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Inferring the success parameter p of a binomial
model from small samples affected by background

G. D’Agostini

Abstract

The problem of inferring the binomial parameter p from z successes
obtained in n t¢rials is reviewed and extended to take into account the
presence of background, that can affect the data in two ways: a) fake
successes are due to a background modeled as a Poisson process of
known intensity; b) fake trials are due to a background modeled as a
Poisson process of known intensity, each trial being characterized by a
known success probability ps.

1 Introduction

An important class of experiments consists in counting ‘objects’. In fact, we
are often interested in measuring their density in time, space, or both (here
‘density’ stands for a general term, that in the domain of time is equivalent
to ‘rate’) or the proportion of those objects that have a certain character
in common. For example, particle physicists might be interested in cross
sections and branching ratios, astronomers in density of galaxies in a region
of the sky or in the ratio of galaxies exhibiting some special features.

A well known problem in counting experiments is that we are rarely
in the ideal situation of being able to count individually and at a given
time all the objects of interest. More often we have to rely an a sample of
them. Other problems that occur in real environments, especially in frontier
research, are detector inefficiency and presence of background: sometimes
we lose objects in counting; other times we might be confused by other
objects that do not belong to the classes we are looking for, though they are
observationally indistinguishable from the objects of interest.

We focus here on the effect of background in measurements of propor-
tions. For a extensive treatment of the effect of background on rates, i.e.
measuring the intensity of a Poisson process in presence of background, see
Ref. ], as well as chapters 7 and 13 of Ref. [H].



The paper is structured as follows. In section Bl'we introduce the ‘direct’
and ‘inverse’ probabilistic problems related to the binomial distribution and
the two cases of background that will be considered. In section H we go
through the standard text-book case in which background is absent, but
we discuss also, in some depth, the issue of how prior knowledge does or
does not influence the probabilistic conclusions. Then, in the following two
sections we come to the specific issue of this paper, and finally the paper
ends with the customary short conclusions.

2 The binomial distribution and its inverse prob-
lem

An important class of counting experiments can be modeled as independent
Bernoulli trials. In each trial we believe that a success will occur with
probability p, and a failure with probability ¢ = 1 — p. If we consider n
independent trials, all with the same probability p, we might be interested
in the total number of successes, independently of their order. The total
number of successes X can range between 0 and n, and our belief on the
outcome X = z can be evaluated from the probability of each success and
some combinatorics. The result is the well known binomial distribution,
hereafter indicated with B, ,:

o n=12,...,00
f(érIBn,p):mpz(l—p)”_I’ 0<p<i (1)
z=0,1,...,n
having expected value and standard deviation
E(X) = np 2)

o) = /np(l-p). (3)

We associate the formal quantities expected value and standard deviation
to the concepts of (probabilistic) prevision and standard uncertainty.

The binomial distribution describes what is sometimes called a direct
probability problem, i.e. calculate the probability of the experimental out-
come z (the effect) given n and an assumed value of p. The inverse problem
is what concerns mostly scientists: infer p given n and x. In probabilistic
terms, we are interested in f(p|n,z). Probability inversions are performed,
within probability theory, using Bayes theorem, that in this case reads

flpla,n,B) o< f(z[Bny) - folp) (4)



where f,(p) is the prior, f(p|z,n,B) the posterior (or final) and f(z | B, ,)
the likelihood. The proportionality factor is calculated from normalization.
[Note the use of f(-) for the several probability functions as well as probabil-
ity density functions (pdf), also within the same formula.] The solution of
Eq. (@), related to the names of Bayes and Laplace, is presently a kind of first
text book exercise in the so called Bayesian inference (see e.g. Ref. [ H).
The issue of priors in this kind of problems will be discussed in detail in
Sec. B2l especially for the critical cases of x = 0 and z = n.

The problem can be complicated by the presence of background. This
is the main subject of this paper, and we shall focus on two kinds of back-
ground.

a) Background can only affect x. Think, for example, of a person
shooting n times on a target, and counting, at the end, the numbers
of scores z in order to evaluate his efficiency. If somebody else fires
by mistake at random on his target, the number z will be affected by
background. The same situation can happen in measuring efficiencies
in those situations (for example due to high rate or loose timing) in
which the time correlation between the equivalents of ‘shooting’ and
‘scoring’ cannot be done on a event by event basis (think, for example,
to neutron or photon detectors).

The problem will be solved assuming that the background is described
by a Poisson process of well known intensity 7, that corresponds to
a well known expected value Ay of the resulting Poisson distribution
(in the time domain Ay = ry - T, where T' is measuring time). In other
words, the observed z is the sum of two contributions: x; due to the
signal, binomially distributed with B, ,, plus z; due to background,
Poisson distributed with parameter A, indicated by Pj,.

For large numbers (and still relatively low background) the problem
is easy to solve: we subtract the expected number of background and
calculate the proportion p = (z — Ay)/n. For small numbers, the
‘estimator’ p can become smaller than 0 or larger then 1. And, even if
p comes out in the correct range, it is still affected by large uncertainty.
Therefore we have to go through a rigorous probability inversion, that
in this case is given by

f(p|n7$7)‘b) X f($:$5+$b|n7p7)\b)'fo(p)7 (5)

where we have written explicitly in the likelihood that z is due to
the sum of two (individually unobservable!) contributions z, and =z
(hereafter the subscripts s and b stand for signal and background.)



b) The background can show up, at random, as independent
‘fake’ trials, all with the same p; of producing successes. An
example, that has indeed prompted this paper, is that of the measuring
the proportion of blue galaxies in a small region of sky where there
are galaxies belonging to a cluster, as well as background galaxies, the
average proportion of blue galaxies of which is well known. In this
case both n and z have two contributions:

n = ng+n (6)
= x5+ (7)
with
ny ~ Py, (8)
xy, ~ By, py 9)
T, ~ Bng, ps, (10)

where ‘~’ stands for ‘follows a given distribution’.

Again, the trivial large number (and not too large background) solu-
tion is the proportion of background subtracted numbers, p = (z —
Py Ap)/(n — Ap). But in the most general case we need to infer p from

fps|n,z, Xe,pp) o< flz=as42p|n=mns+n,p5X) - fo(p).
(11)

We might be also interested also to other questions, like e.g. how many
of the n object are due to the signal, i.e.

f(ns | n,z, )‘b7pb) .
Indeed, the general problem lies in the joint inference
f(ns7ps | n,x, )‘b7pb)7

from which we can get other information, like the conditional distri-
bution of p, for any given number of events attributed to signal:

f(ps | n, N, T, Abapb) .

Finally, we may also be interested in the rate rs of the signal objects,
responsible of the ng signal objects in the sample (or, equivalently, to
the Poisson distribution parameter A;):

f()‘s | n7‘r7)‘b7pb) .



Figure 1: Probability density function of the binomial parameter p, having ob-
served z successes in n trials. [l

3 Inferring p in absence of background

The solution of Eq.(ll) depends, at least in principle, on the assumption
on the prior f,(z). Taking a flat prior between 0 and 1, that models our
indifference on the possible values of p before we take into account the result
of the experiment in which z successes were observed in n trials, we get (see
e.g. [@):

(n+ 1)!

f(p|ac,n,3): p* (1_p)n_z7 (12)

some examples of which are shown in Fig. ll Expected value, mode (the
value of p for which f(p) has the maximum) and variance of this distribution
are:

z+1

Bp) = S (13)
mode(p) =p,, = z/n (14)
i) = Vor(p) = DU (19

= E(p) (1 - E(p) (16)

n+3°

Eq. (B is known as “recursive Laplace formula”, or “Laplace’s rule of
succession”. Not that there is no magic if the formula gives a sensible result
even for the extreme cases z = 0 and z = n for all values of n (evenif n = 0!).



It is just a consequence of the prior: in absence of new information, we get
out what we put in!

From Fig. @l we can see that for large numbers (and with z far from 0
and from n) f(p) tends to a Gaussian. This is just the reflex of the limit to
Gaussian of the binomial. In this large numbers limit E(p) ~ p,, = z/n and

o(p) =~ Vz/n(1—x/n)/n.

3.1 Meaning and role of the prior: many data limit versus
frontier type measurements

One might worry about the role of the prior. Indeed, in some special cases
of importance frontier type measurement one has to. However, in most
routine cases, the prior just plays the role of a logical tool to allow probability
inversion, but it is in fact absorbed in the normalization constant. (See
extensive discussions in Ref. [ and references therein.)

In order to see the effect of the prior, let us model it in a easy and
powerful way using a beta distribution, a very flexible tool to describe many
situations of prior knowledge about a variable defined in the interval between
0 and 1 (see Fig. ). The beta distribution is the conjugate prior of the
binomial distribution, i.e. prior and posterior belong to the same function
family, with parameters updated by the data via the likelihood. In fact, a
generic beta distribution in function of the variable p is given by

1 r—1 s—1 r,s> 0
J(p|Beta(r, s)) = g9 (1 =) { 0<p<l. (17)
The denominator is just for normalization and, indeed, the integral 5(r, s) =
fol p"71(1 — p)*~!dp defines the special function beta that names the dis-
tribution. We immediately recognize Eq. (&) as a beta distribution of pa-
rameters 7 = z + 1 and s = n — z + 1 [and the fact that 5(r, s) is equal to
(r—D!i(s—=1)!/(s+r—1)! for integer arguments].

For a generic beta we get the following posterior (neglecting the irrelevant
normalization factor):

f(p|n,z,Beta(r,s)) o [p”(1-p)" 7] x {p”_l(l - p)s"_l} (18)

o pz+r,-—1(1 _ p)n—x-}—si—l 7 (19)

where the subscript 7 stands for initial, synonym of prior. We can then see
that the final distribution is still a beta with parameters ry = r; +  and
sf = s;+(n—z): the first parameter is updated by the number of successes,
the second parameter by the number of failures.
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Figure 2: Examples of Beta distributions for some values of r and s [H].
parameters in bold refer to continuous curves.




Expected value, mode and variance of the generic beta of parameters r
and s are:

r

BX) = (20)
mode(X) = (r—1)/(r+s—2) [r>1and s> 1] (21)
Var(X) = e [r+s>1]. (22)

(r+s+1)(r+s)?

Then we can use these formulae for the beta posterior of parameters ry and
5f.

The use of the conjugate prior in this problem demonstrates in a clear
way how the inference becomes progressively independent from the prior
information in the limit of a large amount of data: this happens when both
x> r; and n —z > s;. In this limit we get the same result we would
get from a flat prior (r; = s; = 1, see Iig. @). For this reason in standard
‘routine’ situation, we can quietly and safely take a flat prior.

Instead, the treatment needs much more care in situations typical of
‘frontier research’: small numbers, and often with no single ‘successes’. Let
us consider the latter case and let us assume a naive flat prior, that it is

considered to represent ‘indifference’ of the parameter p between 0 and 1.
From Eq. () we get

flplz=0,n,B,Beta(1,1)) = (n+1)(1-p)". (23)

(The prior has been written explicitly among the conditions of the posterior.)
Some examples are given in Fig. (). As n increases, p is more and more
constrained in proximity of 0. In these cases we are used to give upper limits
at a certain level of confidence. The natural meaning that we give to this
expression is that we are such and such percent confident that p is below the
reported upper limit. In the Bayesian approach this is is straightforward, for
confidence and probability are synonyms. For example, if we want to give
the limit that makes us 95% sure that p is below it, i.e. P(p < py,,,) = 0.95,
then we have to calculate the value p,,,. such that the cumulative function
F(pug ;) 1s equal to 0.95:

Pug g5
F(puyy. | 2 = 0,n, B, Beta(1,1)) = A £(p) dp (24)
1= (1=p)" =095, (25)
that yields

Pugos = 1— "30.05. (26)
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Figure 3: Probability density function of the binomial parameter p, having ob-
served no successes in n trials. [l

For the three examples given in Fig. B with n = 3, 10 and 50, we have
Dug s = 0.53, 0.24 and 0.057, respectively. These results are in order, as
long the flat prior reflected our expectations about p, that it could be about
equally likely in any sub-interval of fixed width in the interval between 0
and 1 (and, for example, we believe that it is equally likely below 0.5 and
above 0.5).

However, this is often not the case in frontier research. Perhaps we were
looking for a very rare process, with a very small p. Therefore, having done
only 50 trials, we cannot say to be 95% sure that p is below 0.057. In
fact, by logic, the previous statement implies that we are 5% sure that p is
above 0.057, and this might seem too much for the scientist expert of the
phenomenology under study. (Never ask mathematicians about priors! Ask
yourselves and the colleagues you believe are the most knowledgeable experts
of what you are studying.) In general I suggest to make the exercise of
calculating a 50% upper or lower limit, i.e. the value that divides the possible
values in two equiprobable regions: we are as confident that p is above as it
is below py, .. For n = 50 we have p,,, = 0.013. If a physicist was looking
for a rare process, he/she would be highly embarrassed to report to be 50%
confident that p is above 0.013. But he/should be equally embarrassed to
report to be 95% confident that p is below 0.057, because both statements
are logical consequence of the same result, that is Eq. (E3). If this is the
case, a better grounded prior is needed, instead of just a ‘default’ uniform.
For example one might thing that several order of magnitudes in the small p
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Figure 4: Rescaled likelihoods for 2 = 0 and some values of n

range are considered equally possible. This give rise to a prior that is uniform
in Inp (within a range In p,,i, and In pq4.), equivalent to fo(p) o< 1/p with
lower and upper cut-off’s.

Anyway, instead of playing blindly with mathematics, looking around
for ‘objective’ priors, or priors that come from abstract arguments, it is
important to understand at once the role of prior and likelihood. Priors are
logically important to make a ‘probably inversion’ via the Bayes formula,
and it is a matter of fact that no other route to probabilistic inference exists.
The task of the likelihood is to modify our beliefs, distorting the pdf that
models them. Let us plot the three likelihoods of the three cases of Fig. B
rescaled to the asymptotic value p — 0 (constant factors are irrelevant in
likelihoods). It is preferable to plot them in a log scale along the abscissa
to remember that several orders of magnitudes are involved (Fig. H).

We see from the figure that in the high p region the beliefs expressed by
the prior are strongly dumped. If we were convinced that p wasin that region
we have to dramatically review our beliefs. With the increasing number of
trials, the region of ‘excluded’ values of log p increases too.

Instead, for very small values of p, the likelihood becomes flat, i.e. equal
to the asymptotic value p — 0. The region of flat likelihood represents the
values of p for which the experiment loses sensitivity: if scientific motivated
priors concentrate the probability mass in that region, then the experiment
is irrelevant to change our convictions about p.

10



Formally the rescaled likelihood

f(z =0]n, p)
fz=0]n,p—=0)’

R(p; n, z = 0) (27)
equal to (1 — p)” in this case, is a functions that gives the Bayes factor of a
generic p with respect to the reference point p = 0 for which the experimental
sensitivity is certainly lost. Using the Bayes formula, R(p; n, z = 0) can
rewritten as

in, T = = flpln,z=0) /f(p=0|n,z=0)
Rlpim 2 =0) fo(p) / o=

to show that it can be interpreted as a relative belief updating factor, in the

sense that it gives the updating factor for each value of p with respect to
that at the asymptotic value p — 0.

We see that this R function gives a way to report an upper limit that
do not depend on prior: it can be any conventional value in the region
of transition from R = 1 to R = 0. However, this limit cannot have a
probabilistic meaning, because does not depend on prior. It is instead a
sensitivity bound, roughly separating the excluded high p value from the the
small p values about which the experiment has nothing to say.!

For further discussion about the role of prior in frontier research, applied
to the Poisson process, see Ref. [l]. For examples of experimental results
provided with the R function, see Refs. [ B, H].

4 Poisson background on the observed number of
‘successes’

Imagine now that the z successes might contains an unknown number of
background events z;, of which we only know their expected value Ay, esti-
mated somehow and about which we are quite sure (i.e. uncertainty about
Ap is initially neglected — it will be indicated at the end of the section how
to handle it). We make the assumption that the background events come
at random and are described by a Poisson process of intensity rp, such that
the Poisson parameter Ay is equal to rp X AT in the domain of time, with
AT the observation time. (But we could as well reason in other domains,
like objects per unit of length, surface, volume, or solid angle. The den-
sity /intensity parameter r will have different dimensions depending on the
context, while A will always be dimensionless.)

Y“Wovon man nicht reden kann, dariiber muss man schweigen” (L. Wittgenstein).

11



The number of observed successes z has now two contributions:

T = x5+ (29)
rs ~ B, (30)
rp, ~ Py, (31)

In order to use Bayes theorem we need to calculate f(z|n, p, Ay), that is
flz = 25+ 24| Bnp, Py,), 1.e. is the probability function of the sum of a
binomial variable and a Poisson variable. The combined probability function
is give by (see e.g. section 4.4 of Ref. []):

J@|Bup Pr) = Y2 bowetan J(@s| Bup.) fas] Py,) (32)

TsyTh

where 6 5,4z, is the Kronecker delta that constrains the possible values of
zs and zp in the sum (z, and zp run from 0 to the maximum allowed by the
constrain). Note that we do not need to calculate this probability function
for all z, but only for the number of actually observed successes.

The inferential result about p is finally given by

fpln,p, M) o f(z]Bnp, Py,) fo(p) - (33)

An example is shown in Fig. B, for n = 10, z = 7 and an expected number
of background events ranging between 0 and 10, as described in the figure
caption. The upper plot of the figure is obtained by a uniform prior (priors
are represented with dashed lines in this figure). As an exercise, let us also
show in the lower plot of the figure the results obtained using a broad prior
still centered at p = 0.5, but that excludes the extreme values 0 and 1, as
it is often the case in practical cases. This kind of prior has been modeled
here with a beta function of parameters r; = 2 and s; = 2.

For the cases of expected background different from zero we have also
evaluated the R function, defined in analogy to Eq. (B as R(p; n, =, Ap) =
flz|n, p,\s)/f(z|n,p— 0, ). Note that, while Eq. () is only defined
for z # 0, since a single observation makes p = 0 impossible, that limitation
does not hold any longer in the case of not null expected background. In
fact, it is important to remember that, as soon as we have background,
there is some chance that all observed events are due to it (remember that a
Poisson variable is defined for all non negative integers!). This is essentially
the reasons why in this case the likelihoods tend to a positive value for p — 0
(I like to call ‘open’ this kind of likelihoods [F]). As discussed above, the
power of the data to update the believes on p is self-evident in a log-plot.

12
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Figure 5: Inference of p for n = 10, 2 = 7, and several hypotheses of background
(right to left curves for Ap = 0, 1, 2, 4, 5, 6, 10) and two different priors (dashed
lines), Beta(1, 1) in the upper plot and Beta(2,2) in the lower plot (see text).
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Figure 6: Relative believe updating factor of p for n = 10, = 7 and several
hypotheses of background: Ag =1, 2, 4, 6, 8, 10.

We seen in Fig. H that, essentially, the data do not provide any relevant
information for values of p below 0.01.

Let us also see what happens when the prior concentrates our beliefs at
small values of p, though in principle allowing all values of from 0 to 1. Such
a prior can be modeled with a log-normal distribution of suitable parameters
(-4 and 1), i.e. fo(p) = exp [~(logp+4)?)/2] /(v/27 p), with an upper cut-
off at p = 1 (the probability that such a distribution gives a value above 1
is 3.2107°). Expected value and standard deviation of Lognormal(-4,1) are
0.03 and 0.04, respectively. The result is given in Fig. @, where the prior is
indicated with a dashed line.

We see that, with increasing expected background, the posteriors are
essentially equal to the prior. Instead, in case of null background, ten trials
are already sufficiently to dramatically change our prior beliefs. For example,
initially there was 4.5% probability that p was above 0.1. Finally there is
only 0.09% probability for p to be below 0.1.

The case of null background is also shown in Fig. B, where the results
of the three different priors are compared. We see that passing from a
Beta(1,1) to a Beta(2,2), makes little change in the conclusion. Instead,
a log-normal prior distribution peaked at low values of p changes quite a
lot the shape of the distribution, but not really the substance of the result
(expected value and standard deviation for the three cases are: 0.67, 0.13;
0.64, 0.12; 0.49, 0.16). Anyway, the prior does correctly its job and there
should be no wonder that the final pdf drifts somehow to the left side, to

14
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Figure 7: Inference of p for n = 10, = 7, assuming a log-normal prior
(dashed line) peaked at low p, and with several hypotheses of background (Ap =
0,1,2,4,6,8,10).
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Figure 8: Inference of p for n = 10, = 7 in absence of background, with three
different priors.
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Figure 9: Sequential inference of p, starting from a prior peaked at low values,
given two experiments, each with n = 10 and z = 7.

take into account a prior knowledge according to which 7 successes in 10
trials was really a ‘surprising event’.

Those who share such a prior need more solid data to be convinced that
p could be much larger than what they initially believed. Let make the
exercise of looking at what happens if a second experiment gives exactly
the same outcome (z = 7 with n = 10). The Bayes formula is applied
sequentially, i.e. the posterior of the first inference become the prior of the
second inference. That is equivalent to multiply the two priors (we assume
conditional independence of the two observations). The results are given
in Fig. B (By the way, the final result is equivalent to having observed 14
successes in 20 trials, as it should be — the correct updating property is one
of the intrinsic nice features of the Bayesian approach).

4.1 Uncertainty on the expected background

In these examples we made the assumption that the expected number of
background events is well known. If this is not the case, we can quantify our
uncertainty about it by a pdf f();), whose modeling depends on our best
knowledge about As;. Taking account of this uncertainty in a probabilistic
approach is rather simple, at least conceptually (calculations can be quite
complicate, but this is a different question). In fact, applying probability
theory we get:

Iwlem) = 1l h) FO) ds. (34)
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We recognize in this formula that the pdf that takes into account all possible
values of X is a weighted average of all A, dependent pdf’s, with a weight
equal to f(As).

5 Poisson background on the observed number of
‘trials’ and of ‘successes’

Let us know move to problem b) of the introduction. Again, we consider
only the background parameters are well known, and refer to the previous
subsection for treating their uncertainty. To summarize, that is what we
assume to know with certainty:

n : the total observed numbers of ‘objects’, ns of which are due to signal and
np to background; but these two numbers are not directly observable
and can only be inferred;

x : the total observed numbers of the ‘objects’ of the subclass of interest,
sum of the unobservable z, and zy;

Ay : the expected number of background objects;
py : the expected proportion of successes due to the background events.

As we discussed in the introduction, we are interested in inferring the number
of signal objects n,, as well as the parameter p, of the ‘signal’. We need then
to build a likelihood that connects the observed numbers to all quantities
we want to infer. Therefore we need to calculate the probability function
f(@|n, ng, ps, Ap, o).

Let us first calculate the probability function f(z | ns, ps ns, ps) that de-
pends on the unobservable ng and ny. This is the probability function of the
sum of two binomial variables:

f28(m | Ns, Ps Np, pb) = Z 5as,zs+zb f(:CS | an,ps) : f($b | Bnb,pb) ) (35)

Ls, Th

where z; ranges between 0 and ng, and z ranges between 0 and ny. = can
vary between 0 and n, + np, has expected value E(z) = ng ps + ny pp and
variance Var(z) = ngps (1 — ps) + nppp (1 — pp). As for Eq. (BH), we need
to evaluate Eq. (BH) only for the observed number of successes. Contrary
to the implicit convention within this paper to use the same symbol f(-)
meaning different probability functions and pdf’s, we name Eq. (B3) fop for
later convenience.

17



In order to obtain the general likelihood we need, two observations are
in order:

e Since z depends from A only via ng, then f(z | ns, ps ns, ps, As) is equal
to fa5(7 | ns, ps n, Po).

e The likelihood that depends also on n can obtained from
f(z | ns, psns, py, Ap) by the following reasoning:

— if n = ng + ny, then
f(x|n, ng, psnp, poy, Ap) = f(2 | nsy s b, Do, Ap)

— else
f($ | N, Ns, Ps Np, Pb, )‘b) =0.

It follows that
f(l‘ | T, Nsy Psy Tby Ph, )‘b) = f(iC | Nsy, Ps Npy Ph, >\b) 5n,ns+nb (36)
= f23($ | TNisy Ps Tob, pb) 6n7ns+nb . (37)

At this point we get rid of np in the conditions, taking account its possible
values and their probabilities, given Ap:

f($ | n, N5, Psy Db, >‘b) — Zf('r | N, Ng, Ps, Np, Db, >‘b) f(nb | P)\b) 3 (38)

np

i.e.

f('r | N, Nsy Psy Dby )\b) = Z fZB(x | N, PsNp, pb) f(nb | P)\b) 5n,ns+nb 7(39)
np

where n; ranges between 0 and z, due to the é,, , 4, condition. Finally, we
can use Eq. (B9) in Bayes theorem to infer n, and p;:

f(ns7 DPs | T, n, )\67 Pb) X f($ | N, Ns, Ps, Pb, )‘b) fO(n57 ps) (40)

f(Ps|$7 n, )\bypb) = Zf(ns7ps|$7 n, )‘bvpb) (41)

f(ns|$7 n, )‘b7pb) - /f(n57p5|$, n, )‘b7pb) dps (42)
ng, Ps| T, n, Ap,

f(ps | z,n, ns, >‘b7 pb) = f( P | ’ pb) . (43)

f(ns | T, n, )‘67 pb)

We give now some numerical examples. For simplicity (and because we
are not thinking to a specific physical case) we take uniform priors, i.e.
fo(ng, ps) = const. We refer to section B2l for an extensive discussion on
prior and on critical ‘frontier’ cases.
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5.1 Inferring p;
If priors are uniform then, Eq. (El) becomes

f(ps | T, n, )\,pb) X Z fZB(*r | Nsy Ps b, pb) f(nb | P)\b) 5n7ns+nb : (44)

Ns,Np

Figure Bl gives the result for x = 9, n = 12, and assuming several hypothesis
for Ap and py.

e The upper plot is for p, = 0.75, equal to z/n. The curves are for
A =0,1,2,4,6,8,10, 12 and 14, with the order indicated (whenever
possible) in the figure. If the expected background is null, we recover
the simple result we already know. As the expected background in-
creases, f(ps) gets broader, because the inference is based on a smaller
number of objects attributed to the signals and because we are uncer-
tain on the number of events actually due the background. In a very
noisy environments (Ay & n, or even larger), the data provide very lit-
tle information about ps and, essentially, the prior pdf (dashed curve)
is recovered. Note also that for all values of A\, the posterior f(ps) is
peaked at z/n = 0.75. This is due to the fact that p; was equal to
the observed ratio z/n, therefore, for any hypothesis of n; attributed
to the background, zy = py np counts are in average ‘subtracted’ from
z (this is properly done in an automatic way in the Bayes formula,
followed by marginalization).

e The situation gets more interesting when pj; differs from z/n.

The middle plot in the figure is for p, = 0.25. Again, the case A\ =0
gives the the pdf we already know. But as soon as some background
is hypothesized, the curves start to drift to the right side. That is
because high background with low p, favors large values of p;.

The opposite happens if we think that background is characterized by
large pp, as shown in the bottom plot of the figure.

5.2 Inferring n, and ),

The histograms of Fig. IOl show examples of the probability distributions
of ng for Ay = 4 and three different hypotheses for p;. These distributions
quantify how much we believe that n; out of the observed n belong to the
signal. [By the way, the number n; of background objects present in the
data can be inferred as complement to n,, since the two numbers are linearly
dependent. It follows that f(ny |z, n, s, pp) = f(n — ns |z, n, A, pp).]
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Figure 10: Inference about ps for n = 12 and z = 9, depending on the expected
background [Ay = 0, 1, 2, 4, 6, 8, 10, 14, as (possibly) indicated by the number
above the lines]. The three plots are obtained by three different hypotheses of ps.
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Figure 11: Inference about n, (histograms) and p; (continuous lines) for n = 12
and z = 9, assuming A, = 4 and three values of p,: 0.75, 0.25 and 0.95 (top down).

21



0. 25¢
0.2
0.15
0.1
0. 05

Figure 12: Inference of A; depending on the ng, ranging from 0 to 12 (left to right
curves).

A different question is to infer the the Poisson A, of the signal. Using
once more Bayes theorem we get, under the hypothesis of n, signal objects:

fslns) o fns[Pr,) -Jo(As) (45)
Assuming a uniform prior for A; we get (see e.g. Ref. [A]):
eAe Al
fQslns) = B (46)

with expected value and variance both equal to ns + 1 and mode equal to
ns (the expected value is shifted on the right side of the mode because the
distribution is skewed to the right). Figure I shows these pdf’s, for n;
ranging from 0 to 12 and assuming a uniform prior for A;.

As far the pdf of A\; that depends on all possible values of ng, each with is
probability, is concerned, we get from probability theory [and remembering
that, indeed, f(As|ns, z, n, X, pp) is equal to f(As | ns), because ny depends
only on A, and then the other way around]:

f()\5|x,n7 )‘67 pb) X Zf()‘s|ns) f(nslxv n, )‘b7pb)7 (47)
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i.e. the pdf of ), is the weighted average? of the several n, depending pdf’s.

The results for the example we are considering in this section are given
in the plots of Fig. &l

6 Conclusions

The classical inverse problem related to the binomial distribution has been
reviewed and extended to the presence of background either only on the num-
ber of ‘successes’, or on the trials themselves. The probabilistic approach
followed here allows to treat the problems only using probability rules. The
results are always in qualitative agreement with intuition, are consistent
with observations and prior knowledge and, never lead to absurdities, like p
outside the range 0 and 1.

The role of the priors, that are crucial to allow the probabilistic inversion
and very useful to balance in the proper way prior knowledge and evidence
from new observations, has been also emphasized, showing when they can
be neglected and when they are so critical that it is preferable not to provide
probabilistic conclusions.

It is a pleasure to thank Stefano Andreon for several stimulating discus-
sions on the subject.

21t follows that all moments of the distribution are weighted averages of the moments
of the conditional distribution. Then, expected value and variance of A; can be easily
obtained from the conditional expected values and variances:

E(\) o > BE(A|n.) f(n.)

s

Var(\.) o Y [Var(A. |no) +E*(As[n.)] f(n.).

Ns
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