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Quantities to be measured in EPP

® Physics quantities (to be compared with theory
expectations)
® Cross-section
® Branching ratio
® Asymmetries
® Particle Masses, Widths and Lifetimes
® Quantities related to the experiment (BUT to be
measured to get physics quantities)
e Efficiencies
® Luminosity

° Backgrounds
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Cross-section - |

® Suppose we have done an experiment and obtained the following
quantities for a given final state:
® Nonas Np» €, @

* What is @ ? It is the “flux”, something telling us how many
collisions could take place per unit of time and surface.
* Consider a “fixed-target” experiment (transverse size of the target >> beam

dlmensmns) ¢ NprOJN Sx = prOJIO(SX mjp(g/cm )N (S.X(CH’Z)
Am,, A
® Consider a “Colhdlng beam” experiment
NN,
¢ fcolz =L
42,2,

(head—on beams: N, and N, number of partlcles per beam, 2y, 2 beam transverse gaussian
areas, f, , collision frequency) In this case we normally use the word

“Luminosity”. Flux or luminosity are measured in: cm™2s!
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Cross-section - |l

* In any case, the rate of events due to final state X is:
N X - ¢GX
® O, is the cross-section, having the dimension of an area.
® it doesn’t depend on the experiment but on the process only
® can be compared to the theory

* for a given Oy, the higher is @, the larger the event rate

® given an initial state, for every final state X you have a specitic
Cross-section

¢ the “total cross-section” is obtained by adding the cross-
sections for all possible final states: the cross-section is an additive
quantit)/.

® The unit is the “barn”. 1 barn = 10%* cm?.
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Cross-section - Il

* Suppose we have taken data for a time At: the total number of events collected
will be:
N, =0, x f ¢dt

The flux integral over time is the Integrated Flux or (in case of colliding

beams) Integrated Luminosity. Integrated luminosity is measured in: b™!

e How can we measure this cross-section ?

g oo Nx 1 Ny
Y fgdr [ear e

e Sources of uncertainty: we apply the uncertainty propagation formula. We

_Nb

assume no correlations btw the quantities in the formula (L, , = integral of

flux)

o(oy) 2_ o(L,.) 2+(O(8)) o’(N,,,)+0’(N,)

GX Lint €

( cand ~ Vb )
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I(x)=1(0)e ™"
x=target thickness
O = f _d Q n = density of scattering centers

I = beam intensity

(a = ETXfZ—ZdE
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Branching ratio measurement - |

® Given an unstable particle a, it can decay in several (say N) final
states, k=1,...,N. If I' is the total width of the particle (I'=1/7

with T particle lifetime), for each final state we define a “partial
width” in such a way that

N
r=EQ
k=1

® The branching ratio of the particle a to the final state X is
_ Iy
I

® To measure the B.R. the same analysis as for a cross-section is
needed. In this case we need the number of decaying particles N,
(not the flux) to normalize:

BR(a—X)

B.R.(G9X)=Ncand_Nb 1
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Branching ratio measurement - Il

e Sometimes the normalization is done relative to another
process of known B.R. (relative measurement):
BR(a — X) _ Ncand,X - Nb,X 8Y
BR(a—Y) \N_,, -N,, \e,
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Differential cross-section - |

¢ If we want to consider only final states with a given kinematic
configuration (momenta, angles, energies, . ..) and give the

cross-section as a function of these variables

© Experimentally we have to divide in bins and count the

number of events per bin.

© Example: differential cross-section vs. scattering angle

(da )_ 1 (N, ,-N,| 1
dcosO/, f(])dt g Acos0,

N, and € as a function of 6 are needed.

e NB: N

cand?
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Differential cross-section - ||

* Additional problems appear.

° Efficiency is required per bin (can be different for different

kinematic configurations).

® Background is required per bin (as above).

® The migration of events from one bin to another is possible:
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Folding - Unfolding - I

® In case there is a substancial migration of events among bins
(resolution larger than bin size), this affects the comparison btw
exp.histo (n,%P) and theory (n,;"). This can be solved in two
different ways:
¢ Folding of the theoretical distribution: the theoretical function
fh (x) is “smeared” through a smearing matrix M based on our

knowledge of the resolution; n* > n’"
N

1th th
j=1

n' = [ dxf" (x)

* Unfolding of the experimeﬁtal histogram: n;*? = n’ P Very
difficult procedure, mostly unstable, inversion of M required

N
rexp __ exp -1
j=l1

Methods in Experimental Particle Physics 26/04/19



A757’60/7-5

ECOI'I'

05 F

04

0.3 *++++++++++++++++++++++++++H+++++H"++++++++++++++

02 f

01

0 ‘ ‘ ‘ L I
0 10 20 30 = n

Attv"ue/"_S

Fig. 6: Smearing matrix

Methods in Experimental Particle Physics

efficiency

normaliﬂion
At/Tg

ni:N Zsijfjl
J

Smearing matrix

Data: points
MC: histo n,

Theog parameters

Itheory (At,é)
A

At

s = \
@Z/(A d(At)/ I(ty,t2;q) d(t1 + to)

j—1)At

Background contributions

A

(

\
(@) | + Nreerrs 4 NAT T

1400 @ Data

K Kg— '
LS 4y

ee—nnn'

—
|

1200

1000

800

600

200

At/rs
26/04/19



Asymmetry measurement - |

* Avery useful and powertul observable:
N =N~
N*"+N~
® It can be “charge asymmetry”, Forward-Backward

A=

asymmetry’, ...
° Independent from the absolute normalization

® (+) and (-) could have different efficiencies, but most of them

could cancel:
N / _N /
A=_LE g
N/+ N N/_
E E

 Statistical error (N=NT+N") :

NI

1
O(A) B W 26/04/19
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Asymmetry measurement - |l

Let us assume €t=¢€" : the efficiencies cancel out in the asymmetry.

The statistical uncertainty on the asymmetry can be evaluate using a binomial model
where N = Nt + N~ n=N7T, ff =n/N, so that A =2f" —1. We get:

(87) o2 (A) = 4o?(f1) = 4#
but, since
(88) Fr= 1%4

we have also

(89) U(A):2\/<1+A>/2(1]\;(1+A)/2):\/QN\/l—;Al_QA:\/lﬁm

The uncertainty on the asymmetry goes as the inverse of the square root of the total

number of events. The same result is obtained by assuming independent poissonian
fluctuations for N* and N .

o(A)= %\/I—Az
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