Quark/gluon jet separation
in the photoproduction region
with a neural network algorithm

Giuseppe Barbagli
Universita di Firenze and C.N.R.
Giulio D’Agostini and Daniela Monaldi

Universitd "La Sapienza” and I.N.F.N., Roma

Abstract: A neural network approach has been used to separate quark
and gluon jets at HERA in the photoproduction region. The network was
trained to learn the structural features of the jets. The jet recognition was
used to enhance the contents of a sample of Photon-Gluon Fusion events by
reducing the background of QCD Compton events.

1 Introduction

There is a strong interest in separating Photon-Gluon Fusion (PGF) and QCD Comp-
ton scattering (QCDC) in direct photoproduction at HERA or, at least, in obtaining
enriched samples of events for either reaction. Two jet photoproduction has been pro-
posed as a tool to determine the gluon density of the proton from PGF [1,2], while
QCD Compton scattering could yield information about the sum of the quark densities.
Moreover, both processes could provide interesting information about hadronization
schemes, especially if one is able to distinguish, within the two classes, the quark from
the antiquark or the quark from the gluon.

In the region of interest, the distributions of the kinematic variables of the final state
partons do not present meaningful separation and a jet identification based on the dif-
ferential hard cross-sections is not efficient, hence, one has to fully exploit the different
jet topologies and match several features in order to distinguish them.

Neural network methods have been extensively used to solve the problems of pattern
recognition, especially when the the decision criteria are complex and subtle. They are
inspired by the actual modeling of biological cognition, i.e., they are made up of a set of
processing elements, called nodes or neurons, linked to each other by synapses with well
defined strengths, or weights. Neurons perform simple operations: they calculate the
weighted sum of inputs and transmit it to the other nodes through a nonlinear threshold
function. Neural networks exhibit high intrinsic parallelism (suitable for hardware im-
plementation) and fault-tolerance. They perform learning, recognition and classification

functions. and allow one to solve problems. such as classification patierns, recognition
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Figure 1: Structure of a two layer perceptron.

of images and sounds, optimization etc., which are simple for the human brain but are
non-trivial for traditional computers.

We built a neural network and we taught it to recognize quark and gluon jets, by ex-
posing it to a large sample of simulated events. After that, we evaluated the efficiency
of the network as a classifier and we analyzed photoproduction events with two jets in
the final state in order to tag the underlying process as QCDC or PGF.

2 Description of a 2 layer perceptron

Perceptron [3,4,5] is an old neural network algorithm, suitable for classification prob-
lems. It is organized (Fig. 1) according to layers: a set of inputs, one or more inter-
mediate (hidden) layers of processing nodes and one or more output nodes. Each layer
is connected to the following layer via links of given weights, wi;. Let us have M input
nodes, one hidden layer of My nodes, and N output nodes. The ) are the inputs, h; are
the values of the nodes of the hidden layer and y; are the values of the output nodes.
The w; are the weights connecting the output nodes with the hidden layer and w?k are
the weights connecting the hidden layer with the input nodes. Then one has:

Yi = f(s‘:) ’ (1)
where f is a nonlinear threshold function, and
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The §; are characteristic thresholds that are adjusted as the processing is carried on,
being regarded as particular weights linking the nodes to external bias input sources at
fixed values. A valid choice of f, having values in the range [0,1],1s :

#(s) = 311+ tanh( )], (5)
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2t the omgin. All the weights and the thresholds are optimized with the following
iterative learning procedure. The weights are initially set to small random numbers
and updated regularly as the iterations proceed. The network is exposed to a series of
patterns; for each of them the value of every output node, y;, is evaluated and compared
to the class flag t; (target), then a fraction of the deviation §; is back-propagated as a
feedback. The targets have values 0 or 1. For the nodes of the last layer the deviation
is:

& = (v — t:)f'(s3) » (6)
where f' is the derivative of the function f with respect to s.
For the nodes of the intermediate layer it is:

N
8 =S wibif'(s5) - (7)
i=1
The weights at each node are then modified adding a feedback term, given by the
learning rate, ), times the deviation times the last input contribution and a balance
term, to reduce oscillations, given by « times the previous correction. Both of these
two parameters have values between 0 and 1. The updating of the weights is governed
by the equation: ]
A'wfj = —A;h; + Owa?jpfmw‘ o (8)
for the weights connecting the nodes of last layer (output nodes) to the nodes of the
last intermediate layer, and :

Awl;k = —A;zi + aAw?f"”iw’ , 9)
for the weights connecting the intermediate layer with the inputs.

A multi-layer perceptron is able to draw, in the multidimensional input variable space,
decision regions limited by arbitrarily complex boundaries. The only limitations to the
capability of separating classes come from the number of nodes and from the intrinsic
overlap of the classes in the multidimensional space of the input variables (Bayes limit).
We have written a program to implement the previously described algorithm. We have
carefully investigated the behaviour of the network and its relation to the parameters
and to the number of hidden layers and nodes, in order to choose a suitable tool to
apply to the analysis of the jet features.

3 Simulation and selection of events

We have applied the network algorithm to the identification of gluon and quark jets,
relying only on their topological differences. We simulated photoproduction at HERA
through QCDC and PGF with PYTHIA 5.5 [7], including initial and final state par-
ton showers, with a p; cut of 10 GeV/c chosen to obtain only hard jets in the final
state. The cross-sections of the two processes are 1.4 nb and 3.4 nb, respectively. Jets
were reconstructed using the LUCELL algorithm (from J ETSET 7.3 [8]) with cell size
[6n,64) = [0.2,0.3], jet cone VATT ¥ B¢ < 1 and jet transverse energy Bt > TGeV
(n is the pseudorapidity and ¢ the azimuthal angle). Finally, only events are selected
that have two well separated and coplanar jets (m —0.25 < |Bjetr — Biera| < w4 0.25) at
least ~ 8° from the beampipe (|7;e¢| < 2.7). With these cuts, approximately 40% of the
generated events survived.
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Figure 2: Transverse energy and the rapidity for jets produced in QCDC and PGF.
4 Choice of input variables and learning procedure

In the high p; photoproduction region there is no obvious separation between quarks
and gluons based on kinematic variables (see Fig.2): both kinds of jets have the same
energy distribution and only the angular one differs slightly. However, the different
fragmentation properties are reflected in different jet structures that often permit one
to identify visually the gluon jet, in a two jet configuration, as the one with higher
multiplicity, softer spectrum and broader spatial development. The recognition of the
jet flavour based on these features requires a multidimensional analysis combining in-
formation coming from several physical quantities: this is a typical task required of a
neural network.

The necessity of giving the most detailed information on the jet has to be balanced with
the requirement of a reasonably sized network. As a compromise, we used the detailed
information on some leading particles, together with some global variables which quan-
tify the features of the jet. After some attempts, we chose Fodor’s moments, defined as

[9):

N

PTiva
Fg=), %) nf (10)

where the sum is over all the particles in the jet and pr and n are the transverse
momentum and the pseudorapidity, both defined with respect to the jet axis. We found
that Fodor’s moments are more sensitive to different jet structure in the Hard Scattering
Center of Mass frame (HSCM), than in the laboratory frame. Since the two processes
are essentially at Q? ~ 0, the HSCM is related to the laboratory frame by a boost along
the beam axis. This has been calculated using HSCM rapidity, estimated by the average
pseudorapity of the two jets.

To summarize, the patterns presented to the network for learning and testing consisted
of 22 variables, all of them calculated in the HSCM:
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Figure 3: Some Fodor’s moments in the Hard Scattering Center of Mass frame

e the transverse energy of the jet E:J,.-,
e the pseudorapidity of the jet 77,
e the azimuth of the jet ¢/,

c j -
o (E%/E7, A'r{c, A¢,) for the cells in the n— ¢ grid with the largest fraction Ej / Ej
where the differences are taken with respect to the jet axs, e

o the Fodor’s moments Fyo (multiplicity), Fio, Fi1s and Fy.

The network consisted of 22 i i
‘ nputs, one hidden layer and only one output
some tuning, we chose the following parameters: Y i uade:

e hidden layer size: 46 nodes,

lea.rnjng rate: A =2x10 for the first 200 1 i
® ! , t €arning s€equences, reduced to 0.5x10

e balance coefficient: a = 0.5,

o temperature: T' = 1.

'Iihe n?twork was exposed to 154,000 quark jets (from QCDC and PGF) and 154,000
gluon jets (from QCDC) randomly mixed. The training was subdivided into se s
.each sequence consisted of 2000 trainings: 1000 with quark jets and 1000 wi'?}llel;lizs,
iti. dAfter efa.ch learning cycle, the capability of the network to separate classef WaIs1
: Sset:i u:irrll ga?h;ngfsp;e;(t)ie(;toszr;pl.e of 4(1)100 quark‘ j.ets and. 4000 gluon jets. After a steep
e g A ;alue. nings, the recognition efficiency continued growing slowly
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Figure 5: Identification efficiencies and misidentification probabilities as function of the thresh-
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Table 2: Event classification results.

6 Separation of Photon-Gluon Fusion Events and

QCD Compton events

A classification of the two jet events on the basis of jet identification has been used in
order to tag the underlying physical process and to enhance samples of PGF events.
Tab. 2 shows the probabilities of inding a combination of two jets as they are recognized
by the neural network. The probability to be classified as " quark-quark” is, for a
PGF event, twice as high as for a QCDC one 1, In Fig. 6, the distributions of the
reconstructed momentum fraction carried by the incoming parton[2] before and after

the neural network quark-quark selection. are presented.
An attempt has been made to recognize the underlying proc
shape instead of from the individual jet identi

same result and, perhaps, increase

are lost in the present approach. Unfortunately,
difficult because of the larger number of input variables and more study is required.

1Note that the probability of finding two quark jets in the same event is not the product
y & conditioned probability.

finding a quatk in the single jet, but it is given b

ess from the global event

Hhh

fcation. This should at least give the
the efficiency due to long range correlations which
the problem becomes technically more

of that of

NETWORK GENERATED PARTONS
DECISION
GLUON QUARK
<g¢>[QCDC PGF
Light IHeavy
g 3% | 32% | 26% | 34% | 42%
q 21% | 67% | 74% | 66% | 58%

Table 1: Jet classification results

5 Results on quark-gluon jet identification
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~etl:h th};e final set of weights, the output variable distribution for the two classes of

_]F . ac’ eves a much larger separation than is obtainable with the most sensitive of the
odor’s moments, as can be seen in Fig. 4. The ideal separation would yield y =1 for
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Figure 4: Distribution of the output node variable for quark and gluon jets

tq;ll;rslz itla(tisvagd y(i—— li 'i;)r gl}:mn jets. Thus, the requirement of y greater than a certain
ue identifies the quark, whereas y less th
e ¢ : ; g an another value tags the gluon.
: vlvi c158‘:hows thef identification efficiency and the misidentification probability fir the
ses as a function of the threshold. In Tab. 1 we

. L . present the results obtained
;mth 1a. threshold value of 0.5 for both classes. One sees that 73% efficiency is achieved
nt;r i uons ar(xid 67% for quarks. It is interesting to remark that the two production

echanisms do not give the same results. In i

' o . In particular the heavy quark jet
easily misidentified as gl i i 0§ S inicenficed
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Figure 6: Reconstructed fractional momentum of the p
dentification.

and QCDC events events before (a) and after (b) the requirement of two quark jet i

7 Conclusions

used to separate quark and gluon jets in the
photoproduction region. The efficiencies were 67% and 73% for quark and gluon jets,
respectively. The requirement of two identified quark jets has allowed an enhancement of
samples of Photon-Gluon Tusion events over the background QCD Compton scattering

up to 5:1.

A neural network approach has been
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