Energy scales in the o«oly small - Vi

® Grand Unification Scale. From the observation that weak, em
and strong coupling constants are “running” coupling

constants, if we plot them vs. q* we get:
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Energy scales in the ooly small - VI

®* Why LHC is concentrate on the O(TeV) scale ?

® There is an intermediate scale around the TeV. It is motivated

by the “naturalness” — “fine tuning” — “hierarchy” problem

connected to the properties of the Higgs Mass. | Mass parameter in the
SM lagrangian

QQuantum corrections

- The Higgs mass m; is UV sensitive (its value depends on quantum corrections)
- M is the scale up to which we have the UV theory.

- If no other scale is there btw Higgs and Planck, M=M,,_ .,
needed between -2 and g>M?/ (41)’ to give the observed Higgs Mass

- This is un-natural.. ) 2

m
- If M= O(TeV) all becomes natural, e.g. MSSM, Technicolor, ... A Z (—NP
0.5 TeV
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Energy scales in the o«oly small -
Summary

Bohr radius 0.53X10"%m (0.5 A) 3.7 keV
Electron Compton wavelength ~ 3.86X10"° m (386 fm) 0.51 MeV
Electron classical radius 2.82X10"®m (2.8 fm) 70 MeV
Proton radius — 0.82X10®>m (0.8 fm) 240 MeV
QCD confinement scale

Fermi scale (electroweak scale) 7 X10"”m 250 GeV
“New Physics” scale 1 TeV

GUT Scale 10'® GeV
Planck scale 1.62X10%m 1.2X10"° GeV

The TeV scale is the maximum reachable with the present accelerator technology
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Probability/Frequency of a final state:
the cross-section and the decay width

® The cross-section measures the “probability” of a given final state in a
collision (actual definition will be in a later lecture). It is a [L]°.

® The decay width and the branching ratio measure the “probability”
of a given final state in a decay. The decay width is the inverse of the
lifetime so that it is a [T]'. The branching ratio is an adimensional
quantity

* If we include cross-sections and decay widths, we enter in the
quantum field theories where the normalized Planck constant
enters in the game.

® In the “natural system” the units are h=c=1
* cross-section is a (length)” so an (energy)~.
* decay width is a (time)™' so an (energy)
® 1 GeV2=3.88x10"barn (1 b =10%" cm?=100 fm?)
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Cross-section scales

e Relation between an experimental cross-section and the theory

(same applies for branching ratios)

2

O — ‘ ,+ ' d¢

Two ingredients in the theory calculations:
> dynamics (amplitude from lagrangian, Feynman diagrams. ..

mainly the coupling constants);
—> phase space d@
NB: the integration on the phase space DEPENDS in general

on the experiment details (accessible kinematic region) 9 Montecarlo
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Cross-section order of magnitude
estimates

* Based on dimensional arguments and few numbers (neglects
phase-space and more...)
® Electromagnetic processes: e"e” =2 W W, VY
® Weak processes: VN scattering

e Hadron strong Interaction scattering: PP scattering

al i1 (e =t y)
GF 10_5 Gev_2 ’ S 20 nb 2 pb
G(ve — ve) ~G:2mE, 40 4 pb
p 1 fm 2 30 mb 30 mb
1 Gev2|3.88 x10+p | (PP)=T%;
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Experimentally:

O(Ve-=>Ve-)~ 10* cm? x E,, (GeV) = 0.01 b x E,, (GeV)

E, neutrino energy in laboatory

S=2m E,, =2%0.000511*E (GeV) GeV>
=>E,_(GeV)~1000 * s (GeV?)

O(Ve-=>Ve-)(s=1 GeV*~10 fb
O(Ve-=>Ve-)(s=100 GeV?)~1 pb
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LifeTime (or Width) of a particle vs.
theory

e As for the cross-section the value depends on two

ingredients:
® Decay type (weak, em, strong) through decay matrix element

® Volume of the available phase space

® The Width I is an additive quantity: you have to add the
partial widths of the single decays to get the total width

* Useful formulas: two-body decay phase-space (rest system)

1
I' = g%|m|2 NB Dimensions: If I is [E] = | M| is also [E]
p1| = [p2| = [(M? — (my 4+ my)?)(M? — (my — 7712)2)]1/2
D = |P2| = o ’
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Width (LifeTime) order of magnitude
estimates

® The amplitude square has the dimensions of E2.
® Weak -2 Ampl|? = G;? X M®
® E.m. -2 Ampl |? = 0 X M?
® Strong > Ampl|? = o (M)? X M?

® Examples of estimates (wrong by factor #10 maximum):

Interaction Decay Phase space | Ampl | I T
(MeV1) (MeV?) (MeV) (s)

Weak nt>utv 6.0 X 103 6.0 X 1010 3.6 X 107!+ 1.8 X 108
(2.6 X 10'%)
e.m. TODvy 1.5 X 10°* 0.97 1.4 X 10°* 4.6 X 10718
(8.5 X 1017)
strong PO 2.4 X 10° 6.0 X 10° 13 5.0 X 102
(150)
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 difetimer [ WidnT

Weak decays
K, K,
Ki
A
B-hadrons
Muon
Tau-lepton
Top-quark

e.m. decays

7O
|

Strong decays
J/y

> o £ © =

0.89564 X 10195, 5.116 X 108 s

1.2380 X 108 s
2.632 X 1010
~ 105

2.2 X10°s
2.9 X 10835

~5X10%5

8.52 X 10175

~ 10%s

2 GeV

8 eV
1.30 keV

92.9 keV

54.02 keV
149.1 MeV
8.49 MeV

4.26 MeV

114 = 120 MeV



Recap - fundamental interactions

° Electromagnetic interaction:
® Can be studied at all energies with “moderate” cross-sections;

® Above O(100 GeV) becomes electro-weak

® Weak interactions:

o At low energies it can be studied using decays of “stable” particles —
large lifetimes and small cross-sections;

® Above O(100 GeV) becomes electro-weak

L Strong interactions:
* At low energy (below 1 GeV) “hadronic physics” based on
confinement: no fundamental theory available by Now
® At high energies (above 1 GeV) QCD is a good theory however since
partons are not dlrectly accessible, only ‘inclusive” quantities can be
measured and compared to theory Importance of simulations to
relate partonic quantities to observables.
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Comparison between beam
possibilities

e FElectrons:

® Clean, point-like, fixed (almost) energy, but large irradiation due to the low
mass. “Exclusive” studies are possible (all final state particles are reconstructed
and a complete kinematic analysis can be done)

o =» cte colliders less for energy frontier,mostly for precision measurements

® Protons:

® Bunch of partons with momentum spectrum, but low irradiation. “Inclusive”
studies are possible. A complete kinematic analysis is in general not possible
(only in the transverse plane it is to first approximation possible)

o = highest energies are “easily” reachable, high luminosity are reachable but
problems in the interpretation of the results; very “demanding” detectors and

trigger systems.

° Anti—protons:

* Difficult to obtain high intensities and high luminosity but no problems with
energies, same problems of protons (bunch of partons)

o = p-antip limited by luminosity, e"e” limited by energy BUT perfect for

precision studies, pp good choice for energy frontier
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Implications for experiments:

® You need high energy for
® Probe electro-weak scales, get closer to higher scales

® Enlarge the achieveble mass spectrum (particle discoveries)

® You need high beam intensity and 1arge/ dense targets or high
efficiency detectors

® To access low probability phenomena

® You need high resolution detectors

e To improve particle discrimination especially for rare events.
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End of the Introduction

® Present prospects of Elementary Particle experiments:
e ENERGY frontier = LHC, HL-LHC, ILC, TLEP.. ...
o INTENSITY frontier =2 flavour-factories, fixed target,...
e SENSITIVITY frontier =2 detectors for dark matter,

neutrinos,..

® The general idea is to measure quantities for which you have
a clear prediction from the Standard Model, and a hint that a

sizeable correction would be present in case of

“New Physics”.
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