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Fits, and especially linear fits, with errors on both axes,

extra variance of the data points and other complications
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Abstract

The aim of this paper, triggered by some discussions in the astrophysics community
raised by astro-ph/0508529, is to introduce the issue of ‘fits’ from a probabilistic perspective
(also known as Bayesian), with special attention to the construction of model that describes
the ‘network of dependences’ (a Bayesian network) that connects experimental observations
to model parameters and upon which the probabilistic inference relies. The particular case
of linear fit with errors on both axes and extra variance of the data points around the
straight line (i.e. not accounted by the experimental errors) is shown in detail. Some
questions related to the use of linear fit formulas to log-linearized exponential and power
laws are also sketched, as well as the issue of systematic errors.

Preamble

This paper, based on things already written somewhere with the addition of some details
from lectures, contains nothing or little especially new. Even the main ‘result’, summarized in
Eq.(35) and that I hope will contribute to set down the questions raised by astro-ph/0508529 [1],
is just a simple extension of Eq. (8.33) of Ref. [2]. Therefore the debated question could be
dismissed with a paper even shorter than astro-ph/0508529. Nevertheless, I have taken the
opportunity to reorganize old material for the benefit of my students, and I post these pages
hoping they could be of some utility to those who wish to understand what there is behind
formulas.
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1 Introduction

A common task in data analysis is to ‘determine’, on the basis of experimental observations,
the values of the parameters of a model that relates physical quantities. This procedure is
usually associated to names like ‘fit’ and ‘regression’, and to principles, like ’least squares’
or ‘maximum likelihood’ (with variants). I prefer, as many others belonging to a still small
minority, to approach the problem from more fundamental probabilistic ‘first principles’, that
are indeed the fundamental rules of probability theory. This approach is also called ‘Bayesian’
because of the central role played by Bayes’ theorem in the process of learning from data,
as we shall see in a while (for a critical introduction to the Bayesian approach see Ref. [2]
and references therein). In practice this means that we rank in probability hypotheses and
numerical values about which we are not certain. This is rather intuitive and it is indeed
the natural way physicists reason (see e.g. Ref. [3] and references therein), though we have
been taught a peculiar view of probability that does not allow us to make the reasonings we
intuitively do and that we are going to use here.

In the so called Bayesian approach the issue of ‘fits’ takes the name of parametric inference,
in the sense we are interested in inferring the parameters of a model that relates ‘true’ values.
The outcome of the inference is an uncertain knowledge of parameters, whose possible values
are ranked using the language and the tools of probability theory. As it can only be (see e.g.
Ref. [2] for extensive discussions), the resulting inference depends on the inferential model
and on previous knowledge about the possible values the model parameters can take (though
this last dependence is usually rather weak if the inference is based on a ‘large’ number of
observations). It is then important to state clearly the several assumptions that enter the data
analysis. I hope this paper does it with the due care – and I apologize in advance for some
pedantry and repetitions. The main message I would like to convey is that nowadays it is
much more important to build up the model that describes at best the physics case than to
obtain simple formulae for the ’best estimates’ and their uncertainty. This is because, thanks
to the extraordinary progresses of applied mathematics and computing power, in most cases
the calculation of the integrals that come from a straight application of the probability theory
does not require any longer titanic efforts. Building up the correct model is then equivalent,
in most cases, to have solved the problem.

The paper is organized as follows. In Section 2 the inferential approach is introduced from
scratch, only assuming the multivariate extensions of the following well known formulas1

f(x, y | I) = f(x | y, I) · f(y | I) (1)

f(x | I) =

∫

f(x, y | I) dy . (2)

We show how to build the general model, and how this evolves as soon as the several hypotheses
of the model are introduced (independence, normal error functions, linear dependence between

1The meaning of the overall conditioning I will be clarified later. Note that, in order to simplify the notation,
the generic symbol f( ) is used to indicate all probability density functions, though they might refer to different
variables and have different mathematical expressions. In particular, the order of the arguments is irrelevant,
in the sense that f(x, y | I) stands for ‘joint probability density function of x and y under condition I ’, and
therefore it could be also indicated by f(y, x | I). For the same reason, the indexes of sums and products and
the extremes of the integrals are usually omitted, implying they extend to all possible values of the variables.
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true values, vague priors). The graphical representation of the model in terms of the so called
‘Bayesian networks’ is also shown, the utility of which will become self-evident. The case of
linear fit with errors on both axes is then summarized in Section 3, and the approximate solution
for the non-linear case is sketched in Section 4. The extra variability of the data is modeled
in Section 5, first in general and then in the simple case of the linear fit. The interpretation
of the inferential result is discussed in Section 6, in which approximated methods to calculate
the fit summaries (expected values and variance of the parameters) are shown. Finally, some
comments on the not-trivial issues related to the use of linear fit formulas to infer the parameters
of exponential and power laws are given in Section 7. Section 8 shows how to extend the
model to include systematic errors, and some simple formulas to take into account offset and
scale systematic errors in the case of linear fits will be provided. The paper ends with some
conclusions and some comments about the debate that has triggered it.

2 Probabilistic parametric inference from a set of data points

with errors on both axes

Let us consider a ‘law’ that relates the ‘true’ values of two quantities, indicated here by µx and
µy:

µy = µy(µx;θ) , (3)

where θ stands for the parameters of the law, whose number is M . In the linear case Eq. (3)
reduces to

µy = m µx + c (4)

i.e. θ = {m, c} and M = 2. As it is well understood, because of ‘errors’ we do not observe
directly µx and µy, but experimental quantities2 x and y that might differ, on an event by
event basis, from µx and µy. The outcome of the ‘observation’ (see footnote 2) xi for a given
µxi

(analogous reasonings apply to yi and µyi
) is modeled by an error function f(xi |µxi

, I),
that is indeed a probability density function (pdf) conditioned by µxi

and the ‘general state
of knowledge’ I. The latter stands for all background knowledge behind the analysis, that is
what for example makes us to believe the relation µy = µy(µx;θ), the particular mathematical
expressions for f(xi |µxi

, I) and f(yi |µyi
, I), and so on. Note that the shape of the error

function might depend on the value of µxi
, as it happens if the detector does not respond the

same way to different solicitations. A usual assumption is that errors are normally distributed,
i.e.

xi ∼ N (µxi
, σxi

) (5)

yi ∼ N (µyi
, σyi

) , (6)

where the symbol ‘∼’ stands for ‘is described by the distribution’ (or ‘follows the distribution’),
and where we still leave the possibility that the standard deviations, that we consider known,

2These quantities might also be summaries of the data. I.e. they are either directly observed numbers, like
readings on scales, or quantities calculated from direct observations, like averages or other ‘statistics’ based on
partial analysis of the data. It is implicit that when summaries are used, instead of direct observations, the
analyzer is somewhat relying on the so called ’statistical sufficiency’.
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might be different in different observations. Anyway, for sake of generality, we shall make use
of assumptions (5) and (6) only in next section.

If we think of N pairs of measurements of µx and µy, before doing the experiment we are
uncertain about 4N quantities (all x’s, all y’s, all µx’s and all µy’s, indicated respectively as x,
y, µx and µy) plus the number of parameters, i.e. in total 4N+M , that become 4N+2 in linear
fits. [But note that, due to believed deterministic relationship (3), the number of independent
variables is in fact 3N + M .] Our final goal, expressed in probabilistic terms, is to get the pdf
of the parameters given the experimental information and all background knowledge:

=⇒ f(θ |x,y, I) [→ f(m, c |x,y, I) for linear fits ] .

Probability theory teaches us how to get the conditional pdf f(θ |x,y, I) if we know the joint
distribution f(x,y,µx,µy,θ | I). The first step consists in calculating the 2N +M variable pdf
(only N + M of which are independent) that describes the uncertainty of what is not precisely
known, given what it is (plus all background knowledge). This is achieved by a multivariate
extension of Eq. (1):

f(µx,µy,θ |x,y, I) =
f(x,y,µx,µy,θ | I)

f(x,y | I)
(7)

=
f(x,y,µx,µy,θ | I)

∫

f(x,y,µx,µy,θ | I) dµx dµy dθ
(8)

Equations (7) and (8) are two different ways of writing Bayes’ theorem in the case of multiple
inference. Going from (7) to (8) we have ‘marginalized’ f(x,y,µx,µy,θ | I) over µx, µy and
θ, i.e. we used an extension of Eq. (2) to many variables. [The standard text book version
of the Bayes formula differs from Eqs. (7) and (8) because the joint pdf’s that appear on the
r.h.s. of Eqs. (7)-(8) are usually factorized using the so called ’chain rule’, i.e. an extension of
Eq. (1) to many variables.]

The second step consists in marginalizing the (2N +M)-dimensional pdf over the variables
we are not interested to:

f(θ |x,y, I) =

∫

f(µx,µy,θ |x,y, I) dµx dµy (9)

Before doing that, we note that the denominator of the r.h.s. of Eqs. (7)-(8) is just a number,
once the model and the set of observations {x,y} is defined, and then we can absorb it in the
normalization constant. Therefore Eq. (9) can be simply rewritten as

f(θ |x,y, I) ∝
∫

f(x,y,µx,µy,θ | I) dµx dµy . (10)

We understand then that, essentially, we need to set up f(x,y,µx,µy,θ | I) using the pieces
of information that come from our background knowledge I. This seems a horrible task, but
it becomes feasible tanks to the chain rule of probability theory, that allows us to rewrite
f(x,y,µx,µy,θ | I) in the following way:
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f(x,y,µx,µy,θ | I) = f(x |y,µx,µy,θ, I)

·f(y |µx,µy,θ, I)

·f(µy |µx,θ, I)

·f(µx |θ, I)

·f(θ | I) (11)

(Obviously, among the several possible ones, we choose the factorization that matches our
knowledge about of physics case.) At this point let us make the inventory of the ingredients,
stressing their effective conditions and making use of independence, when it holds.

• Each observation xi depends directly only on the corresponding true value µxi
:

f(x |y,µx,µy,θ, I) = f(x |µx, I) =
∏

i

f(xi |µxi
, I) (12)

[ =⇒
∏

i

N (µxi
, σxi

) ]. (13)

(In square brackets is the ‘routinely’ used pdf.)

• Each observation yi depends directly only on the corresponding true value µyi
:

f(y |µx,µy,θ, I) = f(y |µy, I) =
∏

i

f(yi |µyi
, I) (14)

[ =⇒
∏

i

N (µyi
, σyi

) ]. (15)

• Each true value µy depends only, and in a deterministic way, on the corresponding true
value µx and on the parameters θ. This is formally equivalent to take an infinitely sharp
distribution of µyi

around µy(µxi
;θ), i.e. a Dirac delta function:

f(µy |µx,θ, I) =
∏

i

δ[µyi
− µy(µxi

,θ) ] (16)

[ =⇒
∏

i

δ(µyi
−m µxi

− c) ] (17)

• Finally, µxi
and θ are usually independent and become the priors of the problem,3 that

one takes ‘vague’ enough, unless physical motivations suggest to do otherwise. For the µxi

3Priors need to be specified for the nodes of a Bayesian network that have no parents (see Fig 1 and footnote 4).
Priors are logically necessary ingredients, without which probabilistic inference is simply impossible. I understand
that those who approach this kind of reasoning for the first time might be scared of this ‘subjective ingredient’,
and because of it they might prefer methods advertised as ‘objective’ to which they are used, formally not
depending on priors. However, if one thinks a bit deeper to the question, one realizes that behind the slogan of
‘objectivity’ there is much arbitrariness, of which the users are often not aware, and that might lead to seriously
wrong results in critical problems. Instead, the Bayesian approach offers the logical tool to properly blend
prior judgment and empirical evidence. For further comments see Ref. [2], where it is shown with theoretical
arguments and many examples what is the role of priors, when they can be ‘neglected’ (never logically! – but
almost always in routine data analysis), and even when they are so crucial that it is better to refrain from
providing probabilistic conclusions.
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θ

µxi

xi

µyi

yi

[ for each i ]

Figure 1: Graphical representation of the model in term of a Bayesian network (see text).

we take immediately uniform distributions over a large domain (a ‘flat prior’). Instead,
we leave here the expression of f(θ | I) undefined, as a reminder for critical problems (e.g.
one of the parameter is positively defined because of its physical meaning), though it can
also be taken flat in routine applications with ‘many’ data points.

f(µx |θ, I) · f(θ | I) = f(µx | I) · f(θ | I) (18)

= kx f(θ | I) (19)

The constant value of f(µx | I), indicated here by kx, is then in practice absorbed in the
normalization constant.

In conclusion we have

f(x,y,µx,µy,θ | I) =
∏

i

f(xi |µxi
, I) · f(yi |µyi

, I) · δ[µyi
− µy(µxi

,θ) ] · f(µxi
| I) · f(θ | I)

(20)

=
∏

i

kxi
f(xi |µxi

, I) · f(yi |µyi
, I) · δ[µyi

− µy(µxi
,θ) ] · f(θ | I) (21)

∝
∏

i

f(xi |µxi
, I) · f(yi |µyi

, I) · δ[µyi
− µy(µxi

,θ) ] · f(θ | I) . (22)

Figure 1 provides a graphical representation of the model [or, more precisely, a graphical
representation of Eq. (20)]. In this diagram the probabilistic connections are indicated by solid
lines and the deterministic connections by dashed lines. These kind of networks of probabilistic
and deterministic relations among uncertain quantities is known as ‘Bayesian network’,4 ’belief

4According to Wikipedia [4], a Bayesian network “is a directed graph of nodes representing variables and arcs

representing dependence relations among the variables. If there is an arc from node A to another node B, then we

say that A is a parent of B. If a node has a known value, it is said to be an evidence node. A node can represent

6
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network’, ’influence network’, ’causal network’ and other names meaning substantially the same
thing. From Eqs. (10) and (22) we get then

f(θ |x,y, I) ∝
[

∫

∏

i

kxi
f(xi |µxi

, I) · f(yi |µyi
, I) · δ[µyi

− µy(µxi
,θ) ] dµx dµy

]

· f(θ | I)

(23)

∝ f(x,y |θ, I) · f(θ | I) = L(θ ; x,y) · f(θ | I) (24)

where we have factorized the unnormalized ‘final’ pdf into the ‘likelihood’5 L(θ ; x,y) (the
content of the large square bracket) and the ‘prior’ f(θ | I).

We see than that, a part from the prior, the result is essentially given by the product of N
terms, each of which depending on the individual pair of measurements:

f(θ |x,y, I) ∝
[

∏

i

Li(θ ; xi, yi, I)

]

· f(θ | I) , (25)

where

Li(θ ; xi, yi) = f(xi, yi |θ, I) = kxi

∫

f(xi |µxi
, I) · f(yi |µyi

, I) · δ[µyi
− µy(µxi

,θ) ] dµxi
dµyi

(26)

= kxi

∫

f(xi |µxi
, I) · f(yi |µy(µxi

,θ), I) dµxi
(27)

any kind of variable, be it an observed measurement, a parameter, a latent variable, or a hypothesis. Nodes are

not restricted to representing random variables; this is what is ”Bayesian” about a Bayesian network.” [Note:
here “random variable” stands for a random variable in the frequentistic acceptation of the term (‘à la von Mises‘
randomness) and not just as ‘variable of uncertain value’.] Bayesian networks represent both a conceptual and
a practical tool to tackle complex inferential problems. They have indeed renewed the interest in the field of
artificial intelligence, where they are used in inferential engines, expert systems and decision makers. Browsing
the web you will find plenty of applications. Here just a few references: Ref. [5] is a well known tutorial; Ref. [6]
and [7] and good general books on the subject, the first of which is related to the HUGIN software, a lite
version of it can be freely downloaded [8]; for a flash introduction to the issue, with the possibility of starting
playing with Bayesian network on discrete problems JavaBayes [9] is recommended, for which I have worked
also a couple of examples in [10]; for discrete and continuous variables that can be modeled with well known
pdf, a good starting point is BUGS [11], for which I have worked out some examples concerning uncertainties
in measurements [12]. BUGS stands for Bayesian inference Using Gibbs Sampling. This means the relevant
integrals we shall see later are performed by sampling, i.e. using Markov chain Monte Carlo (MCMC) methods.
I do not try to introduce them here, and I suggest to look elsewhere. Good starting point can be the BUGS web
page [11] and Ref. [13].

5Traditionally the name ‘likelihood’ is given to the probability of the data given the parameters, i.e.
f(x, y | θ, I), seen as a mathematical function of the parameters. Therefore the notation L(θ ; x, y) [not to be
confused with f(θ |x, y)!]. f(x, y | θ, I) can be obtained marginalizing f(x, y, µx, µy | θ, I), i.e. f(x, y | θ, I) =
∫

f(x, y, µx, µy | θ, I) dµxdµx, where f(x, y, µx, µy | θ, I) = f(x, y, µx, µy, θ | I)/f(θ | I) is obtained from
Eq. (20). It follows:

f(x, y, µx, µy | I) =
∏

i

f(xi |µxi
, I) · f(yi |µyi

, I) · δ[ µyi
− µy(µxi

, θ) ] · f(µxi
| I)

and

f(x, y | θ, I) =

∫

∏

i

f(xi |µxi
, I) · f(yi |µyi

, I) · δ[ µyi
− µy(µxi

, θ) ] · f(µxi
| I) dµxi

dµyi
.
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and the constant factor kxi
, irrelevant in the Bayes formula, is a reminder of the priors about

µxi
(see footnote 5).

3 Linear fit with normal errors on both axes

To apply the general formulas of the previous section we only need to make explicit µyi
(µxi

,θ)
and the error functions, and finally integrate over µxi

. In the case of linear fit with normal
errors the individual contributions to the likelihoods become

Li(m, c ; xi, yi) = kxi

∫

1√
2π σxi

exp

[

−(xi − µxi
)2

2σ2
xi

]

· 1√
2π σyi

exp

[

−(yi −m µxi
− c)2

2σ2
yi

]

dµxi

(28)

= kxi

1
√

2π
√

σ2
yi

+ m2 σ2
xi

exp

[

−(yi −m xi − c)2

2 (σ2
yi

+ m2 σ2
xi

)

]

, (29)

that, inserted into Eq. (25), finally give

f(m, c |x,y, I) ∝
∏

i

1
√

σ2
yi

+ m2 σ2
xi

exp

[

−(yi −m xi − c)2

2 (σ2
yi

+ m2 σ2
xi

)

]

f(m, c | I) . (30)

The effect of the error of the x-values is to have an effective standard error on the y-values that
is the quadratic combination of σy and σx, the latter ‘propagated’ to the other coordinate via
the slope m (this result can be justified heuristically by dimensional analysis).

4 Approximated solution for non-linear fits with normal errors

Linearity implies that the arguments of the exponential of the integrand in Eq. (28) contains
only first and second powers of µxi

, and then the integrals has a closed solution. Though this
is not true in general, the linear case teaches us how to get an approximated solution of the
problem. We can take first order expansions of µy(µx,θ) around each xi

µy(µxi
;θ) ≈ µy(xi;θ) + µ ′

y(xi;θ) · (µxi
− xi) . (31)

The difference yi−m µxi
− c in Eq. (28), that was indeed equal to yi−µy(µxi

;θ) in the general
case, using the linear approximation becomes

yi − µy(xi;θ)− µ ′

y(xi;θ) · (µxi
− xi) = yi − µ ′

y(xi;θ) · µxi
− [µy(xi;θ)− µ ′

y(xi;θ) · xi ] ,

i.e. we have the following replacements in Eqs. (28)-(30):

m → µ ′

y(xi;θ) (32)

c → µy(xi;θ)− µ ′

y(xi;θ) · xi . (33)

The approximated equivalent of Eq. (30) is then

f(θ |x,y, I) ∝≈
∏

i

1
√

σ2
yi

+ µ ′

y
2(xi;θ) · σ2

xi

exp

[

− [ yi − µy(xi;θ) ] 2

2 [σ2
yi

+ µ ′

y
2(xi;θ) · σ2

xi
]

]

f(θ | I) , (34)

where the unusual symbol ‘∝≈’ stands for ‘approximately proportional to’.
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5 Extra variability of the data

As clearly stated, the previous results assume that the only sources of deviation of the mea-
surements from the value of the physical quantities are normal errors, with known standard
deviations σxi

and σyi
. Sometimes, as it is the case of the data points reported in Ref. [14],

this is not the case. This means that y depends also on other, ‘hidden’ variables, and what we
observe is the overall effects integrated over all the variability of the variables that we do not
‘see’. In lack of more detailed information, the simplest modification to the model described
above is to add an extra Gaussian ‘noise’ on one of the coordinates. For tradition and sim-
plicity this extra noise is added to the y variable. The effect on the above result can be easily
understood. Let us call σv the r.m.s. of this extra noise that acts normally and independently
in each y point. As it is well known, the sum of Gaussian distributions is still Gaussian with an
expected value and variance respectively sum of the individual expected values and variances.
Therefore, the effect in the individual likelihoods (28) is to replace σ2

yi
by σ2

yi
+ σ2

v . But we
now have an extra parameter in the model, and Eq. (30) becomes

f(m, c, σv |x,y, I) ∝
∏

i

1
√

σ2
v + σ2

yi
+ m2 σ2

xi

exp

[

− (yi −m xi − c)2

2 (σ2
v + σ2

yi
+ m2 σ2

xi
)

]

f(m, c, σv | I) .

(35)

More rigorously, this formula can be obtained from a variation of reasoning followed in the
previous section.

• µy depends on µx and on the set of hidden variables v:

µy = µ(v)
y (µx,θ,v) (36)

= z(µx,θ) + g(µx,v) (37)

where the overall dependence µ
(v)
y ( ) has been split in two functions: z(µx,θ), only de-

pending on µx and the model parameters, corresponding to the ideal case; g(µx,v) de-
scribing the difference from the ideal case.

• Calling z the fictitious variable, deterministically dependent on µx, for a given µxi
we

have the following model

zi = z(µxi
,θ) : f(zi |µxi

,θ, I) = δ[ zi − z(µxi
,θ) ] (38)

µyi
: f(µyi

| zi, I) (39)

where f(µyi
| zi, I) describes our uncertainty about µyi

due to the unknown values of all
other hidden variables.

• We need now to specify f(µyi
| zi, I). As usual, in lack of better knowledge, we take

a Gaussian distribution of unknown parameter σv, with awareness that this is just a
convenient, approximated way to quantify our uncertainty.

9



θ/σv

µxi

xi

zi σv

µyi

yi

[ for each i ]

Figure 2: Minimal modification of Fig. 1 to model the extra variability not described by the
error functions. Note that θ stands for all model parameters to be inferred, including σv.
Instead, θ/σv stands for all parameters apart from σv.

At this point a summary of all ingredients of the model in the specific case of linear model
is in order:

yi ∼ N (µyi
, σyi

) (40)

xi ∼ N (µxi
, σxi

) (41)

zi ← m µxi
+ c [⇒ δ(zi −m µxi

+ c) ] (42)

µyi
∼ N (zi, σv) (43)

µxi
∼ U(−∞,+∞) [⇒ kxi

] (44)

m, c, σv ⇒ see later [⇒ ’uniform’ ], (45)

where U(−∞,+∞) stands for a uniform distribution over a very large interval, and the
symbol ‘←’ has been used to deterministically assign a value, as done in BUGS [11] (see
later).

• We have now the extra parameter σv that we include in θ, so that M increases by 1. The
new model in represented in Fig. 2, in which we have indicated by θ/σv all parameters
apart from σv.

• The variables of the model are now 5N + M , and Eq. (22) becomes

f(x,y,µx,µy,z,θ | I) ∝
∏

i

f(xi |µxi
, I) · f(yi |µµi

, I)

·f(µyi
| zi, I) · δ[ zi − z(µxi

,θ) ] · f(θ | I) . (46)

• Consequently, Eq. (10) becomes

f(θ |x,y, I) ∝
∫

f(x,y,µx,µy,z,θ | I) dµx dµy dz . (47)
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• Inserting the model functions (40)-(45) in Eq. (46), after the marginalization (47) and
the factorization of the result into likelihood as prior [as previously done in (24)], we get
the analogues of Eqs. (26)-(28):

Li(θ ; xi, yi)

kxi

=

∫

f(xi |µxi
, I) · f(yi |µyi

, I) · f(µyi
| zi,θ, I) · δ[ zi − z(µxi

,θ) ] dµxi
dµyi

dzi

(48)

=

∫

f(xi |µxi
, I) · f(yi |µyi

, I) · f(µyi
| z(µxi

,θ),θ, I) dµxi
dµyi

(49)

=

∫

1√
2π σxi

exp

[

−(xi − µxi
)2

2σ2
xi

]

· 1√
2π σyi

exp

[

−(yi − µyi
)2

2σ2
yi

]

· 1√
2π σv

exp

[

−(µyi
−m µxi

− c)2

2σ2
v

]

dµxi
dµyi

(50)

=

∫

1√
2π σxi

exp

[

−(xi − µxi
)2

2σ2
xi

]

· 1
√

2π
√

σ2
v + σ2

yi

exp

[

−(µyi
−m µxi

− c)2

2 (σ2
v + σ2

yi
)

]

dµxi
(51)

=
1

√
2π

√

σ2
v + σ2

yi
+ m2σ2

xi

exp

[

− (µyi
−m xi − c)2

2 (σ2
v + σ2

yi
+ m2σ2

xi
)

]

(52)

• Inserting in Eq. (25) the expression of Li(θ ; xi, yi) coming from Eq. (52) we get finally
Eq. (35).

6 Computational issues: normalization, fit summaries, priors

and approximations

At this point it is important to understand that in Bayesian approach the full result of the
inference is given by final distribution, that in our case is – we rewrite it here:

f(m, c, σv |x,y, I) = k
∏

i

1
√

σ2
v + σ2

yi
+ m2 σ2

xi

exp

[

− (yi −m xi − c)2

2 (σ2
v + σ2

yi
+ m2 σ2

xi
)

]

f(m, c, σv | I) ,

(53)

where k is ‘simply’ a normalization factor. (This factor is usually the most difficult thing to
calculate and it is often obtained approximately by numerical methods. But this is, in principle,
just a technical issue.) Once we have got k we have a full knowledge about f(m, c, σv |x,y, I)
and therefore about our uncertainty concerning the model parameters, the distribution of each
of which can be obtained by marginalization:

f(m |x,y, I) =

∫

f(m, c, σv |x,y, I) dc dσv (54)
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f(c |x,y, I) =

∫

f(m, c, σv |x,y, I) dm dσv (55)

f(σv |x,y, I) =

∫

f(m, c, σv |x,y, I) dm dc . (56)

Similarly the joint distribution of m and c can be obtained as

f(m, c |x,y, I) =

∫

f(m, c, σv |x,y, I) dσv , (57)

from which we can easily see that we recover Eq. (30) in the case we think the extra variability
discussed in the previous section is absent. This limit case corresponds to a prior of σv sharply
peaked around zero, i.e. f(σv | I) = δ(σv).

Other interesting limit cases are the following.

• Errors only on the y axis and no extra variability.
Making the limit of Eq. (30) for σxi

→ 0 and neglecting irrelevant factors we get

f(m, c |x,y, I) ∝
∏

i

exp

[

−(yi −m xi − c)2

2σ2
yi

]

f(m, c | I) (58)

∝ exp

[

−1

2

∑

i

(yi −m xi − c)2

σ2
yi

]

f(m, c | I) . (59)

This is the best known and best understood case.

• Errors only on the y axis and extra variability.
Making the limit of Eq. (53) for σxi

→ 0

f(m, c, σv |x,y, I) ∝
∏

i

1
√

σ2
v + σ2

yi

exp

[

−(yi −m xi − c)2

2 (σ2
v + σ2

yi
)

]

f(m, c, σv | I) . (60)

• Scattering of data point around the hypothesized straight line only due to ‘extra vari-
ability’.

f(m, c, σv |x,y, I) ∝ σ−N
v

∏

i

exp

[

−(yi −m xi − c)2

2σ2
v

]

f(m, c, σv | I) (61)

∝ σ−N
v exp

[

− 1

2σ2
v

∑

i

(yi −m xi − c)2
]

f(m, c, σv | I) . (62)

This case corresponds to the joint determination of m, c and σv made by the method of the
‘residuals’, that can be considered a kind of approximated solution of Eq. (61), achieved
by iteration. [Indeed, if there are ‘enough’ data points the ‘best estimates’ achieved by
the residual method are very close to the expected values of m, c and σv evaluated from
f(m, c, σv |x,y, I) if we assumed a flat prior distribution for the parameters.]
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Although, as it has been pointed out above, the full result of the inference is provided by the
final pdf, often we do not need such a detailed description of our uncertainty, and we are only
interested to provide some ‘summaries’. The most interesting ones are the expected values,
standard deviations and correlation coefficients, i.e. E(m), E(c), E(σv), σ(m), σ(c), σ(σv),
ρ(m, c), ρ(m,σv) and ρ(c, σv). They are evaluated from f(m, c, σv) using their definitions, that
are assumed to be known [hereon we often omit the conditions on which the pdf depends,
and we write f(m, c, σv) instead of f(m, c, σv |x,y, I), and so on]. Obviously, these are not
the only possible summaries. One might report in addition the mode or the median of each
variable, one-dimensional or multi-dimensional probability regions [i.e. regions in the space
of the parameters that are believed to contain the true value of the parameter(s) with a well
defined probability level], and so on. It all depends on how standard or unusual the shape
of f(m, c, σv) is. I just would like to stress that the most important summaries are expected
value, standard deviation and correlation coefficients, because these are the quantities that
mostly matter in subsequent evaluations of uncertainty. Giving only ‘most probable’ values
and probability intervals might bias the results of further analyzes [15].

The prior f(m, c, σv | I) has been left on purpose open in the above formulas, although we
have already anticipated that usually a flat prior about all parameters gives the correct result
in most ’healthy’ cases, characterized by a sufficient number of data points. I cannot go here
through an extensive discussion about the issue of the priors, often criticized as the weak point
of the Bayesian approach and that are in reality one of its points of force. I refer to more
extensive discussions available elsewhere (see e.g. [2] and references therein), giving here only
a couple of advices. A flat prior is in most times a good starting point (unless one uses some
packages, like BUGS [11], that does not like flat prior in the range −∞ to +∞; in this case
one can mimic it with a very broad distribution, like a Gaussian with very large σ). If the
result of the inference ‘does not offend your physics sensitivity’, it means that, essentially, flat
priors have done a good job and it is not worth fooling around with more sophisticated ones.
In the specific case we are looking closer, that of Eq. (53), the most critical quantity to watch
is obviously σv, because it is positively defined. If, starting from a flat prior (also allowing
negative values), the data constrain the value of σv in a (positive) region far from zero, and
– in practice consequently – its marginal distribution is approximatively Gaussian, it means
the flat prior was a reasonable choice. Otherwise, the next-to-simple modeling of σv is via the
step function θ(σv). A more technical choice would be a gamma distribution, with suitable
parameters to ‘easily’ accommodate all envisaged values of σv.

The easiest case, that happens very often if one has ‘many’ data points (where ‘many’
might be already as few as some dozens), is that f(m, c, σv) obtained starting from flat priors
is approximately a multi-variate Gaussian distribution, i.e. each marginal is approximately
Gaussian. In this case the expected value of each variable is close to its mode, that, since
the prior was a constant, corresponds to the value for which the likelihood L(m, c, σv ; x,y)
gets its maximum. Therefore the parameter estimates derived by the maximum likelihood
principle are very good approximations of the expected values of the parameters calculated
directly from f(m, c, σv). In a certain sense the maximum likelihood principle best estimates
are recovered as a special case that holds under particular conditions (many data points and
vague priors). If either condition fails, the result the formulas derived from such a principle
might be incorrect. This is the reason I dislike unneeded principles of this kind, once we have
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a more general framework, of which the methods obtained by ‘principles’ are just special cases
under well defined conditions.

The simple case in which f(m, c, σv) is approximately multi-variate Gaussian allows also
to approximately evaluate the covariance matrix of the fit parameters from the Hessian of
its logarithm.6 This is due to a well known property of the multi-variate Gaussian and it is
not strictly related to flat priors. In fact it can easily proved that if the generic f(θ) is a
multivariate Gaussian, then

(V −1)ij(θ) =
∂2ϕ

∂θi ∂θj

∣

∣

∣

∣

∣

θ=θm

(63)

where

ϕ(θ) = − log f(θ) , (64)

Vij(θ) is the covariance matrix of the parameters and θm is the value for which f(θ) gets its
maximum and then ϕ(θ) its minimum.

An interesting feature of this approximated procedure is that, since it is based on the
logarithm of the pdf, normalization factors are irrelevant. In particular, if the priors are flat,
the relevant summaries of the inference can be obtained from the logarithm of the likelihood,
stripped of all irrelevant factors (that become additive constants in the logarithm and vanish
in the derivatives). Let us write down, for some cases of interest, the minus-log-likelihoods,
stripped of constant terms and indicated by L, i.e. ϕ(θ ; x,y) = L(θ ; x,y) + const.

• Simplest case: linear fit with only known errors on the y axis [from Eq. (58)]:

L(m, c ; x,y) =
1

2

∑

i

(yi −m xi − c)2

σ2
yi

=
1

2
χ2(m, c ; x,y) , (65)

where we recognize the famous chi-squared. Applying Eq. (63) we get then the covariance
matrix of the fit parameters as

(V −1)m,c =
1

2

∂2χ2(m, c ; x,y)

∂m ∂c

∣

∣

∣

∣

∣ m = mm

c = cm

(66)

(See Ref. [2] for the fully developed example yielding analytic formulas for the expected
values and covariance matrix of the m and c.) Note that the often used (but also often
misused! [15]) ‘∆ χ2 = 1 rule’ to calculate the covariance matrix of the parameters comes
from the same Gaussian approximation of the final pdf and prior insensitivity. [And,
because of the factor 1/2 between Eqs. (63) and (66), there is an equivalent ‘∆ minus-
log-likelihood = 1/2’ rule, applicable under the same conditions].

6I would like to point out that I added the formulas that follow just for the benefit of the inventory. Personally,
in such low dimensional problems I find it easier to perform numerical integrations than to evaluate, obviously
with the help of some software, derivatives, find minima and invert matrices, or to use the ‘∆ χ2 = 1’ or
‘∆ minus-log-likelihood = 1/2’ rules. Moreover, I think that the lazy use of computer programs solely based
on some approximations produces the bad habit of taking acritically their results, even when they make no
sense[15]. Nevertheless, with some reluctance and after these warnings, I give here the formulas that follows,
and that the reader might know as derived from other ways, hoping he/she understands better how they can be
framed in a more general scheme, and therefore when it is possible to use them.
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• Errors also on the y axis:

L(m, c ; x,y) =
1

2

∑

i

log (σ2
yi

+ m2 σ2
xi

) +
1

2

∑

i

(yi −m xi − c)2

σ2
yi

+ m2 σ2
xi

. (67)

In this case expected values and covariance matrix cannot be obtained directly in closed
form. Nevertheless, one can use iteratively the formulas for σxi

= 0 in which the estimate
of m is used to evaluate the terms σ2

yi
+m2 σ2

xi
(having the meaning of effective y-error) in

the likelihood of the next iteration. Instead it is wrong to simply replace the denominator
of the χ2 of Eq. (65) with σ2

yi
+ m2 σ2

xi
, because this approximation does not take into

account the first term of the r.h.s. of Eq. (67) and the slope m will be underestimated
(as a consequence, the intercept c will be over- or under-estimated, depending on the sign
of the correlation coefficient between m and c, a sign that depends on the sign of the
barycenter of the x points.)

• Dispersion on the y axis only due to σv [from Eq. (61)]:

L(m, c, σv ; x,y) = N log σv +
1

2σ2
v

∑

i

(yi −m xi − c)2 . (68)

• The most complete case seen here [from Eq. (53)]:

L(m, c, σv ; x,y) =
1

2

∑

i

log (σ2
v + σ2

yi
+ m2 σ2

xi
) +

1

2

∑

i

(yi −m xi − c)2

σ2
v + σ2

yi
+ m2 σ2

xi

. (69)

• As the previous item, but for the general µy( ) [from Eq. (34)]:

L(θ, σv ; x,y) ≈ 1

2

∑

i

log [σ2
v + σ2

yi
+ µ ′

y
2
(xi;θ) · σ2

xi
] +

1

2

∑

i

[ yi − µy(xi;θ) ] 2

σ2
v + σ2

yi
+ µ ′

y
2(xi;θ) · σ2

xi

.

(70)

7 From power law to linear fit

Linear fits are not only used to infer the parameters of a linear model, but also of other
models that are linearized via a suitable transformation of the variables. The best known
cases are the exponential law, linearized taking the log of the ordinate, and the power low,
linearized taking the log of both coordinates. Linearizion is particularly important to provide
a visual evidence in support of the claimed model. However, quantitative inference based on
the transformed variable is not so obvious, if high accuracy in the determination of the model
parameters is desired. Let us make some comments on the power law, in which both variables
are log-transformed and therefore more general.

We start hypothesizing a model

B = κAγ , (71)
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that is linearized as

log B = γ log A + log κ . (72)

We identify then log B with µy of the linear case, log A with µx, γ with m and log κ with c. But
this identification does not allows us yet to use tout court the formulas derived above, because
each of them depends on a well defined model. Let us see where are the possible problems.

• In the simplest model ai is normally distributed around Ai and bi around Bi (we indicate
by a and b the set of observations in the original variables). But, in general, xi ≡
log ai and yi ≡ log bi are not normally distributed around µxi

≡ log A and µyi
≡ log B,

respectively. They are only when the measurements are very precise, i.e. σai
/ai ≪ 1 and

σbi
/bi ≪ 1. This the case in which standard ‘error propagation’, based on the well known

formulas base on linearization, holds.

• If the precision is not very high, i.e. σai
/ai and σbi

/bi are not very small, non-linear
effects in the transformations could be important (see e.g. Ref. [15]).

• When some of σai
/ai and σbi

/bi approach unity it becomes important to consider the
error functions and the priors about A and B with the due care. For example, very often
the quantities A and B are defined positive – and if we take their logarithms, they have
to be positive. This requires the model to be correctly set up in order to prevent negative
values of A and B.

Further considerations would require a good knowledge of the the experimental apparatus and
of the physics under study. Therefore I refrain from indicating a toy model, that could be used
acritically in serious applications. Instead I encourage to draw a graphical representation of the
model, as done in Figs. 1 and 2 and to make the inventory of the ingredients. Sometimes the
representation in terms of Bayesian network is almost equivalent to solve the problem, thanks
also to the methods developed in the past decades to calculate the relevant integrals, using
e.g. Markov Chain Monte Carlo (MCMC), see e.g. Ref. [13] and references therein. In case of
simple models one can even use free available software, like BUGS [11].

8 Systematic errors

Let us now consider the effect of systematic errors, i.e. errors that acts the same way on
all observations of the sample, for example an uncertain offset in the instrument scale, or an
uncertain scale factor. I do not want to give a complete treatment of the subjects, but focus
only on how our systematic effects modify our graphical model, and give some practical rules for
the simple case of linear fits. (For an introduction about systematic errors and their consistent
treatment within the Bayesian approach see Ref. [2].)

For each coordinate we can introduce the fictitious quantities µS
x and µS

y that take into
account the modification of µx and µy due to the systematic effect. For example, if the system-
atic effects only acts as an offset, i.e. we are uncertain about the ‘true’ zero of the instruments,
ζx and ζy, we have

µS
xi

= µxi
+ ζx (73)

µS
yi

= µyi
+ ζy , (74)
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xi
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yi

[ for each i ]

βyβx

Figure 3: Graphical model of Fig. 2 with the addition of systematic errors on both axes.

where the true value of ζx are ζy unknown (otherwise there would be no systematic errors). We
only know that their expected value is zero (otherwise we need to apply a calibration constant
to the measurements) and we quantify our uncertainty with pdf’s. For example, we could
model them with Gaussian distributions:

ζx ∼ N (0, σζx
) (75)

ζy ∼ N (0, σζy
) . (76)

Anyway, for sake of generality, we leave the systematic effects in the most general form, depen-
dent on the uncertain quantities βx and βy [to be clear: in the case of solely offset systematics

we have βx = {ζx} βy = {ζy}]. The values of µS
xi

and µS
yi

are modeled as follow

µS
xi

: µS
xi
← µS

x (µxi
;βx) (77)

µS
yi

: µS
yi
← µS

y (µyi
;βy) (78)

βx : βx ∼ f(βx | I) (79)

βy : βy ∼ f(βy | I) . (80)

Figure 3 shows the graphical model containing the new ingredients. The links βx → xi and
βy → yi are to remember that systematics could also effect the error functions. An alternative
visual picture of the probabilistic model is shown in Fig. 4. Note the different symbols to
indicate the different uncertain processes: the divergent arrows (in yellow, if you are reading
an electronic version of the paper) indicate that, given a value of the ‘parent’ variable, the
‘child’ variable fluctuates on an event-by-event basis; the green single arrow with the question
mark indicate that, given a value of the ‘parent’, the child will always take a fixed value, though
we do not know which one.
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Figure 4: A different visual representation of the probabilistic model of Fig. 3.

Obviously, the practical implementation of complicate systematic effects in complicate fits
can be quite challenging, but at least the Bayesian network provides an overall picture of
the model. The simplest case is that of linear fit where only offset and scale uncertainty are
present, with uncertainty modeled by a Gaussian distribution. This means that the β’s and
their uncertainty are as follows (η is the scale factor of uncertain value):

βx = {ζx, ηx} βy = {ζy, ηy} (81)

ζx ∼ N (0, σζx
) ζy ∼ N (0, σζy

) (82)

ηx ∼ N (1, σηx
) ηy ∼ N (1, σηy

) (83)

In this case we can get an hint of how the uncertainty about m and c change without doing
the full calculation following an heuristic approach, valid when f(m, c) is approximately mul-
tivariate Gaussian and the details of which can be found in Ref. [16]. We obtain the following
results, in which σ(m)|ζx

indicates the contribution to the uncertainty about the slope m due

to uncertainty about ζx, σ(m)|ηx
that due to the scale factor ηx, and so on7:

σ(m)|ζx
= 0 (84)

σ(m)|ζy
= 0 (85)

σ(c)|ζx
= |m|σζx

(86)

σ(c)|ζy
= σζy

(87)

7In Ref. [16] ζx is indicated by zx, ηx by fx, and so on.
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σ(m)|ηx
= |m|σηx

(88)

σ(m)|ηy
= |m|σηy

(89)

σ(c)|ηx
= 0 (90)

σ(c)|ηy
= |c|σηy

. (91)

All contributions are then added quadratically to the so called ‘statistical’ ones.

9 Conclusions

The issue of fits has been approached from probability first principles, i.e. using throughout
the rules of probability theory, without external ad hoc ingredients. It has been that the main
task consists in building up the inferential model, that means in fact to properly factorize
the joint probability density function of all variables of the problem. We have seen that this
factorization, based on the so called chain rule of probability theory, has a very convenient
graphical representation, that takes the name of Bayesian (or belief/causal/influence) network.
Modeling the problem in terms of such networks not only helps to understand the problem
better, but, thanks the huge amount of mathematical developments relates to them, it becomes
the only way to get a (numerical) solution when problems get complicated.

We have also seen how to recover well known formulas, obtained starting from other ap-
proaches, under well defined conditions, thus indicating that other methods can be seen as
approximations of the most general one, and that are therefore applicable if the conditions of
validity hold.

The linear case with errors on both axis and extra variance of the data has been shown
with quite some detail, giving un-normalized formulas for the pdf. In particular, going to the
pretext to write this paper, we can see that Eq. (43) of Ref. [17] is not reproduced. In fact,
if I understand it correctly, that equation should have the same meaning of Eq. (53) of this
paper. However, Eq. (43) of Ref. [17] contains an extra factor

√
1 + m2 (using the notation

of this paper), that it is a bit odd, for several reasons (besides the fact that I do not get it
– but this could be judged a technical argument by the hurry reader). The first reason is
just dimensionality: m x is homogeneous with y and for this reason m σx can be combined
(quadratically) to σy, but m2 cannot be added tout court to 1. The second is that if there was
such a factor in Eq. (53), then one cannot reproduce Eqs. (58), (60) and (61), that one can
be obtained in simpler ways (and that give rise to the likelihoods shown in Section 6, some of
them rather well known). Note that the addition of a term

√
1 + m2 in Eq. (53) has the net

effect of overestimating m, an effect that is consistent with the claim by [1] of a slope larger
than that obtained by [14].8

8As a rule of thumb, since the extra variance of the data of [14] is rather important, the slope has to be very
close to that obtained neglecting all σxi

and σyi
and making a very simple least square regression.
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