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EPR correlated states and particle
physics

What are EPR correlations?

Einstein-Podolsky-Rosen (EPR) effect proposed originally
as a PARADOX testing foundations of Quantum Theory.

Correlations between spatially separated events, instant
transport of information? contradicts relativity?

NO, NO PARADOX

EPR has been confirmed EXPERIMENTALLY:
(i) pair of particles can be created in a definite quantum state,
(ii) move apart,
(iii) decay when they are widely separated (spatially).

EPR CORRELATIONS between different decay modes
should be taken into account, when interpreting any experiment.
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EPR and ¢ Factories

( Lipkin (1968), Dunietz, Hauser, Rosner (1987), Bernabeu,
Botella, Roldan (1988))

It was claimed that due to EPR correlations, irrespective of
CP, CPT violation, the FINAL STATE in ¢ decays is

ete” = ¢ = KsK¢,

WHY?
Entangled meson states: Bose statistics for the state Kofo,
to which ¢ decays, implies that the physical neutral meson-
antimeson state must be symmetric under C'P, with C the
charge conjugation and P the operator that permutes the
spatial coordinates.

Assuming conservation of angular momentum, and a
proper existence of the antiparticle state (denoted by a bar),
one observes that: for KK’ states which are C-conjugates
with ¢ = (—1)" (with £ the angular momentum quantum
number), the system has to be an eigenstate of P with
eigenvalue (—1)~.

Hence, for4 =1: C = — — P = —.

Bose statistics ensures that for £ = 1 the state of two
identical bosons is forbidden.
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This correlation is transmitted to the decay channels, so
that decays to the same final states at equal times are forbldden

(Lipkin 1968). Hence initial entangled state K°K in ¢
factory:

) . 1 0,7 =0 - —0 0 4
— C (|KS(E),KL(—E) > —|Kr(k), Ks(—k) >)
with ¢ = YOraPtel) o _Hfl g g =

V2(1—epeg) B \/_(1 e2)’

W (|Ky > +e|K_>), KL = m (|K- > +e| Ky >),
€2

where €1, €2 are complex parameters, such that, if CPT
invariance of the Hamiltonian is assumed (within a quantum
mechanical framework), €; = €5, otherwise § = €1 — €5
parametrizes the CPT violation within quantum mechanics.

Convenient to use: the CP-violating parameters ¢ and
= |e|e’¥c = L2 to parametrize CPT and T violation in a
quantum mechanical framework.

It was claimed in the literature that the above form of |i >

holds independently of CPT violation. BUT, if CPT is violated
. The concept of antiparticle may be MODIFIED !
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CPTV and EPR-correlations
modification

If CPT is broken, e.g. via Quantum Gravity (QG) effects,
then: CPT operator © is NOT defined and the antiparticle
states cannot be reached.

Neutral mesons K° and K SHOULD NO LONGER be
treated as IDENTICAL PARTICLES.

If, however, we separate the world into CPT-invariant and
CPT-violating terms, the latter may be treated perturbatively

Bose Statistics in entangled states in ¢ factories implies
now that |¢ > can be written:

P> = —(K B), K (—=F) > — K (F), K°(—F >)
| 75 |[K(k), K (=k) > —|K (k), K*(=k)
w 0,7 =0 - —0 = 0 =
+ — (IK°(R), K (=k) > +[K (k), K'(~F) >)
V2
where w = |w|e*’. The complex parameter w controls the

amount of contamination by the “wrong” symmetry state. We
term such effects the w-Effect.
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In terms of physical (mass) eigenstates,
Ksp, :

i> = O (1Ks(®), Ku(—F) > ~|Ku(F), Ks(-F) >)

+ w (|Ks(E),KS(—E) > —|K1(k), Ki(=F) >)]

Notice the presence of KsK g and K K7,
states; important when one considers decay
channels.

Proceed now to Describe Experimental
Tests of w-Effect in ¢ factories...
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¢ Decays and the w Effect

Consider the ¢ decay amplitude: final state X at ¢; and
Y at time t2 (t = O at the moment if ¢ decay)

Amplitudes:

A(X,Y) = (X|Ks)(Y|Ks) C (A1 + As)

with
A, = e tALTAG)/2 [nXe—qumt/z . nyemmm]
A2 — w[e—i)\st i T]XT]YG_?:)\Lt]

the CPT-allowed and CPT-violating parameters respectively,
and nx = (X|KL)/(X[Kg) and ny = (Y|K)/(Y[Ks).

The “intensity” I(At): (At = t; — t3)

1 e @)
I(At) = 5/w' dt |[A(X,Y)|
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Tests of w-Effect in ¢ factories

Most sensitive probe of w-Effect : Identical final states
X=Y=a"r" (or 7z ).

The amplitudes of the CP violating decays K; — 717~
are suppressed by factors of ©(107°), as compared to the
principal decay mode of Kg — 7w x~. If w = 0, such decay
rates would be suppressed, due to K ¢K, correlation. BUT, if
w # 0 this would not be the case, due to presence of KgKg

terms.

Relevant parameter for CPT violation in the intensity is
thus w/nx, which enhances the potentially observed effect.

Sensitivity: Theoretically optimistic values for w =
O(107% — 107*) (cf. QG decoherence effects: /AT,
a, 8,7 = O(E?/Mp) (maximal Planckian effects)).

NB: with |w| ~ 1072 —107* the w-effects are comparable
to |[n4—| ~ 1077,

A precision of 1072 in I(At), which is needed in order to
observe €’ effects, would probe sensitivities up to |w| ~ 107°
in ¢ factories.
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w-effect & Intensities

We calculate the impact of the w-term on the intensity

1 o0
(At = §/|At| dt |A(ntr™, 7wt

_ |<7T+7T_|KS>|4|C|2|?7+—|2[Il+Iz+112]

Setting AM = Mg — My, and ni_ = |n _|e'?*+— , we
obtain

e TsAt L o TLAt _ 9o~ TsHTLIAYZ cog( A M AL)

I (At =
(A1) I'+I's
2  _TcAt
wl® e S
I,(At) = | |2
[n+—|* 2Ts
4 w
Ilg(At) = | |

— X
4(AM)? + (3Ts + T1)? o]

[QAM <e_FSAt sin(¢p4_ — Q) —
e~ (TstlL)at/2 sin(¢p4— — Q + AMAt))
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—3l's +T'y) (e_FSAt cos(¢pr_ — Q) —

e~ TstlL)aL/2 cos(p4— — Q + AMAt))]
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Figure 1: Characteristic cases of the intensity I(At),
with |w| = 0 (solid line) vs I(At) (dashed line)
with (from top left to right) : (i) |w| = |po_|,
O =¢,_—0.16m, (i) |w| = |ns_|, Q = ¢, _+0.95r,
(iii) |w| = 0.5n4—|, @ = ¢4_ + 0.16m, (iv)
w| = 1.5ne |, © = ¢ . At is measured in
units of 75 (the mean life-time of Kg) and I(At) in
units of |C)2|ny_|?[{mT7~|Ks)|*7s .
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w-Effect & C(even) Background

The C(even) background:

ee” =2y => KK’ (1)

b >= |K'K (C(even) >=

% (KO(EWO(—E) n ?O(E)KO(—/Z))

mimic w-Effect. Can we disentangle ?

Order of Magnitude of C(even) Background mass smaller
than C'(odd) resonant contribution:

Unitarity bounds (Dunietz et al. (1987), 2nd DA®NE
Handbook) one can estimate:

olete” — KOKO, JV =0")

~ 3.6 x 1071
ocletem - ¢ > KsK1)
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This is an important difference from the w-Effect order of
magnitude (in the optimistic case).

There are others, more important ...

Terms of the type KK (which dominate over K K7 )
coming from the ¢-resonance as a result of w-CPTV can be
distinguished from those coming from the C' = + background
because they interfere differently with the regular C' = —
resonant contribution with w = 0).

Indeed, in the CPTV case, the K; Kg and wK gK g terms
have the same dependence on the center-of-mass energy s
of the colliding particles producing the resonance, because
both terms originate from the ¢-particle. Their interference,
therefore, being proportional to the real part of the product
of the corresponding amplitudes, still displays a peak at the
resonance. On the other hand, the amplitude of the KsKg
coming from the C' = -+ background has no appreciable
dependence on s and has practically vanishing imaginary part.

Therefore, given that the real part of a Breit-Wigner
amplitude vanishes at the top of the resonance , this implies
that the interference of the C = -+ background with the
regular C' = — resonant contribution vanishes at the top of
the resonance, with opposite signs on both sides of the latter.
This clearly distinguishes experimentally the two cases.
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Quantum Decoherence

The above formalism assumes that the time development
still follows a wunitary evolution in quantum mechanics.
If there is a non-unitary decoherent Lindbland evolution
(Commun.Math.Phys.48, 119 (1976)) , the density matrix
p(t) satisfies (

)-
O:p(t) = ilp, H] + (6H )p(1)
where §  contains decoherent effcts

In an appropriate basis, where p(t) = 1pa0a, with (o =
0,1,2,3,) and o, are the Pauli matrices ,

Oip(t) = Happg + (6H )apps

and
0O O 0 0
0O O 0 0
5Ho‘ﬂ - 0O 0 —2a -—-20
0O 0 —-28 —2v

so that «, B,y parametrize these non-unitary decoherence in
the time evolution
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Identical final states
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Figure 2:
solid: a=8=v7=w=0;
dashed : «, 3,7 # 0 w#0;
long-dashed: a =3 =v=0, w#0
Frascati—2006 H



J. Bernabéu Frascati Workshop 2006

CONCLUSIONS

— CPT Violation not only in the time evolution.

—0
— What is the symmetry of the “initial” state K°K ?
. . —0 T .
Bose statistics was implied iff XY, K are indistinguishable .
If they are not , in perturbation theory =— w effect .

— The “wrong” symmetry induces by time evolution states
like |KsKg > or | KK >.

— For identical decay channels, 7™

T,
cA(—= T, m ) |ar=0 = 0, iff w = 0.
Mw#0,A(= nrn 7, 77717 )| atm0 ~ w.

— The intensity I(At) sees a LINEAR w/n EFFECT for
At ~ few Tg.

— The w effect can be disentangled from the non-unitary
decoherent effects in time evolution («, 5,y ).
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