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Subject of the talk
‘Observed’ spectra are often distorted for ‘the reasons we know’

Our aim
◮ from the observed one try to get what we could have got

with an ideal detector

But, obviously, not this cyan histogram from this magenta one!

⇒ We have to deal with uncertainty and probability
© GdA, Roma 26/02/24, 2/69



Although other ‘methods’ might be more fashionable

© GdA, Roma 26/02/24, 3/69



Although other ‘methods’ might be more fashionable

[ Plus other prescriptions you might imagine. . . ]
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Let’s start
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What is measurement?

© GdA, Roma 26/02/24, 5/69



What is measurement?

© GdA, Roma 26/02/24, 5/69



What is measurement?

© GdA, Roma 26/02/24, 5/69



What is measurement?

© GdA, Roma 26/02/24, 5/69



What is measurement?

Higgs → γγ (2012)

Two-photon invariant mass
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What is measurement?

ATLAS Experiment at LHC (CERN, Geneva)
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What is measurement?

ATLAS Experiment at LHC [ length: 46m; � 25m ]

≈ 3000 km cables

≈ 7000 tonnes ≈ 100millions electronic channels
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What is measurement?

Two flashes of ‘light’ (2 γ’s) in a ‘noisy’ environment.
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What is measurement?
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What is measurement?

Two flashes of ‘light’ (2 γ’s) in a ‘noisy’ environment.
Higgs → γγ? Probably not. . .
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What is measurement?

Higgs → γγ

⇒
{

Mass value
Production rate
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What is measurement?

Higgs → γγ

⇒
{

Mass value
Production rate
(with uncertainties)

Quite indirect measurements of something we do not “see”!
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Can we “see” physics quantities?

But, can we see our mass?
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Can we “see” physics quantities?

. . . or a voltage?
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Can we “see” physics quantities?

. . . or our blood pressure?
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Can we “see” physics quantities?

Certainly not!
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Can we “see” physics quantities?

Certainly not!

. . . although for some quantities we can have

a ‘vivid impression’ (in the David Hume’s sense)
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Measuring a mass on a scale

Equilibrium (‘physical principle of the measurement’):

mg − k∆x = 0

∆x → θ → scale reading

(with ‘g ’ gravitational acceleration; ‘k’ spring constant.)
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Measuring a mass on a scale

Equilibrium (‘physical principle of the measurement’):

mg − k∆x = 0

∆x → θ → scale reading

(with ‘g ’ gravitational acceleration; ‘k’ spring constant.)

From the reading to the value of the mass:

scale reading −−−−−−−−−−−−−−−−→
given g, k, “etc.”. . .

m
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Dependence on ‘g ’: g
?
=

GM♁

R2
♁
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◮ Position is usually not at “R♁” from the Earth center;

◮ Earth not spherical. . .
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◮ . . . and not even homogeneous.

◮ Moreover we have to consider centrifugal effects
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Measuring a mass on a balance

scale reading −−−−−−−−−−−−−−−−→
given g, k, “etc.”. . .

m

Dependence on ‘g ’: g
?
=

GM♁

R2
♁

◮ Position is usually not at “R♁” from the Earth center;

◮ Earth not spherical. . .

◮ . . . not even ellipsoidal. . .

◮ . . . and not even homogeneous.

◮ Moreover we have to consider centrifugal effects

◮ . . . and even the effect from the Moon

Certainly not to watch our weight
But think about it!
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Measuring a mass on a balance

scale reading −−−−−−−−−−−−−−−−→
given g, k, “etc.”. . .

m

Dependence on ‘k’:

◮ temperature

◮ non linearity

◮ . . .
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Measuring a mass on a balance

scale reading −−−−−−−−−−−−−−−−→
given g, k, “etc.”. . .

m

Dependence on ‘k’:

◮ temperature

◮ non linearity

◮ . . .

∆x → θ → scale reading:

◮ left to your imagination. . .

+ randomic effects:

◮ stopping position of damped oscillation;

◮ variability of all quantities of influence (in the ISO-GUM
sense);

◮ reading of analog scale.
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Measuring a mass on a balance

scale reading −−−−−−−−−−−−−−−−→
given g, k, “etc.”. . .

m

Dependence on ‘k’:

◮ temperature

◮ non linearity

◮ . . .

∆x → θ → scale reading:

◮ left to your imagination. . .

+ randomic effects:

◮ stopping position of damped oscillation;

◮ variability of all quantities of influence (in the ISO-GUM
sense);

◮ reading of analog scale.
⇒ m ??
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Mass −→ Reading

mass

reading
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mass
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?
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Reading −→ ‘true’ mass

mass

reading

Measurement is nothing but

inferring a model parameter
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Physical world ↔ Science (from Latin ‘scio’ – to know)

An Einstein’s quote (from his Autobiography) might help:

“Physical concepts are free creations of the human mind,
and are not, however it may seem,
uniquely determined by the external world”
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Physical world ↔ Science (from Latin ‘scio’ – to know)

An Einstein’s quote (from his Autobiography) might help:

“Physical concepts are free creations of the human mind,
and are not, however it may seem,
uniquely determined by the external world”

And, again there, referring to his revolutianary ideas:

“The type of critical reasoning which was required for the
discovery of this central point was decisively furthered, in
my case, especially by the reading of David Hume’s and
Ernst Mach’s philosophical writings”
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Data −→ value of a physical quantity (‘true value’)

mass

reading

M
o
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The observed ‘data’ is certain:
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The observed ‘data’ is certain: → ‘true value’ uncertain
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Data −→ value of a physical quantity (‘true value’)
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reading

M
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The observed ‘data’ is certain: → ‘true value’ uncertain
“Data uncertainty”? ??? Data corrupted?
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Data −→ value of a physical quantity (‘true value’)

mass

reading

M
o
d
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The observed ‘data’ is certain: → ‘true value’ uncertain
“Data uncertainty”? ??? Data corrupted? Even if the data were
corrupted, the data were the corrupted data!! . . .
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Data −→ value of a physical quantity (‘true value’)

mass

reading

M
o
d
e
l

?

The observed ‘data’ is certain: → ‘true value’ uncertain
“Data uncertainty”? ??? Data corrupted? Even if the data were
corrupted, the data were the corrupted data!! . . .
[ Unless we are talking of ‘future data’ or of ‘somebody else data’ . . . ]
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Observation → value of a quantity

scale reading −−−−−−−−−−−−−−−−→
given g, k, “etc.”. . .

m
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⇒ (A reading, without proper contextualization, is . . . just a number)
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Observation → value of a quantity

scale reading −−−−−−−−−−−−−−−−→
given g, k, “etc.”. . .

m

⇒ Measurement is not simply ‘reading’ a value on an instrument
⇒ (A reading, without proper contextualization, is . . . just a number)

Mistrust the

“dogma of the Immaculate Observation”!
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Observations → hypotheses

This problem occurs not only “determining”
the value of a physical quantity.
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Observations → hypotheses

This problem occurs not only “determining”
the value of a physical quantity.

◮ Experimental observation (‘data’) → responsible cause.

(But logically no substantial difference.)
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Causes → effects

The same apparent cause might produce several,different effects

C1 C2 C3 C4

E1 E2 E3 E4

Causes

Effects

Given an observed effect, we are not sure about the exact cause
that has produced it.
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Causes → effects

The same apparent cause might produce several,different effects

C1 C2 C3 C4

E1 E2 E3 E4

Causes

Effects

Given an observed effect, we are not sure about the exact cause
that has produced it.

E2 ⇒ {C1, C2, C3}?

© GdA, Roma 26/02/24, 17/69



The “essential problem” of the Sciences

“Now, these problems are classified as probability of causes,
and are most interesting of all for their scientific applications.
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probability of causes. It may be said that it is the essential
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The “essential problem” of the Sciences

“Now, these problems are classified as probability of causes,
and are most interesting of all for their scientific applications.
I play at écarté with a gentleman whom I know to be perfectly
honest. What is the chance that he turns up the king? It is
1/8. This is a problem of the probability of effects.

I play with a gentleman whom I do not know. He has dealt
ten times, and he has turned the king up six times. What is
the chance that he is a sharper? This is a problem in the
probability of causes. It may be said that it is the essential
problem of the experimental method.”

(H. Poincaré – Science and Hypothesis)

Why we (or most of us) have not been taught
how to tackle this kind of problems?
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Basic rules of probability
√

1. 0 ≤ P(A | I ) ≤ 1

2. P(Ω | I ) = 1

3. P(A ∪ B | I ) = P(A | I ) + P(B | I ) [ if P(A ∩ B | I ) = ∅ ]

4. P(A ∩ B | I ) = P(A |B , I ) · P(B | I ) = P(B |A, I ) · P(A | I )

Remember that probability is always conditional probability!

I is the background condition (related to information ‘I ′s)

→ usually implicit (we only care about ‘re-conditioning’)
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Basic rules of probability
√

1. 0 ≤ P(A | I ) ≤ 1

2. P(Ω | I ) = 1

3. P(A ∪ B | I ) = P(A | I ) + P(B | I ) [ if P(A ∩ B | I ) = ∅ ]

4. P(A ∩ B | I ) = P(A |B , I ) · P(B | I ) = P(B |A, I ) · P(A | I )

Remember that probability is always conditional probability!

I is the background condition (related to information ‘I ′s)

→ usually implicit (we only care about ‘re-conditioning’)

Note: 4. does not define conditional probability.
(Probability is always conditional probability!)

⇒ easily extended to uncertain numbers (‘random variables’)

© GdA, Roma 26/02/24, 19/69



Subjective nature of probability

“Since the knowledge may be different with different persons
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Subjective nature of probability

“Since the knowledge may be different with different persons
or with the same person at different times, they may anticipate
the same event with more or less confidence, and thus different
numerical probabilities may be attached to the same event”

(Schrödinger, 1947)

Probability depends on
the status of information of the subject

who evaluates it.

© GdA, Roma 26/02/24, 20/69
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Probability is always conditional probability

“Thus whenever we speak loosely of ‘the probability of an
event’, it is always to be understood: probability with regard
to a certain given state of knowledge”
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Probability is always conditional probability

“Thus whenever we speak loosely of ‘the probability of an
event’, it is always to be understood: probability with regard
to a certain given state of knowledge”

(Schrödinger, 1947)

P(E ) −→ P(E | Is(t))
where Is(t) is the information available to subject s at time t.

© GdA, Roma 26/02/24, 22/69



Mathematics of beliefs

An even better news:

The fourth basic rule
can be fully exploited!
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Mathematics of beliefs

An even better news:

The fourth basic rule
can be fully exploited!

(Liberated by a curious ideology that forbids its use)
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A simple, powerful formula

P(A |B | I )P(B | I ) = P(B |A, I )P(A | I )
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A simple, powerful formula

Take the courage to use it!
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A simple, powerful formula

It’s easy if you try. . . !
© GdA, Roma 26/02/24, 24/69



Laplace’s “Bayes Theorem”

“The greater the probability of an observed event given any one of
a number of causes to which that event may be attributed, the
greater the likelihood of that cause {given that event}.

P(Ci |E ) ∝ P(E |Ci )
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Laplace’s “Bayes Theorem”

“The greater the probability of an observed event given any one of
a number of causes to which that event may be attributed, the
greater the likelihood of that cause {given that event}. The
probability of the existence of any one of these causes {given the
event} is thus a fraction whose numerator is the probability of the
event given the cause, and whose denominator is the sum of
similar probabilities, summed over all causes.

P(Ci |E ) =
P(E |Ci )

∑

j P(E |Cj)
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probability of the existence of any one of these causes {given the
event} is thus a fraction whose numerator is the probability of the
event given the cause, and whose denominator is the sum of
similar probabilities, summed over all causes. If the various causes
are not equally probable a priory, it is necessary, instead of the
probability of the event given each cause, to use the product of
this probability and the possibility of the cause itself.”

P(Ci |E ) =
P(E |Ci )P(Ci )

∑

j P(E |Cj)P(Cj)

© GdA, Roma 26/02/24, 25/69



Laplace’s “Bayes Theorem”
“The greater the probability of an observed event given any one of
a number of causes to which that event may be attributed, the
greater the likelihood of that cause {given that event}. The
probability of the existence of any one of these causes {given the
event} is thus a fraction whose numerator is the probability of the
event given the cause, and whose denominator is the sum of
similar probabilities, summed over all causes. If the various causes
are not equally probable a priory, it is necessary, instead of the
probability of the event given each cause, to use the product of
this probability and the possibility of the cause itself.”

P(Ci |E ) =
P(E |Ci )P(Ci )

P(E )

(Philosophical Essai on Probabilities)

[ In general P(E ) =
∑

j P(E |Cj)P(Cj) (weighted average, with
weigths being the probabilities of the conditions) if Cj form a
complete class of hypotheses ]
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Laplace’s “Bayes Theorem”

P(Ci |E ) =
P(E |Ci )P(Ci )

P(E )
=

P(E |Ci )P(Ci )
∑

j P(E |Cj)P(Cj)

“This is the fundamental principle (∗) of that branch of
the analysis of chance that consists of reasoning a
posteriori from events to causes”

(*) In his “Philosophical essay” Laplace calls ‘principles’ the ‘fundamental

rules’.
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=

P(E |Ci )P(Ci )
∑

j P(E |Cj)P(Cj)

“This is the fundamental principle (∗) of that branch of
the analysis of chance that consists of reasoning a
posteriori from events to causes”

(*) In his “Philosophical essay” Laplace calls ‘principles’ the ‘fundamental

rules’.

Note: denominator is just a normalization factor.

⇒ P(Ci |E ) ∝ P(E |Ci )P(Ci )
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Laplace’s “Bayes Theorem”

P(Ci |E ) =
P(E |Ci )P(Ci )

P(E )
=

P(E |Ci )P(Ci )
∑

j P(E |Cj)P(Cj)

“This is the fundamental principle (∗) of that branch of
the analysis of chance that consists of reasoning a
posteriori from events to causes”

(*) In his “Philosophical essay” Laplace calls ‘principles’ the ‘fundamental

rules’.

Note: denominator is just a normalization factor.

⇒ P(Ci |E ) ∝ P(E |Ci )P(Ci )

Most convenient way to remember Bayes theorem
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Telling it with Gauss’ words

A quote from the Princeps Mathematicorum
(Prince of Mathematicians) is a must.
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Telling it with Gauss’ words

A quote from the Princeps Mathematicorum
(Prince of Mathematicians) is a must.

P(Ci | data) =
P(data |Ci )

P(data)
P0(Ci )

”post illa observationes” “ante illa observationes”

(Gauss)

Arguments used to derive ’his’ error function

1. f (µ | {x}) ∝ f ({x} |µ) · f0(µ)
2. f0(µ) ‘flat’: all values ‘a priori’ equally possible

(“... aeque probabilia fuisse”)

3. posterior maximized at µ = x
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Telling it with Gauss’ words
A quote from the Princeps Mathematicorum
(Prince of Mathematicians) is a must.

P(Ci | data) =
P(data |Ci )

P(data)
P0(Ci )

”post illa observationes” “ante illa observationes”

(Gauss)

Arguments used to derive ’his’ error function

1. f (µ | {x}) ∝ f ({x} |µ) · f0(µ)
2. f0(µ) ‘flat’: all values ‘a priori’ equally possible

(“... aeque probabilia fuisse”)
3. posterior maximized at µ = x

Indeed Gauss had clear ideas about the role of the priors and also
of the fact the, strictly speaking, the ‘Gaussian’ “cannot express
the probability of the errors” (!!) [cfr e.g. arXiv:2003.10878]
(“All models are wrong. . . ”)
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Personal recollections

(Thanks for patience and compassion. . . )
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First impact with a new, simple but intriguing ‘theorem’
◮ Until March 1993 I had not even heard about Bayes theorem

(as most/’all’ colleagues. . . )
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⇒ intrigued by the Bayes’ theorem
⇒ (indeed so simple that in my opinion it hardly deserved
⇒ the name of ‘theorem’)

◮ Months of work followed (March-June):
◮ theorem extended to continuous variables;
◮ inference of binomial p (reproducing Laplace results),

of Poisson λ and of Gaussian µ;
◮ + combining measurements, handling systematics,

and much more.
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⇒ the name of ‘theorem’)

◮ Months of work followed (March-June):
◮ theorem extended to continuous variables;
◮ inference of binomial p (reproducing Laplace results),(∗)

of Poisson λ and of Gaussian µ;
◮ + combining measurements, handling systematics,

and much more.

[(∗)I was a bit disapponted, but glad to be with such a good company. . . ]
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First impact with a new, simple but intriguing ‘theorem’
◮ Until March 1993 I had not even heard about Bayes theorem

(as most/’all’ colleagues. . . )
◮ In March 1993 I started teaching a course of ‘Physics

Laboratory’ for Chemestry students (2nd semester, 2nd year)
◮ just teaching what I had learned as student;
◮ ok, as far as laboratory experiences were concerned;
◮ deep crisis at the moment of introducing probability → see ;

◮ no web → went to libraries → Renzo Orsi’s book :
⇒ intrigued by the Bayes’ theorem
⇒ (indeed so simple that in my opinion it hardly deserved
⇒ the name of ‘theorem’)

◮ Months of work followed (March-June):
◮ theorem extended to continuous variables;
◮ inference of binomial p (reproducing Laplace results),(∗)

of Poisson λ and of Gaussian µ;
◮ + combining measurements, handling systematics,

and much more.

[(∗)I was a bit disapponted, but glad to be with such a good company. . . ]

◮ Astonished by how sensible the results were!
◮ Later I discovered the Bayesian world.
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Why the unfolding? The Physics case

◮ At that time I was working in the ZEUS experiment
at the e-p collider HERA in Hamburg.
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◮ Measuring the DIS quantities x and Q2 was challenging in

some physical regions, expecially when charged currents
were involved, i.e. with νe in the final state.

© GdA, Roma 26/02/24, 30/69



Why the unfolding? The Physics case

◮ At that time I was working in the ZEUS experiment
at the e-p collider HERA in Hamburg.
◮ Measuring the DIS quantities x and Q2 was challenging in

some physical regions, expecially when charged currents
were involved, i.e. with νe in the final state.

→ Not simply Gaussian ‘smearing’
of the reconstructed quantities wrt the physical ones

© GdA, Roma 26/02/24, 30/69



Why the unfolding? The Physics case

◮ At that time I was working in the ZEUS experiment
at the e-p collider HERA in Hamburg.
◮ Measuring the DIS quantities x and Q2 was challenging in

some physical regions, expecially when charged currents
were involved, i.e. with νe in the final state.

→ Not simply Gaussian ‘smearing’
of the reconstructed quantities wrt the physical ones

⇒ Short reminder
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HERA Physics

Main physics goal: proton structure (+. . . ..., including searches)
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Deep inelastic scattering at HERA

[OVERSIMPLIFIED(∗) diagram, from CERN Courier, 2015/08]

(∗)A shame: it confirms my adversion to popularization of Science
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A proton is a complicated ‘structured’ dynamical object. . .
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A proton is a complicated ‘structured’ dynamical object. . .

Anyway. . .
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Neutral current: electron in the final state
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Neutral current: electron in the final state

◮ electron in the final state (+ hadronic jet from scattered q);
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Neutral current: electron in the final state

◮ electron in the final state (+ hadronic jet from scattered q);

◮ kinematical quantities x and Q2 ‘easily’ measured
(in principle . . . ).

© GdA, Roma 26/02/24, 34/69



Neutral current: electron in the final state

VERY HARD scattering (rare event)
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Charged current: neutrino ‘in the final state’

© GdA, Roma 26/02/24, 36/69



Charged current: neutrino ‘in the final state’

◮ final state neutrino not directly observable;
◮ x and Q2 have to be measured only from (‘current’) jet

hadrons. . .
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Charged current: neutrino ‘in the final state’

◮ final state neutrino not directly observable;
◮ x and Q2 have to be measured only from (‘current’) jet

hadrons. . .
◮ . . . many of which are lost in the beam pipe,

depending on x and Q2.
◮ Measurement of x and Q2 becomes challenging!!
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Charged current: neutrino ‘in the final state’

VERY HARD scattering (rare event)
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Why the unfolding? The Physics case

◮ At that time I was working in the ZEUS experiment
at the e-p collider HERA in Hamburg.
◮ Measuring the DIS quantities x and Q2 was challenging in

some physical regions, expecially when charged currents
were involved, i.e. with νe in the final state.

→ Not simply Gaussian ‘smearing’
of the reconstructed quantities wrt the physical ones

How to go back
from reconstructed quantities

to physical quantities?
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Why the unfolding? The Physics case

◮ At that time I was working in the ZEUS experiment
at the e-p collider HERA in Hamburg.
◮ Measuring the DIS quantities x and Q2 was challenging in

some physical regions, expecially when charged currents
were involved, i.e. with νe in the final state.

→ Not simply Gaussian ‘smearing’
of the reconstructed quantities wrt the physical ones

How to go back
from reconstructed quantities

to physical quantities?

Note: 2D smearing: → 2D unfolding!
Note: 2D smearing: → Multidimensional unfolding
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The basic idea — 1D for clarity
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The basic idea — 1D for clarity
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Causes-effects diagram
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Causes-effects diagram

◮ ‘Cause bin’ Ci → ‘Effect bin’ Ej
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◮ The Ci can be defined in any space:
⇒ multidimensional
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Causes-effects diagram

◮ ‘Cause bin’ Ci → ‘Effect bin’ Ej

◮ The Ci can be defined in any space:
⇒ multidimensional

◮ Inefficiencies are described by adding to the effect cells
a Trash cell (it will be clearer in a while)
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Causes-effects diagram

◮ Background can also be naturally included,
by just adding an extra cause bin:
◮ obviously we have to ‘know’ (by MC) how it will contribute

(see figure in the previous slide)
◮ also several sources of background can be included.
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Sharing the observed events: 1. evaluate P(Ci |Ej)
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Sharing the observed events: 2. evaluate n(Ej) → n(Ci)
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Sharing the observed events: 2. evaluate n(Ej) → n(Ci)

. . . also taking into account the inefficiencies

. . . (events which went to ‘Trash’)
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Continuing with the recollections
At this point you might have several doubts and questions (e.g.
about priors) → Please wait a while.
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◮ First Fortran version written a Saturday afternoon in

Hamburg
◮ ‘Obviously’, just to start, a ‘flat prior’ on P0(Ci ) was used
◮ . . . but the code worked immediately almost too well

(contrary to what usually happens, when we write a piece of
code and then we spend some time to debug it, the problem
was to understand why it was working so good!)

◮ Playing with simulated events, the unfolded spectrum was
between the prior and the ‘true distribution’ (of MC events):
→ iterations, just as a pragmatic solution (please wait)

◮ First paper: ZEUS-Note 93-127, December 1993.
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◮ Playing with simulated events, the unfolded spectrum was
between the prior and the ‘true distribution’ (of MC events):
→ iterations, just as a pragmatic solution (please wait)

◮ First paper: ZEUS-Note 93-127, December 1993.
◮ Several months needed until I was convinced about the

strategies and the evualuation of uncertainties, including
correlations (technical details not shown here):
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Continuing with the recollections
At this point you might have several doubts and questions (e.g.
about priors) → Please wait a while.
From the first attempt to the NIM paper
◮ First Fortran version written a Saturday afternoon in

Hamburg
◮ ‘Obviously’, just to start, a ‘flat prior’ on P0(Ci ) was used
◮ . . . but the code worked immediately almost too well

(contrary to what usually happens, when we write a piece of
code and then we spend some time to debug it, the problem
was to understand why it was working so good!)

◮ Playing with simulated events, the unfolded spectrum was
between the prior and the ‘true distribution’ (of MC events):
→ iterations, just as a pragmatic solution (please wait)

◮ First paper: ZEUS-Note 93-127, December 1993.
◮ Several months needed until I was convinced about the

strategies and the evualuation of uncertainties, including
correlations (technical details not shown here):
→ DESY 94-099, June 1994, later submitted to NIM:
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◮ First Fortran version written a Saturday afternoon in

Hamburg
◮ ‘Obviously’, just to start, a ‘flat prior’ on P0(Ci ) was used
◮ . . . but the code worked immediately almost too well

(contrary to what usually happens, when we write a piece of
code and then we spend some time to debug it, the problem
was to understand why it was working so good!)

◮ Playing with simulated events, the unfolded spectrum was
between the prior and the ‘true distribution’ (of MC events):
→ iterations, just as a pragmatic solution (please wait)

◮ First paper: ZEUS-Note 93-127, December 1993.
◮ Several months needed until I was convinced about the

strategies and the evualuation of uncertainties, including
correlations (technical details not shown here):
→ DESY 94-099, June 1994, later submitted to NIM:
→ ‘NIM’ A362 (1995) 487

© GdA, Roma 26/02/24, 44/69



Example of 2D unfolding (from NIM paper)
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Initial prior anxiety
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Initial prior anxiety

◮ “The weak point of the Bayes approach, namely the need of
the knowledge of the initial distribution, . . . ”
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Initial prior anxiety

◮ “The weak point of the Bayes approach, namely the need of
the knowledge of the initial distribution, . . . ”
??
◮ “Week point”?
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Initial prior anxiety

◮ “The weak point of the Bayes approach, namely the need of
the knowledge of the initial distribution, . . . ”
◮ “Week point”?

◮ STRONG POINT, because it allows to combine new pieces
of information with prior knowledge.

◮ It is an ESSENTIAL INGREDIENT of probability theory if
we want to reason from effects to causes
(see e.g. Laplace and Gauss).
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Initial prior anxiety

◮ “The weak point of the Bayes approach, namely the need of
the knowledge of the initial distribution, . . . ”
◮ “Week point”?

◮ STRONG POINT, because it allows to combine new pieces
of information with prior knowledge.

◮ It is an ESSENTIAL INGREDIENT of probability theory if
we want to reason from effects to causes
(see e.g. Laplace and Gauss).

◮ “the knowledge of the initial distribution”
◮ there is not such an ABSTRACT initial distribution that we

have to know before we tackle an inferential problem.
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Initial prior anxiety

◮ “The weak point of the Bayes approach, namely the need of
the knowledge of the initial distribution, . . . ”
◮ “Week point”?

◮ STRONG POINT, because it allows to combine new pieces
of information with prior knowledge.

◮ It is an ESSENTIAL INGREDIENT of probability theory if
we want to reason from effects to causes
(see e.g. Laplace and Gauss).

◮ “the knowledge of the initial distribution”
◮ there is not such an ABSTRACT initial distribution that we

have to know before we tackle an inferential problem.

→ see more © GdA, Roma 26/02/24, 46/69



A kind of technical recap

now that basic ideas shoud be received

(focusing on 1D unfolding, with life examples)
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Discretized unfolding

C1 C2 Ci CnC BG

E1 E2 Ej EnE T
(T : ‘trash’)
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Discretized unfolding

C1 C2 Ci CnC BG

E1 E2 Ej EnE T
(T : ‘trash’)

Background (‘known’) is just a an extra cell

nC → nC + 1

(Hereafter just included among the causes – several BG’s can be included)

Vectors of interest:
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Discretized unfolding

C1 C2 Ci CnC BG

E1 E2 Ej EnE T
(T : ‘trash’)

Background (‘known’) is just a an extra cell

nC → nC + 1

(Hereafter just included among the causes – several BG’s can be included)

Vectors of interest:

xC : true spectrum (nr of events in cause bins)

xE : observed spectrum (nr of events in effect bins)
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Remark: parametric inference Vs unfolding

f (θ | {x , y}):
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Remark: parametric inference Vs unfolding

f (θ | {x , y}):
→ probabilistic parametric inference

⇒ it relies on the kind of functions parametrized by θ

µy = µy (µx ;θ)
with (because of errors)

µxi −→ xi

µyi −→ yi
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Remark: parametric inference Vs unfolding

f (θ | {x , y}):
→ probabilistic parametric inference

⇒ it relies on the kind of functions parametrized by θ

µy = µy (µx ;θ)
with (because of errors)

µxi −→ xi

µyi −→ yi

⇒ data distilled into θ: → f (θ | data)
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Remark: parametric inference Vs unfolding
f (θ | {x , y}):
→ probabilistic parametric inference

⇒ it relies on the kind of functions parametrized by θ

µy = µy (µx ;θ)
with (because of errors)

µxi −→ xi

µyi −→ yi

⇒ data distilled into θ: → f (θ | data)

BUT sometimes we wish to interpret the data as little as possible

⇒ just public ‘something equivalent’ to an experimental
distribution, with the bin contents fluctuating according to an
underlying multinomial distribution, but having possibly got
rid of physical and instrumental distortions, as well as of
background.
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Remark: parametric inference Vs unfolding
f (θ | {x , y}):
→ probabilistic parametric inference

⇒ it relies on the kind of functions parametrized by θ

µy = µy (µx ;θ)
with (because of errors)

µxi −→ xi

µyi −→ yi

⇒ data distilled into θ: → f (θ | data)

BUT sometimes we wish to interpret the data as little as possible

⇒ just public ‘something equivalent’ to an experimental
distribution, with the bin contents fluctuating according to an
underlying multinomial distribution, but having possibly got
rid of physical and instrumental distortions, as well as of
background.

⇒ Unfolding (deconvolution)
© GdA, Roma 26/02/24, 49/69



Smearing matrix → unfolding matrix

Invert smearing matrix?
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Smearing matrix → unfolding matrix

Invert smearing matrix?

In general is a bad idea:

not a rotational problem
but an inferential problem!
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Smearing matrix → unfolding matrix

Imagine S =

(

0.8 0.2
0.2 0.8

)

: → U = S−1 =

(

1.33 −0.33
−0.33 1.33

)

Let the true be st =

(

10
0

)

: → sm = S · st =
(

8
2

)

;

If we measure sm =

(

8
2

)

→ S−1 · sm =

(

10
0

) √
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Smearing matrix → unfolding matrix

Imagine S =

(

0.8 0.2
0.2 0.8

)

: → U = S−1 =

(

1.33 −0.33
−0.33 1.33

)

Let the true be st =

(

10
0

)

: → sm = S · st =
(

8
2

)

;

If we measure sm =

(

8
2

)

→ S−1 · sm =

(

10
0

) √

BUT

if we had measured

(

9
1

)

→ S−1 · sm =

(

11.7
−1.7

)

if we had measured

(

10
0

)

→ S−1 · sm =

(

13.3
−3.3

)
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Smearing matrix → unfolding matrix

Imagine S =

(

0.8 0.2
0.2 0.8

)

: → U = S−1 =

(

1.33 −0.33
−0.33 1.33

)

Let the true be st =

(

10
0

)

: → sm = S · st =
(

8
2

)

;

If we measure sm =

(

8
2

)

→ S−1 · sm =

(

10
0

) √

BUT

if we had measured

(

9
1

)

→ S−1 · sm =

(

11.7
−1.7

)

if we had measured

(

10
0

)

→ S−1 · sm =

(

13.3
−3.3

)

Indeed, matrix inversion is recognized to producing ‘crazy spectra’ and

even negative values (unless there are so large numbers of events in bins

such that fluctuations around expectations are negligeable)
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Bin to bin analysis?

En passant:

◮ OK if the are no migrations:
→ each bin is an ‘independent issue’,
treated with a binomial process, given some efficiencies.
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Bin to bin analysis?

En passant:

◮ OK if the are no migrations:
→ each bin is an ‘independent issue’,
treated with a binomial process, given some efficiencies.

◮ Otherwise
◮ ‘error analysis’ troublesome

(just imagine e.g. that a bin has an ‘efficiency’ > 1,
because of migrations from other bins);

◮ iteration is important
(efficiencies depend on ‘true distribution’)
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Discretized unfolding

C1 C2 Ci CnC

E1 E2 Ej EnE T
(T : ‘trash’)
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Discretized unfolding

C1 C2 Ci CnC

E1 E2 Ej EnE T
(T : ‘trash’)

xC : true spectrum (nr of events in cause bins)

xE : observed spectrum (nr of events in effect bins)
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Discretized unfolding

C1 C2 Ci CnC

E1 E2 Ej EnE T
(T : ‘trash’)

xC : true spectrum (nr of events in cause bins)

xE : observed spectrum (nr of events in effect bins)
Our aim:

◮ not to find the true spectrum

◮ but, more modestly, rank in beliefs all possible spectra that
might have caused the observed one:
⇒ P(xC | xE , I )
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Discretized unfolding

C1 C2 Ci CnC

E1 E2 Ej EnE T
(T : ‘trash’)

◮ P(xC | xE , I ) depends on the knowledge of smearing matrix Λ,
with λji ≡ P(Ej |Ci , I ).
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Discretized unfolding

C1 C2 Ci CnC

E1 E2 Ej EnE T
(T : ‘trash’)

◮ P(xC | xE , I ) depends on the knowledge of smearing matrix Λ,
with λji ≡ P(Ej |Ci , I ).

◮ but Λ is itself uncertain, because inferred from MC simulation:
⇒f (Λ | I )
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Discretized unfolding

C1 C2 Ci CnC

E1 E2 Ej EnE T
(T : ‘trash’)

◮ P(xC | xE , I ) depends on the knowledge of smearing matrix Λ,
with λji ≡ P(Ej |Ci , I ).

◮ but Λ is itself uncertain, because inferred from MC simulation:
⇒f (Λ | I )

◮ for each possible Λ we have a pdf of spectra:
→ P(xC | xE ,Λ, I )

© GdA, Roma 26/02/24, 52/69



Discretized unfolding

C1 C2 Ci CnC

E1 E2 Ej EnE T
(T : ‘trash’)

◮ P(xC | xE , I ) depends on the knowledge of smearing matrix Λ,
with λji ≡ P(Ej |Ci , I ).

◮ but Λ is itself uncertain, because inferred from MC simulation:
⇒f (Λ | I )

◮ for each possible Λ we have a pdf of spectra:
→ P(xC | xE ,Λ, I )
⇒ P(xC | xE , I ) =

∫

P(xC | xE ,Λ, I ) f (Λ | I ) dΛ [by MC!]
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Discretized unfolding

C1 C2 Ci CnC

E1 E2 Ej EnE T
(T : ‘trash’)

◮ Bayes theorem:

P(xC | xE , Λ, I ) ∝ P(xE | xC , Λ, I ) · P(xC | I ) .
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Discretized unfolding

C1 C2 Ci CnC

E1 E2 Ej EnE T
(T : ‘trash’)

◮ Bayes theorem:

P(xC | xE , Λ, I ) ∝ P(xE | xC , Λ, I ) · P(xC | I ) .

◮ Indifference w.r.t. all possible spectra

P(xC | xE , Λ, I ) ∝ P(xE | xC , Λ, I )
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P(xE | xCi
, Λ, I )

C1 C2 Ci CnC

E1 E2 Ej EnE T

Given a certain number of events in a cause-bin x(Ci ), the number
of events in the effect-bins, included the ‘trash’ one, is described
by a multinomial distribution:

xE |x(Ci )
∼ Mult[x(Ci ),λi ] ,

with

λi = {λ1,i , λ2,i , . . . , λnE+1,i}
= {P(E1 |Ci , I ), P(E2 |Ci , I ), . . . , P(EnE+1,i |Ci , I )}
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P(xE | xC , Λ, I )

C1 C2 Ci CnC

E1 E2 Ej EnE T

xE |x(Ci )
multinomial random vector,

⇒ xE |
x (C) sum of several multinomials.
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P(xE | xC , Λ, I )

C1 C2 Ci CnC

E1 E2 Ej EnE T

xE |x(Ci )
multinomial random vector,

⇒ xE |
x (C) sum of several multinomials.

BUT

no ‘easy’ expression for P(xE | xC ,Λ, I )
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P(xE | xC , Λ, I )

C1 C2 Ci CnC

E1 E2 Ej EnE T

xE |x(Ci )
multinomial random vector,

⇒ xE |
x (C) sum of several multinomials.

BUT

no ‘easy’ expression for P(xE | xC ,Λ, I )

⇒ STUCK!
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P(xE | xC , Λ, I )

C1 C2 Ci CnC

E1 E2 Ej EnE T

xE |x(Ci )
multinomial random vector,

⇒ xE |
x (C) sum of several multinomials.

BUT

no ‘easy’ expression for P(xE | xC ,Λ, I )

⇒ STUCK!

⇒ Change strategy
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The rescue trick

Instead of using the original probability inversion
(applied directly) to spectra

P(xC | xE , Λ, I ) ∝ P(xE | xC , Λ, I ) · P(xC | I ) ,

we restart from

P(Ci |Ej , I ) ∝ P(Ej |Ci , I ) · P(Ci | I ).
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The rescue trick
Instead of using the original probability inversion
(applied directly) to spectra

P(xC | xE , Λ, I ) ∝ P(xE | xC , Λ, I ) · P(xC | I ) ,

we restart from

P(Ci |Ej , I ) ∝ P(Ej |Ci , I ) · P(Ci | I ).

Consequences:

1. the sharing of observed events among the cause bins
needs to be performed ‘by hand’;
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The rescue trick
Instead of using the original probability inversion
(applied directly) to spectra

P(xC | xE , Λ, I ) ∝ P(xE | xC , Λ, I ) · P(xC | I ) ,

we restart from

P(Ci |Ej , I ) ∝ P(Ej |Ci , I ) · P(Ci | I ).

Consequences:

1. the sharing of observed events among the cause bins
needs to be performed ‘by hand’;

2. a uniform prior P(Ci | I ) = k does not mean indifference
over all possible spectra.

⇒ P(Ci | I ) = k is a well precise spectrum
(in most cases far from the physical one)

⇒ VERY STRONG prior that biases the result!
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The rescue trick
Instead of using the original probability inversion
(applied directly) to spectra

P(xC | xE , Λ, I ) ∝ P(xE | xC , Λ, I ) · P(xC | I ) ,

we restart from

P(Ci |Ej , I ) ∝ P(Ej |Ci , I ) · P(Ci | I ).

Consequences:

1. the sharing of observed events among the cause bins
needs to be performed ‘by hand’;

2. a uniform prior P(Ci | I ) = k does not mean indifference
over all possible spectra.

⇒ P(Ci | I ) = k is a well precise spectrum
(in most cases far from the physical one)

⇒ VERY STRONG prior that biases the result! → iterations
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Old → improved algorithm (technical issues for self study)

1. [∗] λij estimated by MC simulation as

λji ≈ x(Ej)
MC/x(Ci )

MC ;
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Old → improved algorithm (technical issues for self study)

1. [∗] λij estimated by MC simulation as

λji ≈ x(Ej)
MC/x(Ci )

MC ;

2. P(Ci |Ej , I ) from Bayes theorem; [θij ≡ P(Ci |Ej , I )]

P(Ci |Ej , I ) =
P(Ej |Ci , I ) · P(Ci | I )

∑

i P(Ej |Ci , I ) · P(Ci | I )
,

or

θij =
λji · P(Ci | I )

∑

i λji · P(Ci | I )
,
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Old → improved algorithm (technical issues for self study)

1. [∗] λij estimated by MC simulation as

λji ≈ x(Ej)
MC/x(Ci )

MC ;

2. P(Ci |Ej , I ) from Bayes theorem; [θij ≡ P(Ci |Ej , I )]

3. [∗] Assignement of events to cause bins:

x(Ci )|x(Ej )
≈ P(Ci |Ej , I ) · x(Ej)

x(Ci )|
xE

≈
nE
∑

j=1

P(Ci |Ej , I ) · x(Ej)

x(Ci ) ≈ 1

ǫi
x(Ci )|

xE
,

with ǫi =
∑nE

j=1 P(Ej |Ci , I )
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Old → improved algorithm (technical issues for self study)

1. [∗] λij estimated by MC simulation as

λji ≈ x(Ej)
MC/x(Ci )

MC ;

2. P(Ci |Ej , I ) from Bayes theorem; [θij ≡ P(Ci |Ej , I )]

3. [∗] Assignement of events to cause bins:

x(Ci )|x(Ej )
≈ P(Ci |Ej , I ) · x(Ej)

x(Ci )|
xE

≈
nE
∑

j=1

P(Ci |Ej , I ) · x(Ej)

x(Ci ) ≈ 1

ǫi
x(Ci )|

xE
,

with ǫi =
∑nE

j=1 P(Ej |Ci , I )

4. [∗] Uncertainty by ‘standard error propagation’
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Improvements

1. λi : having each element λji the meaning of “pj” of a
Multinomial distribution, their distribution can easily (and
conveniently and realistically) modelled by a Dirichlet:

λi ∼ Dir[αprior + x

MC
E

∣

∣

∣

x(Ci )MC
] ,

(The Dirichlet is the prior conjugate of the Multinomial)
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Improvements

1. λi :
λi ∼ Dir[αprior + x

MC
E

∣

∣

∣

x(Ci )MC
] ,

2. uncertainty on λi :
taken into account by sampling ⇒ equivalent to integration

⇒ P(xC | xE , I ) =

∫

P(xC | xE ,Λ, I ) f (Λ | I ) dΛ
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Improvements

1. λi :
λi ∼ Dir[αprior + x

MC
E

∣

∣

∣

x(Ci )MC
] ,

2. uncertainty on λi :
taken into account by sampling

3. sharing xEj
→ xC : done by a Multinomial:

xC |x(Ej )
∼ Mult[x(Ej), θj ] ,
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Improvements

1. λi :
λi ∼ Dir[αprior + x

MC
E

∣

∣

∣

x(Ci )MC
] ,

2. uncertainty on λi :
taken into account by sampling

3. sharing xEj
→ xC : done by a Multinomial:

xC |x(Ej )
∼ Mult[x(Ej), θj ] ,

4. x(Ej) → µj : what needs to be shared is not the observed
number x(Ej), but rather the estimated true value µj :
remember x(Ej) ∼ Poisson[µj ]

µj ∼ Gamma[cj + x(Ej), rj + 1] ,

(Gamma is prior conjugate of Poisson)
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Improvements

1. λi :
λi ∼ Dir[αprior + x

MC
E

∣

∣

∣

x(Ci )MC
] ,

2. uncertainty on λi :
taken into account by sampling

3. sharing xEj
→ xC : done by a Multinomial:

xC |x(Ej )
∼ Mult[x(Ej), θj ] ,

4. x(Ej) → µj :

µj ∼ Gamma[cj + x(Ej), rj + 1] ,

BUT µi is real, while the the number of event parameter of a
multinomial must be integer ⇒ solved with interpolation

5. uncertainty on µi : taken into account by sampling
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Improvements

1. λi :
λi ∼ Dir[αprior + x

MC
E

∣

∣

∣

x(Ci )MC
] ,

2. uncertainty on λi :
taken into account by sampling

3. sharing xEj
→ xC : done by a Multinomial:

xC |x(Ej )
∼ Mult[x(Ej), θj ] ,

4. x(Ej) → µj :

µj ∼ Gamma[cj + x(Ej), rj + 1] ,

5. uncertainty on µi : taken into account by sampling
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Iteration and (intermediate) smoothing

instead of using a flat prior over the possible spectra
we are using a particular (flat) spectrum as prior
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Iteration and (intermediate) smoothing

instead of using a flat prior over the possible spectra
we are using a particular (flat) spectrum as prior

⇒ the posterior [i.e. the ensemble of x
(t)
C obtained by sampling] is

affected by this quite strong assumption, that seldom holds in real
cases.
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Iteration and (intermediate) smoothing

instead of using a flat prior over the possible spectra
we are using a particular (flat) spectrum as prior

⇒ the posterior [i.e. the ensemble of x
(t)
C obtained by sampling] is

affected by this quite strong assumption, that seldom holds in real
cases.
⇒ problem worked around by ITERATIONS

⇒ posterior becomes prior of next iteration
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Iteration and (intermediate) smoothing

instead of using a flat prior over the possible spectra
we are using a particular (flat) spectrum as prior

⇒ the posterior [i.e. the ensemble of x
(t)
C obtained by sampling] is

affected by this quite strong assumption, that seldom holds in real
cases.
⇒ problem worked around by ITERATIONS

⇒ posterior becomes prior of next iteration
⇒ Usque tandem?
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Iteration and (intermediate) smoothing

instead of using a flat prior over the possible spectra
we are using a particular (flat) spectrum as prior

⇒ the posterior [i.e. the ensemble of x
(t)
C obtained by sampling] is

affected by this quite strong assumption, that seldom holds in real
cases.
⇒ problem worked around by ITERATIONS

⇒ posterior becomes prior of next iteration
⇒ Usque tandem?

◮ Empirical approach (with help of simulation):
◮ ‘True spectrum’ recovered in a couple of steps
◮ Then the solution starts to diverge towards a wildy oscillating

spectrum (any unavoidable fluctuation is believed more and
more. . . )
⇒ find empirically an optimum
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Iteration and (intermediate) smoothing

instead of using a flat prior over the possible spectra
we are using a particular (flat) spectrum as prior

⇒ the posterior [i.e. the ensemble of x
(t)
C obtained by sampling] is

affected by this quite strong assumption, that seldom holds in real
cases.
⇒ problem worked around by ITERATIONS

⇒ posterior becomes prior of next iteration
⇒ Usque tandem?

◮ regularization (a subject by itself)
my preferred approach
◮ regularize the posterior before using as next prior
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Iteration and (intermediate) smoothing

instead of using a flat prior over the possible spectra
we are using a particular (flat) spectrum as prior

⇒ the posterior [i.e. the ensemble of x
(t)
C obtained by sampling] is

affected by this quite strong assumption, that seldom holds in real
cases.
⇒ problem worked around by ITERATIONS

⇒ posterior becomes prior of next iteration
⇒ Usque tandem?

◮ regularization (a subject by itself)
my preferred approach
◮ regularize the posterior before using as next prior
◮ intermediate smoothing ⇒ we belief physics is ‘smooth’
◮ . . . but ‘irregularities’ of the data are not washed out

(⇒ unfolding Vs parametric inference)
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Iteration and (intermediate) smoothing

instead of using a flat prior over the possible spectra
we are using a particular (flat) spectrum as prior

⇒ the posterior [i.e. the ensemble of x
(t)
C obtained by sampling] is

affected by this quite strong assumption, that seldom holds in real
cases.
⇒ problem worked around by ITERATIONS

⇒ posterior becomes prior of next iteration
⇒ Usque tandem?

◮ regularization (a subject by itself)
my preferred approach
◮ regularize the posterior before using as next prior
⇒ Good compromize and good results
⇒ Very ‘Bayesian’
⇒ No oscillations for nsteps → ∞
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Examples

Smearing matrices (from 1995 NIM paper)

quite bad! (real cases are usually more gentle)
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Examples

Smearing matrices (from 1995 NIM paper)

quite bad! (real cases are usually more gentle)

⇒ watch DEMO
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It is possible to do better?

◮ The 2010 paper (arXiv:1010.0632) essentially improves the
evaluation of uncertainties;

◮ paper recommended because it (hopefully) clarifies several
issues.
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It is possible to do better?

◮ The 2010 paper (arXiv:1010.0632) essentially improves the
evaluation of uncertainties;

◮ paper recommended because it (hopefully) clarifies several
issues.

In reality it is possible nowday to follow the more rigorous
approach abandoned ≈ 18 years ago (indeed the 2010 paper was
written almost completely in 2006) using

◮ Bayesian networks;

◮ MCMC for integration;

◮ JAGS code to perform the practical work
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It is possible to do better?
Draft 16 October 2012
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It is possible to do better?
Results on the same toy models (Oct 2012) — No iterations!
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Stay tuned!

© GdA, Roma 26/02/24, 64/69



The End

For references, also related to the discussion:

◮ Lectures to Phd students (lickable link)
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Linked notes
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Teaching Laplace’s ‘definition’ of probability

p =
# favorable cases

# possible equiprobable cases
⇒ Loop!
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Teaching Laplace’s ‘definition’ of probability

p =
# favorable cases

# possible equiprobable cases
⇒ Loop!

Note: “. . . lorsque rien ne porte à croire que l’un de ces cas doit
arriver plutot que les autres” (Laplace)

The formula cannot define probability,
but it can be used to evaluate its value p
if we already know what we are talking about
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Teaching Laplace’s ‘definition’ of probability

Cheating students. . .

p =
# favorable cases

# possible equally possible cases
⇒ Loop!

Note: “. . . lorsque rien ne porte à croire que l’un de ces cas doit
arriver plutot que les autres” (Laplace)

The formula cannot define probability,
but it can be used to evaluate its value p
if we already know what we are talking about

◮ Replacing ‘equi-probable’ by ‘equi-possible’
is just cheating students!

© GdA, Roma 26/02/24, 67/69



Teaching Laplace’s ‘definition’ of probability
Cheating students. . .

p =
# favorable cases

# possible equally possible cases
⇒ Loop!

Note: “. . . lorsque rien ne porte à croire que l’un de ces cas doit
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Teaching Laplace’s ‘definition’ of probability
Cheating students. . .

p =
# favorable cases

# possible equally possible cases
⇒ Loop!

Note: “. . . lorsque rien ne porte à croire que l’un de ces cas doit
arriver plutot que les autres” (Laplace)
The formula cannot define probability,
but it can be used to evaluate its value p
if we already know what we are talking about

◮ Replacing ‘equi-probable’ by ‘equi-possible’
is just cheating students!

◮ I proposed quickly some simple problems
in order to disctract them

But for me it was a serious shock that
induced me to rithink the probabilistic issues
Go back © GdA, Roma 26/02/24, 67/69



A comprehensive standard ‘classical’ book, but at least it mentioned Bayes’
theorem, providing a couple of examples, of which I read the first one (p. 47):
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◮ Having in hand a faulty item, evaluate the probability that it was
produced by each of the three machines:

© GdA, Roma 26/02/24, 68/69



A comprehensive standard ‘classical’ book, but at least it mentioned Bayes’
theorem, providing a couple of examples, of which I read the first one (p. 47):

◮ Machines M1, M2 and M3 share the producion of the same object, with
respectively 30%, 25% and 45% shares, but with faulty rates of 1%, 1.2%
and 2%, respectively. The objects are then collected together.

◮ Having in hand a faulty item, evaluate the probability that it was
produced by each of the three machines: → P(Mi | faulty item)

Go back © GdA, Roma 26/02/24, 68/69



Several years of study in order to clarify some ideas, reaching the
following conclusions:
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Several years of study in order to clarify some ideas, reaching the
following conclusions:
◮ ‘objective’, abstract mathematical priors often lead to

nonsense;
◮ “probability is good sense reduced to a calculus” (Laplace);
◮ “all models are wrong, but some are useful” (Cox);
◮ de Finetti’s logic of ‘coherent bet’ (although virtual) helps.

Some contributions on the subject:

◮ Jeffreys Priors versus Experienced Physicist Priors – Arguments
against Objective Bayesian Theory, arXiv:physics/9811045

◮ Overcoming prior anxiety, arXiv:physics/9906048

◮ Constraints on the Higgs Boson Mass from Direct Searches and
Precision Measurements [with G. Degrassi], arXiv:hep-ph/9902226

◮ Inferring the intensity of Poisson processes at limit of detector
sensitivity (with a case study on gravitational wave burst search)
[with P. Astone], arXiv:hep-ex/9909047

◮ Bayesian reasoning in data analysis – A critical introduction, 2003
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