rule B results from a theorem of Probability Theory
(under well defined assumptions).
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‘Definitions’→ evaluation rules

Very useful evaluation rules

A) p =
# favorable cases

#possible equiprobable cases

B) p =
# times the event has occurred

#independent trials under same condition

In the probabilistic approach we are following

Rule A is recovered immediately (under the assumption
of equiprobability, when it applies).

Rule B results from a theorem of Probability Theory
(under well defined assumptions): ⇒ Laplace’s rule
of succession

G. D’Agostini, Bayesian Reasoning in Measurements (Pisa, 11 May 2015) – p. 32



Mathematics of beliefs

The good news:

The basic laws of degrees of belief
are the same we get from the
inventory of favorable and possible
cases, or from events occurred in the
past.

It can be proved that

the requirement of coherence leads
to the famous 4 basic rules =⇒

[ Details skipped. . . ]
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Basic rules of probability

1. 0 ≤ P (A | I) ≤ 1

2. P (Ω | I) = 1

3. P (A ∪ B | I) = P (A | I) + P (B | I) [ if P (A ∩ B | I) = ∅ ]

4. P (A ∩ B | I) = P (A |B, I) · P (B | I) = P (B |A, I) · P (A | I)

Remember that probability is always conditional probability!

I is the background condition (related to information ‘I ′s)

→ usually implicit (we only care on ‘re-conditioning’)
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Basic rules of probability

1. 0 ≤ P (A | I) ≤ 1

2. P (Ω | I) = 1

3. P (A ∪ B | I) = P (A | I) + P (B | I) [ if P (A ∩ B | I) = ∅ ]

4. P (A ∩ B | I) = P (A |B, I) · P (B | I) = P (B |A, I) · P (A | I)

Remember that probability is always conditional probability!

I is the background condition (related to information ‘I ′s)

→ usually implicit (we only care on ‘re-conditioning’)

Note: 4. does not define conditional probability.
(Probability is always conditional probability!)
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Mathematics of beliefs

An even better news:

The fourth basic rule
can be fully exploided!
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Mathematics of beliefs

An even better news:

The fourth basic rule
can be fully exploided!

(Liberated by a curious ideology that forbits its use)

G. D’Agostini, Bayesian Reasoning in Measurements (Pisa, 11 May 2015) – p. 35



A simple, powerful formula
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A simple, powerful formula

P (A |B | I)P (B | I) = P (B |A, I)P (A | I)
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A simple, powerful formula

Take the courage to use it!
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A simple, powerful formula

It’s easy if you try. . . !
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Laplace’s “Bayes Theorem”

“The greater the probability of an observed event given any
one of a number of causes to which that event may be
attributed, the greater the likelihood of that cause {given
that event}.

P (Ci |E) ∝ P (E |Ci)
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Laplace’s “Bayes Theorem”

“The greater the probability of an observed event given any
one of a number of causes to which that event may be
attributed, the greater the likelihood of that cause {given
that event}. The probability of the existence of any one of
these causes {given the event} is thus a fraction whose
numerator is the probability of the event given the cause,
and whose denominator is the sum of similar probabilities,
summed over all causes.

P (Ci |E) =
P (E |Ci)

∑

j P (E |Cj)
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Laplace’s “Bayes Theorem”

“The greater the probability of an observed event given any
one of a number of causes to which that event may be
attributed, the greater the likelihood of that cause {given that
event}. The probability of the existence of any one of these
causes {given the event} is thus a fraction whose numerator
is the probability of the event given the cause, and whose
denominator is the sum of similar probabilities, summed
over all causes. If the various causes are not equally
probable a priory, it is necessary, instead of the probability
of the event given each cause, to use the product of this
probability and the possibility of the cause itself.”

P (Ci |E) =
P (E |Ci)P (Ci)

∑

j P (E |Cj)P (Cj)
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Laplace’s “Bayes Theorem”

P (Ci |E) =
P (E |Ci)P (Ci)

∑

j P (E |Cj)P (Cj)

“This is the fundamental principle (∗) of that
branch of the analysis of chance that consists of
reasoning a posteriori from events to causes”

(*) In his “Philosophical essay” Laplace calls ‘principles’ the

‘fondamental rules’.
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Laplace’s “Bayes Theorem”

P (Ci |E) =
P (E |Ci)P (Ci)

∑

j P (E |Cj)P (Cj)

“This is the fundamental principle (∗) of that
branch of the analysis of chance that consists of
reasoning a posteriori from events to causes”

(*) In his “Philosophical essay” Laplace calls ‘principles’ the

‘fondamental rules’.

Note: denominator is just a normalization factor.

⇒ P (Ci |E) ∝ P (E |Ci)P (Ci)
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Laplace’s “Bayes Theorem”

P (Ci |E) =
P (E |Ci)P (Ci)

∑

j P (E |Cj)P (Cj)

“This is the fundamental principle (∗) of that
branch of the analysis of chance that consists of
reasoning a posteriori from events to causes”

(*) In his “Philosophical essay” Laplace calls ‘principles’ the

‘fondamental rules’.

Note: denominator is just a normalization factor.

⇒ P (Ci |E) ∝ P (E |Ci)P (Ci)

Most convenient way to remember Bayes theorem
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Cause-effect representation

box content→ observed color

P (B(1) |Hj), P (B(2) |Hj), . . .

P (W (1) |Hj), P (W (2) |Hj), . . .
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Cause-effect representation

box content→ observed color

An effect might be the cause of another effect =⇒

G. D’Agostini, Bayesian Reasoning in Measurements (Pisa, 11 May 2015) – p. 39



A network of causes and effects

Vuoto
Vuoto
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A network of causes and effects

Preparation ‘node’ models prior knowledge about Box.
⇒ P (Hj |Prepk)
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A network of causes and effects

Preparation ‘node’ models prior knowledge about Box.
⇒ P (Hj |Prepk)

Ri model extra uncertainty in cascade.
⇒ P (WR |W ), P (BR |W ), etc.
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A network of causes and effects

Preparation ‘node’ models prior knowledge about Box.
⇒ P (Hj |Prepk)

Ri model extra uncertainty in cascade.
⇒ P (WR |W ), P (BR |W ), etc.

We shall also include multi-reporters and systematic effects
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Multi-reporters

Multiple ‘testimonies’ of the same empirical fact.
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Multi-reporters

Multiple ‘testimonies’ of the same empirical fact.

⇒ Our belief on O1 being Black or White will depend
on the consistencies of the ‘testimonies’
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Systematic effects

The box content could be biased. . .
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Systematic effects

The box content could be biased. . .

. . . if one or more balls of either color might be added to the
original box content
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Systematic effects

The box content could be biased. . .

[technical implementation of the bias – logically equivalent]
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Graphical models

The importance of graphical models is that

⇒ Nowadays, thanks to progresses in mathematics and
computing, drawing the problem as a ‘belief network’ is
more than 1/2 step towards its solution!
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Signal and background

Counting experiment (“Poisson process”)

rs T rB T0

λs λB λB0

λ X0

X

X affected by Signal and Bkgd
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Signal and background

Counting experiment (“Poisson process”)

rs T rB T0

λs λB λB0

λ X0

X

X affected by Signal and Bkgd X0 only by Bkgd
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A different way to view fit issues

θ

µxi

xi

µyi

yi

[ for each i ]

Determistic link µx’s to µy’s

Probabilistic links µx → x, µy → y

(errors on both axes!)

⇒ aim of fit: {x,y} → θ
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A different way to view fit issues

θ

µxi

xi

µyi

yi

[ for each i ]

θ/σv

µxi

xi

zi σv

µyi

yi

[ for each i ]

Determistic link µx’s to µy’s Extra spread

Probabilistic links µx → x, µy → y of the data points

(errors on both axes!)

⇒ aim of fit: {x,y} → θ
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A different way to view fit issues

A physics case (from Gamma ray burts):

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

-0.6 -0.4 -0.2  0  0.2  0.4  0.6

y

x

Reichart
D’Agostini
True

(Guidorzi et al., 2006)
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A different way to view fit issues

θ/σv

µxi

µs
xi

xi

zi σv

µyi

µs
yi

yi

[ for each i ]

βyβx

Adding systematics
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A different way to view fit issues

µx

µ
S
x

x

zµyµ
S
y

y

?

?
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A different way to view fit issues

µx

µ
S
x

x

zµyµ
S
y

y

?

?

⇒ the mathematical function relating, generally speaking,
“y to x” related the true values, not the observations!
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Application to the six box problem

H0 H1 H2 H3 H4 H5

Remind:

E1 = White

E2 = Black
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Collecting the pieces of information we need

Our tool:

P (Hj |Ei, I) =
P (Ei |Hj , I)
P (Ei | I)

P (Hj | I)
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Collecting the pieces of information we need

Our tool:

P (Hj |Ei, I) =
P (Ei |Hj , I)
P (Ei | I)

P (Hj | I)

P (Hj | I) = 1/6
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Collecting the pieces of information we need

Our tool:

P (Hj |Ei, I) =
P (Ei |Hj , I)
P (Ei | I)

P (Hj | I)

P (Hj | I) = 1/6

P (Ei | I) = 1/2
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Collecting the pieces of information we need

Our tool:

P (Hj |Ei, I) =
P (Ei |Hj , I)
P (Ei | I)

P (Hj | I)

P (Hj | I) = 1/6

P (Ei | I) = 1/2

P (Ei |Hj , I) :

P (E1 |Hj , I) = j/5

P (E2 |Hj , I) = (5− j)/5
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Collecting the pieces of information we need

Our tool:

P (Hj |Ei, I) =
P (Ei |Hj , I)
P (Ei | I)

P (Hj | I)

P (Hj | I) = 1/6

P (Ei | I) = 1/2

P (Ei |Hj , I) :

P (E1 |Hj , I) = j/5

P (E2 |Hj , I) = (5− j)/5

Our prior belief about Hj
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Collecting the pieces of information we need

Our tool:

P (Hj |Ei, I) =
P (Ei |Hj , I)
P (Ei | I)

P (Hj | I)

P (Hj | I) = 1/6

P (Ei | I) = 1/2

P (Ei |Hj , I) :

P (E1 |Hj , I) = j/5

P (E2 |Hj , I) = (5− j)/5

Probability of Ei under a well defined hypothesis Hj

It corresponds to the ‘response of the apparatus in
measurements.
→ likelihood (traditional, rather confusing name!)
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P (Ei |Hj , I) :

P (E1 |Hj , I) = j/5

P (E2 |Hj , I) = (5− j)/5

Probability of Ei taking account all possible Hj

→ How much we are confident that Ei will occur.
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Collecting the pieces of information we need

Our tool:

P (Hj |Ei, I) =
P (Ei |Hj , I)
P (Ei | I)

P (Hj | I)

P (Hj | I) = 1/6

P (Ei | I) = 1/2

P (Ei |Hj , I) :

P (E1 |Hj , I) = j/5

P (E2 |Hj , I) = (5− j)/5

Probability of Ei taking account all possible Hj

→ How much we are confident that Ei will occur.
We can rewrite it as
P (Ei | I) =

∑

j P (Ei |Hj , I) · P (Hj | I)
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We are ready

Now that we have set up our formalism, let’s play a little

analyse real data

some simulations

make variations
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We are ready

Now that we have set up our formalism, let’s play a little

analyse real data

some simulations

make variations

Let’s play!
Hugin Expert (Lite – demo version);

R scripts
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How does it work?

Simply – and nothing more! – Probability Theory
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f(x1, x2, . . . , xn | I)
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build the joint ‘pdf’ using the ‘chain rule’

f(x1, x2, . . . , xn | I)

⇒ marginalize to get f(xi | I);

⇒ condition on what is assumed to get the distribution
of all the others.

E.g. f(x1, x2, . . . , xn−1 | I, xn) =
f(x1,x2,...,xn | I)
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How does it work?

Simply – and nothing more! – Probability Theory

Given n variables Xi (each node), each of which can
assume several values,

build the joint ‘pdf’ using the ‘chain rule’

f(x1, x2, . . . , xn | I)

⇒ marginalize to get f(xi | I);

⇒ condition on what is assumed to get the distribution
of all the others.

E.g. f(x1, x2, . . . , xn−1 | I, xn) =
f(x1,x2,...,xn | I)

f(xn | I) .

⇒ marginalize to get f(xi | I, xn)

(Only some ‘technical tricks’ to factorize the problem when
the number of ‘states’ becomes very large)
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OK, . . . but the priors?

Priors are an important ingredient of the framework:
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Priors are an important ingredient of the framework:
They are crucial in the Bayes theorem:

there is no other way to perform a probabilistic
inference without passing through priors

. . . although they can be often so vague to be
ignored.
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inference without passing through priors

. . . although they can be often so vague to be
ignored.

They allow us to use consistently all pieces of prior
information. And we all have much prior information in
our job!
Only the perfect idiot hase no priors

G. D’Agostini, Bayesian Reasoning in Measurements (Pisa, 11 May 2015) – p. 51



OK, . . . but the priors?

Priors are an important ingredient of the framework:
They are crucial in the Bayes theorem:

there is no other way to perform a probabilistic
inference without passing through priors

. . . although they can be often so vague to be
ignored.

They allow us to use consistently all pieces of prior
information. And we all have much prior information in
our job!
Only the perfect idiot hase no priors

Mistrust all prior-free methods that pretend to provide
numbers that should mean how you have to be
confident on something.
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OK, . . . but the priors?

Priors are an important ingredient of the framework:
They are crucial in the Bayes theorem:

there is no other way to perform a probabilistic
inference without passing through priors

. . . although they can be often so vague to be
ignored.

They allow us to use consistently all pieces of prior
information. And we all have much prior information in
our job!
Only the perfect idiot hase no priors

Mistrust all prior-free methods that pretend to provide
numbers that should mean how you have to be
confident on something.
(Diffidate chi vi promette di far germogliar zecchini nel
Campo dei Miracoli!)
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My preferred conclusion

From the ISO Guide on “the expression of uncertainty in
measurement”

“Although this Guide provides a framework for assessing
uncertainty, it cannot substitute for critical thinking,
intellectual honesty, and professional skill. The evaluation of
uncertainty is neither a routine task nor a purely
mathematical one; it depends on detailed knowledge of the
nature of the measurand and of the measurement. The
quality and utility of the uncertainty quoted for the result of a
measurement therefore ultimately depend on the
understanding, critical analysis, and integrity of those who
contribute to the assignment of its value.”
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Summarizing

The probabilistic framework basically set up by Laplace
in his monumental work is healthy and grows up well
(browse e.g. Amazon.com)
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Summarizing

The probabilistic framework basically set up by Laplace
in his monumental work is healthy and grows up well
(browse e.g. Amazon.com)

It is very close to the natural way of reasoning.

Its consistent application in small-complex problems
was prohibitive many years ago.

But it is now possible thank to progresses in applied
mathematics and computation.

It makes little sense to stick to old ‘ah hoc’ methods that
had their raison d’être in the computational barrier.

Mistrust all results that sound as ‘confidence’,
’probability’ etc about physics quantities, if they are
obtained by methods that do not contemplate ’beliefs’.
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References

Bayesian Reasoning in Data Analysis – a Critical
Introduction

Fits, and especially linear fits, with errors on both axes,
extra variance of the data points
and other complications

Learning about probabilistic inference and forecasting
by playing with multivariate normal distributions
(with examples in R)

(and references therein) plus much more visiting
http://www.roma1.infn.it/~dagos/prob+stat.html
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Bayesian Reasoning in Data Analysis – a Critical
Introduction

Fits, and especially linear fits, with errors on both axes,
extra variance of the data points
and other complications

Learning about probabilistic inference and forecasting
by playing with multivariate normal distributions
(with examples in R)

(and references therein) plus much more visiting
http://www.roma1.infn.it/~dagos/prob+stat.html

Last but not least

ISO GUM

Hugin ‘Lite’, http://www.hugin.com/
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The End

FINE
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Notes

The following slides should be reached by
hyper-links, clicking on highlighted words
marked by the symbol †
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ISO dictionary

Measurand: “particular quantity subject to measurement.”

Result of a measurement: “value attributed to a measurand, obtained

by measurement.”

Uncertainty: “a parameter, associated with the result of a

measurement, that characterizes the dispersion of the values that

could reasonably be attributed to the measurement.”

Error: “the result of a measurement minus a true value of the

measurand.”

True value: “a value compatible with the definition of a given particular

quantity.”

Type A and Type B uncertainties→

Go back
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ISO dictionary

Type A evaluation (of uncertainty): “method of evaluation of

uncertainty by the statistical analysis of series of observations.”
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ISO dictionary

Type A evaluation (of uncertainty): “method of evaluation of

uncertainty by the statistical analysis of series of observations.”

Type B evaluation (of uncertainty): “method of evaluation of

uncertainty by means other than the statistical analysis of series of

observations.”

⇒ “. . . the standard uncertainty u(xi) is evaluated by scientific

judgement based on all of the available information on the possible

variability of Xi. The pool of information may include

previous measurement data;

experience with or general knowledge of the behaviour and

properties of relevant materials and instruments;

manufacturer’s specifications;

data provided in calibration and other certificates;

uncertainties assigned to reference data taken from handbooks.”
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Type A evaluation (of uncertainty): “method of evaluation of

uncertainty by the statistical analysis of series of observations.”

Type B evaluation (of uncertainty): “method of evaluation of

uncertainty by means other than the statistical analysis of series of

observations.”

⇒ “. . . the standard uncertainty u(xi) is evaluated by scientific

judgement based on all of the available information on the possible

variability of Xi. The pool of information may include

previous measurement data;

experience with or general knowledge of the behaviour and

properties of relevant materials and instruments;

manufacturer’s specifications;

data provided in calibration and other certificates;

uncertainties assigned to reference data taken from handbooks.”
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Solution of the AIDS test problem

P (Pos |HIV) = 100%

P (Pos |HIV) = 0.2%

P (Neg |HIV) = 99.8%

We miss something: P◦(HIV) and P◦(HIV): Yes! We need
some input from our best knowledge of the problem. Let us

take P◦(HIV) = 1/600 and P◦(HIV) ≈ 1 (the result is rather
stable against reasonable variations of the inputs!)

P (HIV |Pos)

P (HIV |Pos)
=

P (Pos |HIV)

P (Pos |HIV)
·
P◦(HIV)

P◦(HIV)

=
≈ 1

0.002
×

0.1/60

≈ 1
= 500×

1

600
=

1

1.2
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