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�  Physics quantities (to be compared with theory 
expectations) 
� Cross-section 
�  Branching ratio 
� Asymmetries 
�  Particle Masses, Widths and Lifetimes 

�  Quantities related to the experiment (BUT to be 
measured to get physics quantities) 
�  Efficiencies 
�  Luminosity 
�  Backgrounds 
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�  Suppose we have done an experiment and obtained the following 
quantities for a given final state: 
�  Ncand, Nb, ε, φ

�  What is φ ? It is the “flux”, something telling us how many 
collisions could take place per unit of time and surface. 
�  Consider a “fixed-target” experiment (transverse size of the target >> beam 

dimensions): 
 
�  Consider a “colliding beam” experiment  

 
(head-on beams: N1 and N2 number of particles per beam, ΣX, ΣY beam transverse gaussian 
areas, fcoll collision frequency) In this case we normally use the word 
“Luminosity”. Flux or luminosity are measured in: cm-2s-1 

φ = !NprojNtarδx =
!Nprojρδx
AmN

=
!Nprojρ(g / cm

3)NAδx(cm)
A

φ = fcoll
N1N2

4πΣXΣY
= L



Cross-section - II 
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�  In any case, the rate of events due to final state X is: 

�  σX is the cross-section, having the dimension of an area. 
�  it doesn’t depend on the experiment but on the process only 
�  can be compared to the theory 
�  for a given σX, the higher is φ, the larger the event rate 
�  given an initial state, for every final state X you have a specific 

cross-section 
�  the “total cross-section” is obtained by adding the cross-

sections for all possible final states: the cross-section is an additive 
quantity. 

� The unit is the “barn”. 1 barn = 10-24 cm2. 

€ 

˙ N X = φσX



Cross-section - III 
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�  Suppose we have taken data for a time Δt: the total number of events collected 
will be: 

    The flux integral over time is the Integrated Flux or (in case of colliding 
beams) Integrated Luminosity. Integrated luminosity is measured in: b-1 

�  How can we measure this cross-section ? 

�  Sources of uncertainty: we apply the uncertainty propagation formula. We 
assume no correlations btw the quantities in the formula (Lint = integral of 
flux) 

 

NX =σ X × φ dt
Δt
∫
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NX

φdt∫
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La Sezione d’urto
Supponiamo di avere un fascio di particelle (protoni, elettroni, fotoni o qualsiasi altra 
particella) di ben definita energia che incide su un bersaglio (target).  
L’intensità I di un fascio è definita come il numero di particelle che passano 
attraversano una sezione perpendicolare alla direzione del fascio nell’unità di tempo.

                geometria di un apparato di conteggio

−dI = Indx dσ
dΩ

dΩ

−dI = Indx dσ
dE
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I(x) = I(0)e−nσ x
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dσ
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∫
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Target – front view  
σ=area  
of a single 
scattering  
center

x=target thickness 
n = density of scattering centers 
I = beam intensity 



Branching ratio measurement - I 
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�  Given an unstable particle a, it can decay in several (say N) final 
states, k=1,…,N. If Γ is the total width of the particle (Γ=1/τ 
with τ particle lifetime), for each final state we define a “partial 
width” in such a way that 

�  The branching ratio of the particle a to the final state X is 

 
�  To measure the B.R. the same analysis as for a cross-section is 

needed. In this case we need the number of decaying particles Na 
(not the flux) to normalize: 

€ 

Γ = Γk
k=1

N

∑

€ 

B.R. a→ X( ) =
ΓX
Γ

€ 

B.R.(a→ X) =
Ncand − Nb

ε
1
Na



Branching ratio measurement - II 
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�  Sometimes the normalization is done relative to another 
process of known B.R. (relative measurement): 

B.R.(a→ X)
B.R.(a→Y )

=
Ncand,X − Nb,X

Ncand,Y − Nb,Y
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Differential cross-section - I 
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�  If we want to consider only final states with a given kinematic 
configuration (momenta, angles, energies,…) and give the 
cross-section as a function of  these variables 

�  Experimentally we have to divide in bins and count the 
number of events per bin.  

�  Example: differential cross-section vs. scattering angle 

�  NB: Ncand, Nb and ε as a function of θ are needed. 
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Differential cross-section - II 
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�  Additional problems appear. 
�  Efficiency is required per bin (can be different for different 

kinematic configurations). 
�  Background is required per bin (as above). 
� The migration of events from one bin to another is possible: 

need of smearing procedures to take into account this. Black: “true” distribution 
Red: expected distribution 

 if σ=0.1 
Blue: expected distribution 

 if σ=0.2 



Folding – Unfolding - II 

26/04/19 Methods in Experimental Particle Physics 11 

�  In case there is a substancial migration of events among bins 
(resolution larger than bin size), this affects the comparison btw 
exp.histo (ni

exp) and theory (ni
th). This can be solved in two 

different ways: 
�  Folding of the theoretical distribution: the theoretical function 

fth(x) is “smeared” through a smearing matrix M based on our 
knowledge of the resolution; ni

th ! n’i
th 

 
 
�  Unfolding of the experimental histogram: ni

exp ! n’i
exp. Very 

difficult procedure, mostly unstable, inversion of M required 

 

ʹni
th = nj

thMi, j
j=1

N

∑

ni
th = dxf th (x)

xi

xi+1∫

ʹni
exp = nj

expMi, j
−1

j=1

N

∑
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Fig. 6: Smearing matrix

where q⃗ denotes the dependence on the vector of the QM- and CPT -violating
parameters. Finally, the observed ∆t distribution is fitted with the following
function:

ni = N

⎛

⎝

∑

j

sij ϵj Ij(q⃗)

⎞

⎠ + N regIreg
i + N4πI4π

i , (4)

where ni is the expected number of events in the ith bin of the histogram,
sij is the smearing matrix, and ϵj is the efficiency. N , the number of
KSKL → π+π−π+π− events, is a free parameter in the fit.
The number of events due to incoherent regeneration on the cylindrical beam
pipe, N reg, is fixed in the fit. The time distribution Ireg

i for the contribution
from incoherent regeneration is evaluated from MC. The coherent regener-
ation is taken into account modifying the time evolution as follows :

|KS,L(ti)⟩ = |KS,L(ti)⟩ + ρcoh|KL,S(ti)⟩ (5)

where ρcoh, the coherent regeneration parameter, is also fixed. N reg and ρcoh

are calculated from the measured values for the spherical beam pipe [1] by
taking into account the different thickness, shape and material composition.

The contribution from non-resonant e+e− → π+π−π+π− events is treated
in a similar manner; N4π is fixed to the value determined as in the previous
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In order to take into account the resolution on ∆t in the fit, a smearing
matrix has been constructed from MC by properly filling a 2D histogram
with the “true” and the reconstructed ∆t values (fig. 6). The efficiency and
the smearing matrix are then used in the fit procedure as explained in the
following section.

6 Fit

We fit the ∆t distribution between 0 and 12τS in intervals of width ∆̄t = τS
to the data histogram. The fitting function is obtained from the following
distribution

I(t1, t2) =
|N |2

2
|⟨π+π−|KS⟩|4|η+−|2{e−ΓLt1−ΓSt2 + e−ΓSt1−ΓLt2

−2e−(ΓS+ΓL)(t1+t2)/2 cos[∆m(t1 − t2)]} (3)

where ti are the proper times of the KS and KL decays, ΓS and ΓL the
widths of KS and KL, ∆m = mL − mS their mass difference and η+− =
⟨π+π−|KL⟩
⟨π+π−|KS⟩

= |η+−|eiφ+− , after having included the explicit dependence

from the decoherence parameter ζ, or the QM and CPT violating parameters
γ and ω, as discussed in Ref. [1].
We then integrate I(t1, t2) over the sum t1 + t2 for fixed ∆t = |t1 − t2|, and
over the bin-width of the data histogram:

Ij(q⃗) =
∫ j∆̄t

(j−1)∆̄t
d(∆t)

∫

∞

∆t
I(t1, t2; q⃗) d(t1 + t2),
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Fig. 5: Left: Total MC efficiency with respect to ∆t;
Right: Corrected total MC efficiency with respect to ∆t.
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Fig. 7: ∆t distribution from the fit used to determine ζSL. The black
points with errors are data and the solid histogram is the fit result. The
uncertainty arising from the efficiency correction is shown as the hatched
area.

Section, rather than left free in the fit. The fit is performed by minimizing
the least squares function:

χ2 =
n

∑

i=1

(Ndata
i − ni)

2/
(

ni + (niδϵi/ϵi)
2
)

(6)

where Ndata
i is the number of events observed in the ith bin and δϵi is the

error on the efficiency, including the correction. Using Eq. (4) with the
QM- and CPT -violating parameters fixed to zero, ∆m can be left as free
parameter and evaluated. In this case, the fit gives

∆m = (5.25 ± 0.20) × 109s−1,

with χ2/dof = 8.6/10, which is compatible with the more precise value given
by the PDG [5]:

∆m = (5.290 ± 0.015) × 109s−1.

For the determination of the QM- and CPT -violating parameters, ΓS ,ΓL,
and ∆m are fixed to the PDG [5] values in all subsequent fits.

As an example, the fit of the ∆t distribution used to determine ζSL is
shown in Fig. 7.
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where q⃗ denotes the dependence on the vector of the QM- and CPT -violating
parameters. Finally, the observed ∆t distribution is fitted with the following
function:
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where ni is the expected number of events in the ith bin of the histogram,
sij is the smearing matrix, and ϵj is the efficiency. N , the number of
KSKL → π+π−π+π− events, is a free parameter in the fit.
The number of events due to incoherent regeneration on the cylindrical beam
pipe, N reg, is fixed in the fit. The time distribution Ireg

i for the contribution
from incoherent regeneration is evaluated from MC. The coherent regener-
ation is taken into account modifying the time evolution as follows :
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are calculated from the measured values for the spherical beam pipe [1] by
taking into account the different thickness, shape and material composition.

The contribution from non-resonant e+e− → π+π−π+π− events is treated
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Asymmetry measurement - I 
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�  A very useful and powerful observable: 

�  It can be “charge asymmetry”, Forward-Backward 
asymmetry”,…  
�  Independent from the absolute normalization 
�  (+) and (-) could have different efficiencies, but most of them 

could cancel: 

�  Statistical error (N=N++N-) : 

Α =
N + − N −

N + + N −

Α =
N +

ε+
− N

−

ε−

N +

ε+
+ N

−

ε−

σ Α( ) = 1
N

1−Α2



Asymmetry measurement - II 
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σ Α( ) = 1
N

1−Α2

28

From the experimental point of view a branching ratio measurement is very similar
to a cross-section measurement. If a sample of Npart decaying particles is produced and
a number Ni of final states corresponding to the decay chain i are counted

(83) BR(i) =
Ni

Npart

that, following the same notation and the same considerations given above for the cross-
section measurement, can be expressed as:

(84) BR(i) =
Ncand �Nb

✏
⇥ 1

Npart

totally similar to eq.76, the only di↵erence being the normalization: the luminosity
is replaced here by the total number of decaying particles produced. Also, the same
considerations apply for the measurement of di↵erential branching ratios, and a formula
similar to eq.78 holds for the uncertainties.

4.4. Asymmetries. Another quantity used in EPP to study important phenomena in
particular related to symmetry violations, is the asymmetry. In general an asymmetry
is defined as follows:

(85) A =
N+ �N�

N+ +N�

where two alternative event configurations have been defined, and the symbols N+ and
N� represent the number of events in each of these configurations. Examples of asymme-
tries are: left-right asymmetries (with respect to a given plane in the detector), charge
asymmetries (how many particles have either positive or negative charge), up-down,
forward-backward, and so on.

Experimentally the two quantities N+ and N� have to be measured and combined
according to eq.85. However possible di↵erences of the e�ciencies between the two
configurations have to be taken into account. If, for example, positively charged particles
have higher e�ciency with respect to negatively charged particles, the asymmetry has
to be corrected according to:

(86) A =
N+/✏+ �N�/✏�

N+/✏+ +N�/✏�

If ✏+ ⇡ ✏�, eq.85 can be directly used. In this case, the e�ciencies completely cancel in
the ratio. Notice that in all cases, no normalization is required for this quantity.

The statistical uncertainty on the asymmetry can be evaluate using a binomial model
where N = N+ +N�, n = N+, f+ = n/N , so that A = 2f+ � 1. We get:

(87) �2(A) = 4�2(f+) = 4
f+(1� f+)

N

but, since

(88) f+ =
1 +A

2 29

we have also

(89) �(A) = 2

r
(1 +A)/2(1� (1 +A)/2)

N
=

2p
N

r
1 +A

2

1�A
2

=
1p
N

p
1�A2

The uncertainty on the asymmetry goes as the inverse of the square root of the total
number of events. The same result is obtained by assuming independent poissonian
fluctuations for N+ and N�.

4.5. Statistical and systematic uncertainties. When reporting the uncertainty on
the measured quantities, a distinction is made between two kinds of uncertainties, nor-
mally named statistical and systematic. The most common way to separate the
uncertainty in these two parts, is to call statistical uncertainty all what comes from
the counting of the candidates, and systematics all what doesn’t come from candidate
counting. With reference to eq. 78, the last two terms, the uncertainties on e�ciency
and luminosity, are normally included in the systematics term, while the uncertainty on
Ncand is the statistical term. The uncertainty on Nb is also normally included in the
systematic term.

Another way to report the results is to distinguish between uncertainties of type A
and type B. This distinction is supported by metrological institutes but is scarcely
used in EPP. Type A uncertainties are all those uncertainties derived from all forms of
event counting, not only candidate counting, but also control region, Montecarlo event
counting, in other words, all those uncertainties that can be reduced by increasing the
statistics. Type B are all those uncertainties that cannot be reduced by increasing the
statistics.

A good attitude is to explain in detail in the paper all the sources of uncertainty and
the way they are combined.

Let us assume ε+=ε- : the efficiencies cancel out in the asymmetry.  


