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Data analysis 1n particle physics

N

X \ ' Observe events of a certain type
q

I\

Measure characteristics of each event (particle momenta,
number of muons, energy of jets,...)

Theories (e.g. SM) predict distributions of these properties
up to free parameters, e.g., o, Gg, M, o, my, ...

Some tasks of data analysis:
Estimate (measure) the parameters;
Quantify the uncertainty of the parameter estimates;

Test the extent to which the predictions of a theory

are 1n agreement with the data.
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Dealing with uncertainty

In particle physics there are various elements of uncertainty:

theory 1s not deterministic

® B J
. .
quantum mechanics : ﬂ\‘

random measurement errors

present even without quantum effects

things we could know in principle but don’t
¢.g. from limitations of cost, time, ...

We can quantify the uncertainty using PROBABILITY



A definition of probability

Consider a set S with subsets 4, B, ...

Forall AC S,P(A) >0

P =1
(5) Kolmogorov

If ANB=0,P(AUB) = P(A) + P(B) axioms (1933)

From these axioms we can derive further properties, e.g.

P(A) =1 - P(A)

P(AUA) =1

P(®) =0

if AC B, then P(A) < P(B)
P(AUB) =P(A)+ P(B) - P(An B)



Conditional probability, independence

Also define conditional probability of 4 given B (with P(B) # 0):

P(ANB
paB) = FAN D)
P(B)
E.g. rolling dice: P(n < 3|neven) = P(("ﬁgvre‘ng even) % =1

Subsets 4, B independent if: P(ANB) = P(A)P(B)

P(A)P(B)
P(B)

If A4, B independent, P(A|B) = = P(A)

N.B. do not confuse with disjoint subsets, i.e., AN B =10



Interpretation of probability

[. Relative frequency
A, B, ... are outcomes of a repeatable experiment

P(A) — im times outcome is A

n—oo n

cf. quantum mechanics, particle scattering, radioactive decay...

II. Subjective probability
A, B, ... are hypotheses (statements that are true or false)

P(A) = degree of belief that A is true

* Both interpretations consistent with Kolmogorov axioms.
 In particle physics frequency interpretation often most useful,
but subjective probability can provide more natural treatment of
non-repeatable phenomena:

systematic uncertainties, probability that Higgs boson exists,...



Bayes’ theorem

From the definition of conditional probability we have,

P(A|B) = P(PA(;)B) and P(B|A) = P(PB(Z;D
but P(ANB) =P(BNA),so
P(B|A)P(A) Bayes’ theorem

P(A|B) =

P(B)

First published (posthumously) by the
Reverend Thomas Bayes (1702—1761)

An essay towards solving a problem in the
doctrine of chances, Philos. Trans. R. Soc. 53

(1763) 370; reprinted in Biometrika, 45 (1958) 293.



The law of total probability B

Consider a subset B of
the sample space S, S i

divided into disjoint subsets 4,
such thatu, 4, = §,

— B=BNS=BnN(UA;)) =U;(BNA;), i
— P(B) = P(Ui(BNA4;)) =3; P(BNA;)
— P(B)=>;P(B|A;)P(A;) law of total probability

P(B|A)P(A)

Bayes’ theorem becomes | P(A|B) =
>i P(B|A;)P(A;)




An example using Bayes’ theorem
Suppose the probability (for anyone) to have a disease D 1is:

P(D) = 0.001 « prior probabilities, i.e.,
P(noD) = 0.999 before any test carried out

Consider a test for the disease: result is + or —

P(+[D) = 0.98 «— probabilities to (in)correctly

P(—-|D) = 0.02 identify a person with the disease
P(+no D) = 0.03 « probabilities to (in)correctly
P(—noD) = 0.97 identify a healthy person

Suppose your result is +. How worried should you be?



Bayes' theorem example (cont.)

The probability to have the disease given a + result 1s

P(+[D)P(D)
P(+|D)P(D) + P(+|no D)P(no D)

p(Dl+) =

0.98 x 0.001
0.98 x 0.001 + 0.03 x 0.999

— (.032 <« posterior probability

1.e. you’re probably OK!

Your viewpoint: my degree of belief that I have the disease 1s 3.2%.

P(D|+) and P(+ | D) can be very different (depends on the prior!)



Frequentist Statistics — general philosophy

In frequentist statistics, probabilities are associated only with
the data, i.e., outcomes of repeatable observations (shorthand: Z ).

Probability = limiting frequency
Probabilities such as

P (Higgs boson exists),
P (0.117 < e, <0.121),

etc. are either O or 1, but we don’t know which.

The tools of frequentist statistics tell us what to expect, under
the assumption of certain probabilities, about hypothetical
repeated observations.

The preferred theories (models, hypotheses, ...) are those for
which our observations would be considered ‘usual’.



Probability definition (freqgentist) INFN

A bit more formal definition of probability:
« Law of large numbers:

| N(E) p
P(E)—P if N > P
N(E |
¢+ je.. Ve A;i_{nooP( ]<V) p<€>:1

... I1sn’t it a circular definition?
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Fig. 1.10 An illustration of the law of large numbers using a computer simulation of die rolls. The
average of the first N out of 1000 random extraction is reported as a function of N. 1000 extractions
have been repeated twice (red and blue lines) with independent random extractions
. . N(E
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(somewhat a circular definition:

a probabﬂity in terms of another probability)



Bayesian Statistics — general philosophy

In Bayesian statistics, use subjective probability for hypotheses:

probability of the data assuming

hypothesis H (the likelihood) N / Ezlf%rr Ers(;l:;tl);httﬁzé 1C.1eel,t,a

P(Z|H)x(H)

PUH|E) = [ P(Z|H)=(H) dH

/

posterior probability, 1.e., \ normalization involves sum
after seeing the data over all possible hypotheses

Bayes’ theorem has an “if-then” character: If your prior
probabilities were 7 (H), then it says how these probabilities
should change 1n the light of the data.

No general prescription for priors (subjective!)



Definition of probability INFN

 There are two main different definitions of the
concept of probability

* Frequentist

— Probability is the ratio of the number of occurrences of an
event to the total number of experiments, in the limit of very
large number of repeatable experiments.

— Can only be applied to a specific classes of events
(repeatable experiments)

— Meaningless to state: “probability that the lightest SuSy
particle’s mass is less tha 1 TeV”
« Bayesian
— Probability measures someone’s the degree of belief that
something is or will be true: would you bet?

— Can be applied to most of unknown events (past, present,
future):

» “Probability that Velociraptors hunted in groups”
* “Probability that S.S.C Naples will win next championship”

or Rome, Juventus etc..
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)
Problems with probability definitions NN

(5
* Frequentist probability is, to some extent, circularly defined

— A phenomenon can be proven to be random (i.e.: obeying laws of statistics)
only if we observe infinite cases

— F.James et al.: “this definition is not very appealing to a mathematician, since it
is based on experimentation, and, in fact, implies unrealizable experiments
(N— o). But a physicist can take this with some pragmatism

— A frequentist model can be justified by details of poorly predictable
underlying physical phenomena
Deterministic dynamic with instability (chaos theory, ...)
Quantum Mechanics is intrinsically probabilistic...!

— A school of statisticians state that Bayesian statistics is a more natural and
fundamental concept, and frequentist statistic is just a special sub-case

* On the other hand, Bayesian statistics is subjectivity by
definition, which is unpleasant for scientific applications.

— Bayesian reply that it is actually inter-subjective, i.e.: the real essence of
learning and knowing physical laws...

* Frequentist approach is preferred by the large fraction of
physicists (probably the majority, but Bayesian statistics is
getting more and more popular in many application, also thanks
to its easier application in many cases
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/Frequentist Vs Bay.esian

» The Bayesian infers from the data using priors
posterior P(H | X) = P(X| H). ,D(H)

e Priorsis a science on its own.
Are they objectiv-e? Are they subjectiv-e?

o The Frequentist calculates the
probability of an hypothesis to
be inferred from the data based
on o large set of hypothetical experiments
Ideally, the frequentist does not need priors, or any
degree of belief while the Baseian posterior based inference is
a “Degree of Belief”.

o Howevrer, NPs (Sy.stematic) inject a Bayesian flav-our to any
Frequentist analysis
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Theory < Statistics «<» Experiment

Theory (model, hypothesis): Experiment:
= -l "oy ivBY 4
X = Ry YBY +
e
o = Gg o5 m, e + data
2,88 (2 | selection
K/&&‘l»(‘k

+ simulation .-
of detector -~ _ -
and cuts




Data analysis 1n particle physics

Observe events (e.g., pp collisions) and for each, measure
a set of characteristics:

particle momenta, number of muons, energy of jets,...

Compare observed distributions of these characteristics to
predictions of theory. From this, we want to:

Estimate the free parameters of the theory: m, = 125.4

Quantify the uncertainty in the estimates: + 0.4 GeV

Assess how well a given theory stands in agreement
with the observed data:
Q" gqood, 2 bad

To do this we need a clear definition of PROBABILITY



Data analysis in particle physics:
testing hypotheses

Test the extent to which a given model agrees with the data:

ALEPH, Phys. Rept. 294 (1998) 1-165
T Illlllll IIIIIIII‘[.-
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The Logic of an EPP experiment

Go back to Rutherford and the logical steps of his experiment
(slide 8)
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Key elements in the Rutherford
experiment - physical quantities

Energy of the collision (driven by the kinetic energy of the Ot
particles) the meaning of Vs

Beam Intensity (how many O particles / s)

Size and density of the target (how many gold nuclei
encountered by the o particles);

Deflection angle 0

Probability/frequency of a given final state (fraction of
o particles scattered at an angle 0);

Detector efﬁciency (are all scattered o particles detected?);
includes acceptance (geometrical acceptance...).

Detector resolution (how good 0 angle is measured?)
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MOREOVER: if | know masses and kinetic energies of each projectile and target
may I predict how each collision will happen ?
NO !

I can only predict the probability of each possible happening. .

In every collision ete “toss the dices” and choose a possible final state
The theory allows to evaluate the probability of the final states
With the experiment one can only measure the frequency of the final states

and compare it to the predicted probability
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Why random variables

® Intrinsic quantum nature of the phenomena we are considering

® Instrumental effects

* Example: the angular distribution in the Rutherford scattering -
the variable is the deflection angle 0

e => from “physics” you expect f(0): this is the PDF of the quantity 0

e = let’s include the instrumental effects: O = true; ' = measured
= efficiency €(0)
—> resolution R(0-0”)

® The measured “histogram” will be

8(0)= [ e(O)RO-6)f(0)d0
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An example
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b

The KLOE detector at the Frascati ¢-factory DA®NE

Qe

Integrated luminosity (KLOE)

1400
J'J; dt
HOT b 2008: 1256 pht
1000 | 2005
2004: 734 pb!

T 2002: 320 pb! 2004
600 2001: 172 pb!

400

2002
200 f 2001
0 l«//

1 1 1
Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Total KLOE [£ dt ~ 2.5 fb!
@1 -05) — ~2.5x10° KK pairs

KLOE detector

g

NN

6 m

Lead/ scintﬂlating fiber calorimeter
drift chamber
4 m diameter X 3.3 m length

helium based gas mixture
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KLOE event:
¢ 2KK, 2atnwtn
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EPR correlations in entangled neutral kaon pairs from ¢

‘i> = L[‘KO>‘EO> —~ ‘I?O>‘K0>] Same final state for both kaons: f; =f, =n*n"
\/5 (this specific channel is suppressed by CP viol.

T q) : T |T|+_|2=|A(KL—>TC+J'E_)/A(KS->TE+TC_)‘2 ~ ‘8|2 ~
b ----------- TR _— < 107)
t; t, | Tt — :
70 [
(I) <ﬂ: 0E [
L |

I(AY) (a

Interference effects are a key
feature of QM,

‘—"—’: s L “the only mystery”
: i according to Feynman
EPR correlation: T => Experimental test

no simultaneous decays L

(Ar=0) 1n the same g

final state due to the _><0

fully destructive ’
uantum interference __

a At=|t-t,|

2.5 ] 7.0 10 125 15 175 20 225 25

At/tg




— KK, = tt : test of quantum coherence
s, q

KOIR")=[R°)K°)]

-]

I (n*n',n*n‘;At) -4 o |KK O(At)>‘2 Hr'n o KK 0(At)>‘2

I(At) (a.u.) Jt+n ‘ KO]?O(At)Xn* A ‘ KK At)>* )]

Decoherence parameter:

G; =1 — total decoherence
(also known as Furry's hypothesis

or spontaneous factorization)

[W.Furry, PR 49 (1936) 393]
Bertlmann, Grimus, Hiesmayr PR D60 (1999) 114032
Bertlmann, Durstberger, Hiesmayr PRA 68 012111 (2003)
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