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Outline

• Learning from data the probabilistic way
◦ Causes←→Effects

“The essential problem of the experimental method” (Poincaré).
◦ Graphical representation of probabilistic links
◦ Learning about causes from their effects

• Parametric inference Vs unfolding
• From principles to real life... [the iteration ‘dirty trick’]
• The old code and its weak point
• Improvements:
◦ use (conjugate) pdf’s insteads of just ‘estimates’
◦ uncertainty evaluated by general rules of probability

(instead of ‘error propagation’ formulae)
⇒ integrals over the weighted possibilities→ MC

• Some examples on toy models
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Learning from experience and source of uncertainty

Observations

(past)

Theory

Observations

(future)

? ?

parameters

?

Uncertainty:

Theory — ? −→
Past observations — ? −→

Theory — ? −→ Future observations
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Learning from experience and source of uncertainty

Observations

(past)

Theory

Observations

(future)

? ?

parameters

?

Uncertainty:

Theory — ? −→ Future observations

Past observations — ? −→ Theory

Theory — ? −→ Future observations
=⇒ Uncertainty about causal connections

CAUSE⇐⇒ EFFECT
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Causes→ effects

The same apparent cause might produce several,different
effects

C1 C2 C3 C4

E1 E2 E3 E4

Causes

Effects

Given an observed effect, we are not sure about the exact cause
that has produced it.
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Causes→ effects

The same apparent cause might produce several,different
effects

C1 C2 C3 C4

E1 E2 E3 E4

Causes

Effects

Given an observed effect, we are not sure about the exact cause
that has produced it.

E2 ⇒ {C1, C2, C3}?
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The essential problem of the experimental method

“Now, these problems are classified as probability of
causes, and are most interesting of all their scientific
applications. I play at écarté with a gentleman whom I know
to be perfectly honest. What is the chance that he turns up
the king? It is 1/8. This is a problem of the probability of
effects.
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The essential problem of the experimental method

“Now, these problems are classified as probability of
causes, and are most interesting of all their scientific
applications. I play at écarté with a gentleman whom I know
to be perfectly honest. What is the chance that he turns up
the king? It is 1/8. This is a problem of the probability of
effects.

I play with a gentleman whom I do not know. He has dealt
ten times, and he has turned the king up six times. What is
the chance that he is a sharper? This is a problem in the
probability of causes. It may be said that it is the essential
problem of the experimental method.”

(H. Poincaré – Science and Hypothesis)
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Uncertainty and probability

We, as physicists, consider absolutely natural and
meaningful statements of the following kind
◦ P (−10 < ǫ′/ǫ× 104 < 50) >> P (ǫ′/ǫ× 104 > 100)
◦ P (170 ≤ mtop/GeV ≤ 180) ≈ 70%

◦ P (MH < 200 GeV) > P (MH > 200 GeV)
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Uncertainty and probability

We, as physicists, consider absolutely natural and
meaningful statements of the following kind
◦ P (−10 < ǫ′/ǫ× 104 < 50) >> P (ǫ′/ǫ× 104 > 100)
◦ P (170 ≤ mtop/GeV ≤ 180) ≈ 70%

◦ P (MH < 200 GeV) > P (MH > 200 GeV)

. . . although, such statements are considered
blaspheme to statistics gurus

I stick to common sense (and physicists common sense)
and assume that probabilities of causes, probabilities of of
hypotheses, probabilities of the numerical values of physics
quantities, etc. are sensible concepts that match the mind
categories of human beings
(see D. Hume, C. Darwin + modern researches)
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From causes to effects and back

Our original problem:

C1 C2 C3 C4

E1 E2 E3 E4

Causes

Effects
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From causes to effects and back

Our original problem:

C1 C2 C3 C4

E1 E2 E3 E4

Causes

Effects

Our conditional view of probabilistic causation

P (Ei |Cj)
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C1 C2 C3 C4

E1 E2 E3 E4

Causes

Effects

Our conditional view of probabilistic causation

P (Ei |Cj)

Our conditional view of probabilistic inference

P (Cj |Ei)
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From causes to effects and back

Our original problem:

C1 C2 C3 C4

E1 E2 E3 E4

Causes

Effects

Our conditional view of probabilistic causation

P (Ei |Cj)

Our conditional view of probabilistic inference

P (Cj |Ei)

The fourth basic rule of probability:

P (Cj , Ei) = P (Ei |Cj)P (Cj) = P (Cj |Ei)P (Ei)
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Symmetric conditioning

Let us take basic rule 4, written in terms of hypotheses Hj and
effects Ei, and rewrite it this way:

P (Hj |Ei)

P (Hj)
=

P (Ei |Hj)

P (Ei)

“The condition on Ei changes in percentage the probability of
Hj as the probability of Ei is changed in percentage by the
condition Hj.”

G. D’Agostini, Improved (iterative) Bayesian unfolding, Hamburg 27 May 2010 – p. 8



Symmetric conditioning

Let us take basic rule 4, written in terms of hypotheses Hj and
effects Ei, and rewrite it this way:

P (Hj |Ei)

P (Hj)
=

P (Ei |Hj)

P (Ei)

“The condition on Ei changes in percentage the probability of
Hj as the probability of Ei is changed in percentage by the
condition Hj.”

It follows

P (Hj |Ei) =
P (Ei |Hj)

P (Ei)
P (Hj)
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Symmetric conditioning

Let us take basic rule 4, written in terms of hypotheses Hj and
effects Ei, and rewrite it this way:

P (Hj |Ei)

P (Hj)
=

P (Ei |Hj)

P (Ei)

“The condition on Ei changes in percentage the probability of
Hj as the probability of Ei is changed in percentage by the
condition Hj.”

It follows

P (Hj |Ei) =
P (Ei |Hj)

P (Ei)
P (Hj)

Got ‘after’ Calculated ‘before’

(where ‘before’ and ‘after’ refer to the knowledge that Ei is true.)

G. D’Agostini, Improved (iterative) Bayesian unfolding, Hamburg 27 May 2010 – p. 8



Symmetric conditioning

Let us take basic rule 4, written in terms of hypotheses Hj and
effects Ei, and rewrite it this way:

P (Hj |Ei)

P (Hj)
=

P (Ei |Hj)

P (Ei)

“The condition on Ei changes in percentage the probability of
Hj as the probability of Ei is changed in percentage by the
condition Hj.”

It follows

P (Hj |Ei) =
P (Ei |Hj)

P (Ei)
P (Hj)

”post illa observationes” “ante illa observationes”

(Gauss)
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Symmetric conditioning

Let us take basic rule 4, written in terms of hypotheses Hj and
effects Ei, and rewrite it this way:

P (Hj |Ei)

P (Hj)
=

P (Ei |Hj)

P (Ei)

“The condition on Ei changes in percentage the probability of
Hj as the probability of Ei is changed in percentage by the
condition Hj.”

It follows

P (Hj |Ei) =
P (Ei |Hj)

P (Ei)
P (Hj)

”post illa observationes” “ante illa observationes”

(Gauss)
⇒ Bayes theorem
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A different way to view fit issues

θ

µxi

xi

µyi

yi

[ for each i ]

• Determistic link µx’s to µy ’s

• Probabilistic links µx → x, µy → y

⇒ aim of fit: {x,y} → θ ⇒ f(θ | {x,y})
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Parametric inference Vs unfolding

f(θ | {x,y}):
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Parametric inference Vs unfolding

f(θ | {x,y}):
probabilistic parametric inference
⇒ it relies on the kind of functions parametrized by θ

µy = µy(µx;θ)
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Parametric inference Vs unfolding

f(θ | {x,y}):
probabilistic parametric inference
⇒ it relies on the kind of functions parametrized by θ

µy = µy(µx;θ)

⇒ data distilled into θ;

BUT sometimes we wish to interpret the data as little as possible

⇒ just public ‘something equivalent’ to an experimental
distribution, with the bin contents fluctuating according to an
underlying multinomial distribution, but having possibly got
rid of physical and instrumental distortions, as well as of
background.
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Parametric inference Vs unfolding

f(θ | {x,y}):
probabilistic parametric inference
⇒ it relies on the kind of functions parametrized by θ

µy = µy(µx;θ)

⇒ data distilled into θ;

BUT sometimes we wish to interpret the data as little as possible

⇒ just public ‘something equivalent’ to an experimental
distribution, with the bin contents fluctuating according to an
underlying multinomial distribution, but having possibly got
rid of physical and instrumental distortions, as well as of
background.

⇒ Unfolding (deconvolution)
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Why unfolding?

Te idea is to provide somethimg similar to an experimental
spectrum, with a minimal interpretation by the experimentalist, a
part from correcting from distortions due to physics and detector
effects (including background).

(The alternative would be to give a parametrized description of
the true spectrum – a fit)
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Smearing matrix→ unfolding matrix

Invert smearing matrix?

G. D’Agostini, Improved (iterative) Bayesian unfolding, Hamburg 27 May 2010 – p. 12



Smearing matrix→ unfolding matrix

Invert smearing matrix?

In general is a bad idea:
not a rotational problem
but an inferential problem!
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Smearing matrix→ unfolding matrix

Imagine S =

(

0.8 0.2

0.2 0.8

)

: → U = S−1 =

(

1.33 −0.33

−0.33 1.33

)

Let the true be st =

(

10

0

)

: → sm = S · st =

(

8

2

)

;

If we measure sm =

(

8

2

)

→ S−1 · sm =

(

10

0

)

√
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Smearing matrix→ unfolding matrix

Imagine S =

(

0.8 0.2

0.2 0.8

)

: → U = S−1 =

(

1.33 −0.33

−0.33 1.33

)

Let the true be st =

(

10

0

)

: → sm = S · st =

(

8

2

)

;

If we measure sm =

(

8

2

)

→ S−1 · sm =

(

10

0

)

√

BUT

if we had measured

(

9

1

)

→ S−1 · sm =

(

11.7

−1.7

)

if we had measured

(

10

0

)

→ S−1 · sm =

(

13.3

−3.3

)
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Smearing matrix→ unfolding matrix

Imagine S =

(

0.8 0.2

0.2 0.8

)

: → U = S−1 =

(

1.33 −0.33

−0.33 1.33

)

Let the true be st =

(

10

0

)

: → sm = S · st =

(

8

2

)

;

If we measure sm =

(

8

2

)

→ S−1 · sm =

(

10

0

)

√

Indeed, matrix inversion is recognized to producing ‘crazy
spectra’ and even negative values (unless such large
numbers in bins such fluctuations around expectations are
negligeable)
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Discretized unfolding

C1 C2 Ci CnC

E1 E2 Ej EnE T
(T : ‘trash’)
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Discretized unfolding

C1 C2 Ci CnC

E1 E2 Ej EnE T
(T : ‘trash’)

xC : true spectrum (nr of events in cause bins)

xE : observed spectrum (nr of events in effect bins)
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Discretized unfolding

C1 C2 Ci CnC

E1 E2 Ej EnE T
(T : ‘trash’)

xC : true spectrum (nr of events in cause bins)

xE : observed spectrum (nr of events in effect bins)

Our aim:
• not to find the true spectrum
• but, more modestly, rank in beliefs all possible spectra that

might have caused the observed one:
⇒ P (xC |xE , I)
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Discretized unfolding

C1 C2 Ci CnC

E1 E2 Ej EnE T
(T : ‘trash’)

• P (xC |xE , I) depends on the knowledge of smearing matrix Λ,
with λji ≡ P (Ej |Ci, I).
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Discretized unfolding
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E1 E2 Ej EnE T
(T : ‘trash’)

• P (xC |xE , I) depends on the knowledge of smearing matrix Λ,
with λji ≡ P (Ej |Ci, I).

• but Λ is itself uncertain, because inferred from MC
simulation:

⇒f(Λ | I)
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Discretized unfolding
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E1 E2 Ej EnE T
(T : ‘trash’)

• P (xC |xE , I) depends on the knowledge of smearing matrix Λ,
with λji ≡ P (Ej |Ci, I).

• but Λ is itself uncertain, because inferred from MC
simulation:

⇒f(Λ | I)

• for each possible Λ we have a pdf of spectra:
→ P (xC |xE ,Λ, I)
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Discretized unfolding

C1 C2 Ci CnC

E1 E2 Ej EnE T
(T : ‘trash’)

• P (xC |xE , I) depends on the knowledge of smearing matrix Λ,
with λji ≡ P (Ej |Ci, I).

• but Λ is itself uncertain, because inferred from MC
simulation:

⇒f(Λ | I)

• for each possible Λ we have a pdf of spectra:
→ P (xC |xE ,Λ, I)

⇒ P (xC |xE , I) =
∫

P (xC |xE,Λ, I) f(Λ | I) dΛ [by MC!]
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Discretized unfolding

C1 C2 Ci CnC

E1 E2 Ej EnE T
(T : ‘trash’)

• Bayes theorem:

P (xC |xE , Λ, I) ∝ P (xE |xC , Λ, I) · P (xC | I) .
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Discretized unfolding

C1 C2 Ci CnC

E1 E2 Ej EnE T
(T : ‘trash’)

• Bayes theorem:

P (xC |xE , Λ, I) ∝ P (xE |xC , Λ, I) · P (xC | I) .

• Indifference w.r.t. all possible spectra

P (xC |xE , Λ, I) ∝ P (xE |xC , Λ, I)
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P (xE |xCi
, Λ, I)

C1 C2 Ci CnC

E1 E2 Ej EnE T

Given a certain number of events in a cause-bin x(Ci), the
number of events in the effect-bins, included the ‘trash’ one, is
described by a multinomial distribution:

xE |x(Ci)
∼ Mult[x(Ci),λi] ,

with

λi = {λ1,i, λ2,i, . . . , λnE+1,i}
= {P (E1 |Ci, I), P (E2 |Ci, I), . . . , P (EnE+1,i |Ci, I)}
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P (xE |xC , Λ, I)

C1 C2 Ci CnC

E1 E2 Ej EnE T

xE |x(Ci)
multinomial random vector,

⇒ xE|x(C) sum of several multinomials.
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P (xE |xC , Λ, I)

C1 C2 Ci CnC

E1 E2 Ej EnE T

xE |x(Ci)
multinomial random vector,

⇒ xE|x(C) sum of several multinomials.
BUT

no ‘easy’ expression for P (xE |xC ,Λ, I)
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P (xE |xC , Λ, I)

C1 C2 Ci CnC

E1 E2 Ej EnE T

xE |x(Ci)
multinomial random vector,

⇒ xE|x(C) sum of several multinomials.
BUT

no ‘easy’ expression for P (xE |xC ,Λ, I)

⇒ STUCK!
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P (xE |xC , Λ, I)

C1 C2 Ci CnC

E1 E2 Ej EnE T

xE |x(Ci)
multinomial random vector,

⇒ xE|x(C) sum of several multinomials.
BUT

no ‘easy’ expression for P (xE |xC ,Λ, I)

⇒ STUCK!
⇒ Change strategy

G. D’Agostini, Improved (iterative) Bayesian unfolding, Hamburg 27 May 2010 – p. 15



The rescue trick

Instead of using the original probability inversion
(applied directly) to spectra

P (xC |xE , Λ, I) ∝ P (xE |xC , Λ, I) · P (xC | I) ,

we restart from

P (Ci |Ej , I) ∝ P (Ej |Ci, I) · P (Ci | I).
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The rescue trick

Instead of using the original probability inversion
(applied directly) to spectra

P (xC |xE , Λ, I) ∝ P (xE |xC , Λ, I) · P (xC | I) ,

we restart from

P (Ci |Ej , I) ∝ P (Ej |Ci, I) · P (Ci | I).

Consequences:

1. the sharing of observed events among the cause bins
needs to be performed ‘by hand’;
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The rescue trick

Instead of using the original probability inversion
(applied directly) to spectra

P (xC |xE , Λ, I) ∝ P (xE |xC , Λ, I) · P (xC | I) ,

we restart from

P (Ci |Ej , I) ∝ P (Ej |Ci, I) · P (Ci | I).

Consequences:

1. the sharing of observed events among the cause bins
needs to be performed ‘by hand’;

2. a uniform prior P (Ci | I) = k does not mean indifference
over all possible spectra.
⇒ P (Ci | I) = k is a well precise spectrum

(in most cases far from the physical one)
⇒ VERY STRONG prior that biases the result!
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The rescue trick

Instead of using the original probability inversion
(applied directly) to spectra

P (xC |xE , Λ, I) ∝ P (xE |xC , Λ, I) · P (xC | I) ,

we restart from

P (Ci |Ej , I) ∝ P (Ej |Ci, I) · P (Ci | I).

Consequences:

1. the sharing of observed events among the cause bins
needs to be performed ‘by hand’;

2. a uniform prior P (Ci | I) = k does not mean indifference
over all possible spectra.
⇒ P (Ci | I) = k is a well precise spectrum

(in most cases far from the physical one)
⇒ VERY STRONG prior that biases the result! → iterations
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Old algorithm

1. [∗] λij estimated by MC simulation as

λji ≈ x(Ej)
MC/x(Ci)

MC ;

G. D’Agostini, Improved (iterative) Bayesian unfolding, Hamburg 27 May 2010 – p. 17



Old algorithm

1. [∗] λij estimated by MC simulation as

λji ≈ x(Ej)
MC/x(Ci)

MC ;

2. P (Ci |Ej , I) from Bayes theorem; [θij ≡ P (Ci |Ej , I)]

P (Ci |Ej , I) =
P (Ej |Ci, I) · P (Ci | I)
∑

i P (Ej |Ci, I) · P (Ci | I)
,

or

θij =
λji · P (Ci | I)
∑

i λji · P (Ci | I)
,
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Old algorithm

1. [∗] λij estimated by MC simulation as

λji ≈ x(Ej)
MC/x(Ci)

MC ;

2. P (Ci |Ej , I) from Bayes theorem; [θij ≡ P (Ci |Ej , I)]

3. [∗] Assignement of events to cause bins:

x(Ci)|x(Ej)
≈ P (Ci |Ej , I) · x(Ej)

x(Ci)|xE
≈

nE
∑

j=1

P (Ci |Ej , I) · x(Ej)

x(Ci) ≈
1

ǫi

x(Ci)|xE
,

with ǫi =
∑nE

j=1 P (Ej |Ci, I)
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Old algorithm

1. [∗] λij estimated by MC simulation as

λji ≈ x(Ej)
MC/x(Ci)

MC ;

2. P (Ci |Ej , I) from Bayes theorem; [θij ≡ P (Ci |Ej , I)]

3. [∗] Assignement of events to cause bins:

x(Ci)|x(Ej)
≈ P (Ci |Ej , I) · x(Ej)

x(Ci)|xE
≈

nE
∑

j=1

P (Ci |Ej , I) · x(Ej)

x(Ci) ≈
1

ǫi

x(Ci)|xE
,

with ǫi =
∑nE

j=1 P (Ej |Ci, I)

4. [∗] Uncertainty by ‘standard error propagation’
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Improvements

1. λi: having each element λji the meaning of “pj” of a
Multinomial distribution, their distribution can easily (and
conveniently and realistically) modelled by a Dirichlet:

λi ∼ Dir[αprior + xMC
E

∣

∣

x(Ci)MC ] ,

(The Dirichlet is the prior conjugate of the Multinomial)
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Improvements

1. λi:
λi ∼ Dir[αprior + xMC

E

∣

∣

x(Ci)MC ] ,

2. uncertainty on λi:
taken into account by sampling ⇒ equivalent to integration

⇒ P (xC |xE , I) =

∫

P (xC |xE ,Λ, I) f(Λ | I) dΛ
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Improvements

1. λi:
λi ∼ Dir[αprior + xMC

E

∣

∣

x(Ci)MC ] ,

2. uncertainty on λi:
taken into account by sampling

3. sharing xEj
→ xC : done by a Multinomial:

xC |x(Ej)
∼ Mult[x(Ej), θj ] ,
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Improvements

1. λi:
λi ∼ Dir[αprior + xMC

E

∣

∣

x(Ci)MC ] ,

2. uncertainty on λi:
taken into account by sampling

3. sharing xEj
→ xC : done by a Multinomial:

xC |x(Ej)
∼ Mult[x(Ej), θj ] ,

4. x(Ej)→ µj: what needs to be shared is not the observed
number x(Ej), but rather the estimated true value µj :
remember x(Ej) ∼ Poisson[µj ]

µj ∼ Gamma[cj + x(Ej), rj + 1] ,

(Gamma is prior conjugate of Poisson)
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Improvements

1. λi:
λi ∼ Dir[αprior + xMC

E

∣

∣

x(Ci)MC ] ,

2. uncertainty on λi:
taken into account by sampling

3. sharing xEj
→ xC : done by a Multinomial:

xC |x(Ej)
∼ Mult[x(Ej), θj ] ,

4. x(Ej)→ µj:

µj ∼ Gamma[cj + x(Ej), rj + 1] ,

BUT µi is real, while the the number of event parameter of
a multinomial must be integer⇒ solved with interpolation

5. uncertainty on µi: taken into account by sampling
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Iteration and (intermediate) smoothing

instead of using a flat prior over the possible spectra
we are using a particular (flat) spectrum as prior
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Iteration and (intermediate) smoothing

instead of using a flat prior over the possible spectra
we are using a particular (flat) spectrum as prior

⇒ the posterior [i.e. the ensemble of x
(t)
C obtained by sampling]

is affected by this quite strong assumption, that seldom holds in
real cases.
⇒ problem worked around by ITERATIONS

⇒ posterior becomes prior of next iteration

⇒Usque tandem?
• Empirical approach (with help of simulation):
◦ ‘True spectrum’ recovered in a couple of steps
◦ Then the solution starts to diverge towards a wildy

oscillating spectrum (any unavoidable fluctuation is
believed more and more. . . )
⇒ find empirically an optimum
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is affected by this quite strong assumption, that seldom holds in
real cases.
⇒ problem worked around by ITERATIONS

⇒ posterior becomes prior of next iteration

⇒Usque tandem?
• regularization (a subject by itself)

my preferred approach
◦ regularize the posterior before using as next prior
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Iteration and (intermediate) smoothing

instead of using a flat prior over the possible spectra
we are using a particular (flat) spectrum as prior

⇒ the posterior [i.e. the ensemble of x
(t)
C obtained by sampling]

is affected by this quite strong assumption, that seldom holds in
real cases.
⇒ problem worked around by ITERATIONS

⇒ posterior becomes prior of next iteration

⇒Usque tandem?
• regularization (a subject by itself)

my preferred approach
◦ regularize the posterior before using as next prior
◦ intermediate smoothing⇒ we belief physics is ‘smooth’
◦ . . . but ‘irregularities’ of the data are not washed out

(⇒ unfolding Vs parametric inference)
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Iteration and (intermediate) smoothing

instead of using a flat prior over the possible spectra
we are using a particular (flat) spectrum as prior

⇒ the posterior [i.e. the ensemble of x
(t)
C obtained by sampling]

is affected by this quite strong assumption, that seldom holds in
real cases.
⇒ problem worked around by ITERATIONS

⇒ posterior becomes prior of next iteration

⇒Usque tandem?
• regularization (a subject by itself)

my preferred approach
◦ regularize the posterior before using as next prior
⇒ Good compromize and good results
⇒ Very ‘Bayesian’
⇒ No oscillations for nsteps →∞
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Examples

smearing matrix (from 1995 NIM paper)

quite bad! (real cases are usually more gentle)
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Examples

smearing matrix (from 1995 NIM paper)

quite bad! (real cases are usually more gentle)

⇒ watch DEMO
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Conclusions

• left to users
1. “non chiedere all’oste com’è il vino”. . .
2. if I knew how (and was able) to do it better,

I had already done it. . .
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Conclusions

• left to users
1. “non chiedere all’oste com’è il vino”. . .
2. if I knew how (and was able) to do it better,

I had already done it. . .
• still quite used because of simplicity of reasoning and code
• new version improves
◦ evaluation of uncertainties
◦ handling of small numbers

→ Some notes follow =⇒
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Notes added

1. “iterative” put within parentheses in title
(motivated by Zech’ classification of methods)
(a) the spirit of the method is Bayesian
(b) the iteration issue is secondary
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Notes added

1. “iterative” put within parentheses in title

2. An interesting book:
(thanks to Blobel)
• J. Kaipio and E. Somersalo

Statistical and Computational Inverse Problems
Springer, 2004
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Notes added

1. “iterative” put within parentheses in title

2. An interesting book:

3. Uncertainty due the possible choice among several
smearing models, Λ1, Λ2, etc.
(triggered by Marisa Sandhoff’s talk)
• the θi sampling can be done at random form either

matrix,
with weights depending on our beliefs in the different
unfolding models
(obviously not yet implemented in the R code, and I am
not sure I will do it, but it can be implemented in C/C++
versions)
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Notes added

1. “iterative” put within parentheses in title

2. An interesting book:

3. Uncertainty due the possible choice among several
smearing models, Λ1, Λ2, etc.

4. Extending an “anonymous” citation
(Blobel’s talk)

“. . . it gives the best results (in terms of its ability to
reproduce the true distribution) if one make a realistic
guess about the distribution that the true values
follow. . .
but, in case of total ignorance, satisfactory results are
obtained even starting from a uniform distribution;”

GdA, NIM A362 (1995) 487
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Notes added

1. “iterative” put within parentheses in title

2. An interesting book:

3. Uncertainty due the possible choice among several
smearing models, Λ1, Λ2, etc.

4. Extending an “anonymous” citation
(Blobel’s talk)

“. . . it gives the best results (in terms of its ability to
reproduce the true distribution) if one make a realistic
guess about the distribution that the true values
follow. . .
but, in case of total ignorance, satisfactory results are
obtained even starting from a uniform distribution;”

GdA, NIM A362 (1995) 487

⇒ just a honest statement: what is wrong with it?
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Notes added

1. “iterative” put within parentheses in title

2. An interesting book:

3. Uncertainty due the possible choice among several
smearing models, Λ1, Λ2, etc.

4. Extending an “anonymous” citation

Buon divertimento!
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