Checking individuals and sampling populations with imperfect tests

Giulio D'Agostini¹ and Alfredo Esposito²

Abstract

In the last months, due to the emergency of Covid-19, questions related to the fact of belonging or not to a particular class of individuals ('infected or not infected), after being tagged as 'positive' or 'negative' by a test, have never been so popular. Similarly, there has been strong interest in estimating the proportion of a population expected to hold a given characteristics ('having or having had the virus'). Taking the cue from the many related discussions on the media, in addition to those to which we took part, we analyze these questions from a probabilistic perspective ('Bayesian'), considering several effects that play a role in evaluating the probabilities of interest. The resulting paper, written with didactic intent, is rather general and not strictly related to pandemics: the basic ideas of Bayesian inference are introduced and the uncertainties on the performances of the tests are treated using the metrological concepts of 'systematics', and are propagated into the quantities of interest following the rules of probability theory; the separation of 'statistical' and 'systematic' contributions to the uncertainty on the inferred proportion of infectees allows to optimize the sample size; the role of 'priors', often overlooked, is stressed, however recommending the use of 'flat priors', since the resulting posterior distribution can be 'reshaped' by an 'informative prior' in a later step; details on the calculations are given, also deriving useful approximated formulae, the tough work being however done with the help of direct Monte Carlo simulations and Markov Chain Monte Carlo, implemented in R and JAGS (relevant code provided in appendix).

> "Grown-ups like numbers" (The Little Prince)

"The theory of probabilities is basically just common sense reduced to calculus" (Laplace)

"All models are wrong, but some are useful" (G. Box)

 $^{^1 \}rm Università$ "La Sapienza" and INFN, Roma, Italia, giulio.dagostini@roma1.infn.it $^2 \rm Retired,$ alfespo@yahoo.it

Contents

1	Introduction	3
2	Rough reasoning based on expectations 2.1 Setting up the problem	7 8 9 11 12 13
3	Probability of infected in the light of the available information 3.1 Bayes' rule at work 3.2 Initial odds, final odds and Bayes' factor 3.2 What do we been by a second test?	13 14 17
4	3.3 What do we learn by a second test?	 19 20 20 22 25 26 29 30
5	Predicting the number of positives resulting from testing a sample 5.1 Expected number of positives and its standard uncertainty 5.2 Taking into account the uncertainty on π_1 and π_2 5.2.1 Approximated formulae	31 34 36 39 40
6	Sampling a population6.1 Proportion of infected individuals in the random sample6.2 Expected number of positives assuming exact values of π_1 and π_2 6.2.1 Approximated results6.3 Detailed study of the four contributions to $\sigma(f_P)$ 6.4 Statistical and systematic contributions to $\sigma(f_P)$	41 42 44 44 46 50

7	Mea	asurability of p	56
	7.1	Probabilistic model	56
	7.2	Monte Carlo estimates of $f(n_P)$ and $f(f_P)$	57
		7.2.1 Using the R random number generators	58
		7.2.2 Using JAGS	60
		7.2.3 Further check of the approximated formulae	64
	7.3	Resolution power	64
	7.4	Predicting fractions of positives sampling two populations	66
8	Infe	erring p from the observed number of positives in the sample	68
	8.1	From the general problem to its implementation in JAGS	68
	8.2	Inferring p and n_I with our 'standard parameters'	70
	8.3	Dependence on our knowledge concerning π_1 and π_2	72
	8.4	Quality of the inference as a function of n_s and f_P	74
	8.5	Updated $f(\pi_1)$ and $f(\pi_2)$ in the case of 'anomalous' number of positives	76
	8.6	Inferring the proportions of infectees in two different populations	78
	8.7	Which priors?	79
		8.7.1 Symmetric role of prior and 'integrated likelihood'	80
		8.7.2 Some examples	81
		8.7.3 Some approximated rules	83
9	Exa	act evaluation of $f(p)$	85
	9.1	Setting up the problem	85
	9.2	Normalization factor and other moments of interest	87
	9.3	Result and comparison with JAGS	88
	9.4	More remarks on the role of priors	91
10	O Cor	nclusions	93
R	efere	nces	96
		dix A – Some remarks on ' <i>Bayes' formulae</i> '	
		dix $B - R$ and JAGS code	
-			

1 Introduction

The Covid-19 outbreak of these months raised a new interest in data analysis, especially among lay people, for long locked down and really flooded by a tidal wave of numbers, whose meaning has often been pretty unclear, including that of the body counting, which should be in principle the easiest to assess. As practically anyone