Search for CPT and Lorentz symmetry violation effects in entangled neutral K mesons

Antonio Di Domenico

Dipartimento di Fisica, Sapienza Università di Roma
and INFN sezione di Roma, Italy

Seventh Meeting on CPT AND LORENTZ SYMMETRY June 20-24, 2016 - Indiana University, Bloomington, USA

Testing CPT: introduction

CPT theorem holds for any QFT formulated on flat space-time which assumes:
(1) Lorentz invariance (2) Locality (3) Unitarity (i.e. conservation of probability). Extension of CPT theorem to a theory of quantum gravity far from obvious. (e.g. CPT violation appears in several QG models)
huge effort in the last decades to study and shed light on QG phenomenology \Rightarrow Phenomenological CPTV parameters to be constrained by experiments
Consequences of CPT symmetry: equality of masses, lifetimes, $|q|$ and $|\mu|$ of a particle and its anti-particle.
Neutral meson systems offer unique possibilities to test CPT invariance; e.g. taking as figure of merit the fractional difference between the masses of a particle and its anti-particle:
neutral K system

$$
\left|m_{K^{0}}-m_{\bar{K}^{0}}\right| / m_{K}<10^{-18}
$$

neutral B system $\quad\left|m_{B^{0}}-m_{\bar{B}^{0}}\right| / m_{B}<10^{-14}$
proton- anti-proton

$$
\left|m_{p}-m_{\vec{p}}\right| / m_{p}<10^{-8}
$$

Many other interesting CPT tests: see other presentations to this workshop

The neutral kaon system: introduction

The time evolution of a two-component state vector $|\Psi\rangle=a\left|K^{0}\right\rangle+b\left|\bar{K}^{0}\right\rangle$ in the $\left\{K^{0} \bar{K}^{0}\right\}$ space is given by (Wigner-Weisskopf approximation):

$$
i \frac{\partial}{\partial t} \Psi(t)=\mathbf{H} \Psi(t)
$$

\mathbf{H} is the effective hamiltonian (non-hermitian), decomposed into a Hermitian part (mass matrix \mathbf{M}) and an anti-Hermitian part (i/2 decay matrix Γ) :

$$
\mathbf{H}=\mathbf{M}-\frac{i}{2} \Gamma=\left(\begin{array}{ll}
m_{11} & m_{12} \\
m_{21} & m_{22}
\end{array}\right)-\frac{i}{2}\left(\begin{array}{ll}
\Gamma_{11} & \Gamma_{12} \\
\Gamma_{21} & \Gamma_{22}
\end{array}\right)
$$

Diagonalizing the effective Hamiltonian:
eigenstates

$$
\begin{aligned}
& \text { eigenvalues } \\
& \lambda_{S, L}=m_{S, L}-\frac{i}{2} \Gamma_{S, L} \\
& \left|K_{S, L}(t)\right\rangle=e^{-i \lambda_{S, L} t}\left|K_{S, L}(0)\right\rangle \\
& \tau_{\mathrm{S}} \sim 90 \mathrm{ps} \quad \tau_{\mathrm{L}} \sim 51 \mathrm{~ns} \\
& \quad K_{L} \rightarrow \pi \pi \text { violates CP }
\end{aligned}
$$

$$
\begin{aligned}
\left|K_{S, L}\right\rangle & =\frac{1}{\sqrt{2\left(1+\left|\varepsilon_{S, L}\right|\right.}}\left[\left(1+\varepsilon_{S, L}\right)\left|K^{0}\right\rangle \pm\left(1-\varepsilon_{S, L}\right)\left|\bar{K}^{0}\right\rangle\right] \\
& =\frac{1}{\sqrt{1}}\left[\left|K_{1,2}\right\rangle+\varepsilon_{S, L}\left|K_{2,1}\right\rangle\right] \quad \begin{array}{l}
\mid \mathrm{K}_{1,2}> \\
\mathrm{CP}= \pm 1 \text { are states }
\end{array}
\end{aligned}
$$

CPT violation: standard picture

CP violation:

$$
\varepsilon_{S, L}=\varepsilon \pm \delta
$$

T violation:

$$
\varepsilon=\frac{H_{12}-H_{21}}{2\left(\lambda_{S}-\lambda_{L}\right)}=\frac{-i \mathfrak{J} M_{12}-\Im \Gamma_{12} / 2}{\Delta m+i \Delta \Gamma / 2}
$$

CPT violation:

$$
\delta=\frac{H_{11}-H_{22}}{2\left(\lambda_{S}-\lambda_{L}\right)}=\frac{1}{2} \frac{\left(m_{\bar{K}^{0}}-m_{K^{0}}\right)-(i / 2)\left(\Gamma_{\bar{K}^{0}}-\Gamma_{K^{0}}\right)}{\Delta m+i \Delta \Gamma / 2}
$$

- $\delta \neq 0$ implies CPT violation
- $\varepsilon \neq 0$ implies T violation
- $\varepsilon \neq 0$ or $\delta \neq 0$ implies CP violation
(with a phase convention $\mathfrak{J} \Gamma_{12}=0$)
$\Delta m=m_{L}-m_{S}, \quad \Delta \Gamma=\Gamma_{S}-\Gamma_{L}$
$\Delta m=3.5 \times 10^{-15} \mathrm{GeV}$
$\Delta \Gamma \approx \Gamma_{\mathrm{S}} \approx 2 \Delta m=7 \times 10^{-15} \mathrm{GeV}$

CPT violation: standard picture

CP violation:

$$
\varepsilon_{S, L}=\varepsilon \pm \delta
$$

T violation:

$$
\varepsilon=\frac{H_{12}-H_{21}}{2\left(\lambda_{S}-\lambda_{L}\right)}=\frac{-i \mathfrak{J} M_{12}-\Im \Gamma_{12} / 2}{\Delta m+i \Delta \Gamma / 2}
$$

CPT violation:

$$
\delta=\frac{H_{11}-H_{22}}{2\left(\lambda_{S}-\lambda_{L}\right)}=\frac{1}{2} \frac{\left(m_{\bar{K}^{0}}-m_{K^{0}}\right)-(i / 2)\left(\Gamma_{\bar{K}^{0}}-\Gamma_{K^{0}}\right)}{\Delta m+i \Delta \Gamma / 2}
$$

- $\delta \neq 0$ implies CPT violation
- $\varepsilon \neq 0$ implies T violation
- $\varepsilon \neq 0$ or $\delta \neq 0$ implies CP violation
(with a phase convention $\mathfrak{J} \Gamma_{12}=0$)
$\Delta m=m_{L}-m_{S}, \quad \Delta \Gamma=\Gamma_{S}-\Gamma_{L}$
$\Delta m=3.5 \times 10^{-15} \mathrm{GeV}$
$\Delta \Gamma \approx \Gamma_{\mathrm{S}} \approx 2 \Delta m=7 \times 10^{-15} \mathrm{GeV}$

neutral kaons vs other oscillating meson systems

	$<\mathbf{m}>$ $(\mathbf{G e V})$	$\Delta \mathbf{m}$ $(\mathbf{G e V})$	$<\Gamma>$ $(\mathbf{G e V})$	$\Delta \Gamma / 2$ $(\mathbf{G e V})$
K^{0}	0.5	3×10^{-15}	3×10^{-15}	3×10^{-15}
D^{0}	1.9	6×10^{-15}	2×10^{-12}	1×10^{-14}
$\mathrm{~B}^{0}{ }_{\mathrm{d}}$	5.3	3×10^{-13}	4×10^{-13}	$\mathrm{O}\left(10^{-15}\right)$ $(\mathrm{SM}$ prediction)
$\mathrm{B}_{\mathrm{s}}^{0}$	5.4	1×10^{-11}	4×10^{-13}	3×10^{-14}

"Standard" CPT test

Comparing "survival" probabilities of K^{0} and \underline{K}^{0} measuring semileptonic decays vs time:

$$
\Re \delta=(3.0 \pm 3.3 \pm 0.6) \times 10^{-4}
$$

PLB444 (1998) 52
using the unitarity constraint (Bell-Steinberger relation)

$$
\operatorname{Im} \delta=(-0.7 \pm 1.4) \times 10^{-5}
$$

$$
2 \Im \delta=\Im\left[\left\langle K_{L} \mid K_{s}\right\rangle\right]=\Im\left[\frac{\sum_{f}\langle f| T\left|K_{s}\right\rangle\langle f| T\left|K_{L}\right\rangle^{\star}}{i\left(\lambda_{s}-\lambda_{L}^{*}\right)}\right]
$$

PDG fit (2014)

$$
\delta=\frac{1}{2} \frac{\left(m_{\bar{K}^{0}}-m_{K^{0}}\right)-(i / 2)\left(\Gamma_{\bar{K}^{0}}-\Gamma_{K^{0}}\right)}{\Delta m+i \Delta \Gamma / 2}
$$

$$
\begin{array}{l:l:c}
\hline\left(\Gamma_{\mathrm{K}^{0}}-\Gamma_{\bar{K}^{0}}\right) & \square 95 \% \mathrm{CL} \\
& \boxed{0} \% \mathrm{CL}
\end{array}
$$

Combining Red and Im δ results

Assuming $\quad\left(\Gamma_{\bar{K}^{0}}-\Gamma_{K^{0}}\right)=0$, i.e. no CPT viol. in decay:

$$
\left|m_{\bar{K}^{0}}-m_{K^{0}}\right|<4.0 \times 10^{-19} \mathrm{GeV} \quad \text { at } 95 \% \text { c.l. }
$$

10

Entangled neutral kaon pairs

Neutral kaons at a ϕ-factory

Production of the vector meson ϕ in $\mathrm{e}^{+} \mathrm{e}^{-}$annihilations:

- $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \phi \quad \sigma_{\phi} \sim 3 \mu \mathrm{~b}$

$$
\mathrm{W}=\mathrm{m}_{\phi}=1019.4 \mathrm{MeV}
$$

- $\operatorname{BR}\left(\phi \rightarrow \mathrm{K}^{0} \mathrm{~K}^{0}\right) ~ \sim 34 \%$
- $\sim 10^{6}$ neutral kaon pairs per
 pb^{-1} produced in an antisymmetric quantum state with $J^{P C}=1^{--}$:

$$
\begin{aligned}
& \mathbf{p}_{\mathrm{K}}=110 \mathrm{MeV} / \mathrm{c} \\
& \lambda_{\mathrm{S}}=6 \mathrm{~mm} \quad \lambda_{\mathrm{L}}=3.5 \mathrm{~m}
\end{aligned}
$$

$$
\begin{gathered}
|i\rangle=\frac{1}{\sqrt{2}}\left[\left|K^{0}(\vec{p})\right\rangle\left\langle\bar{K}^{0}(-\vec{p})\right\rangle-\left|\bar{K}^{0}(\vec{p})\right\rangle\left|K^{0}(-\vec{p})\right\rangle\right] \\
=\frac{N}{\sqrt{2}}\left[\left|K_{S}(\vec{p})\right\rangle\left\langle K_{L}(-\vec{p})\right\rangle-\left|K_{L}(\vec{p})\right\rangle\left|K_{S}(-\vec{p})\right\rangle\right] \\
N=\sqrt{\left(1+\left|\varepsilon_{S}\right|^{2}\right)\left(1+\left|\varepsilon_{L}\right|^{2}\right)} /\left(1-\varepsilon_{s} \varepsilon_{L}\right) \cong 1
\end{gathered}
$$

The KLOE detector at the Frascati ϕ-factory DAФNE

The KLOE detector at the Frascati ϕ-factory DAФNE

Integrated luminosity (KLOE)

Total KLOE $\int \mathcal{L} \mathrm{dt} \sim 2.5 \mathrm{fb}^{-1}$ (2001-05) $\rightarrow \sim 2.5 \times 10^{9} \mathrm{~K}_{S} \mathrm{~K}_{\mathrm{L}}$ pairs

KLOE detector

Lead/scintillating fiber calorimeter drift chamber
4 m diameter $\times 3.3 \mathrm{~m}$ length helium based gas mixture

Test of Quantum Coherence

EPR correlations in entangled neutral kaon pairs from ϕ

$|i\rangle=\frac{1}{\sqrt{2}}\left[\left|K^{0}\right\rangle\left|\bar{K}^{0}\right\rangle-\left|\bar{K}^{0}\right\rangle\left|K^{0}\right\rangle\right]$

EPR correlations in entangled neutral kaon pairs from ϕ

$|i\rangle=\frac{1}{\sqrt{2}}\left[\left|K^{0}\right\rangle\left|\bar{K}^{0}\right\rangle-\left|\bar{K}^{0}\right\rangle\left|K^{0}\right\rangle\right]$

Same final state for both kaons: $f_{1}=f_{2}=\pi^{+} \pi^{-}$ (this specific channel is suppressed by CP viol. $\left.\left|\eta_{+-}\right|^{2}=\left|\mathrm{A}\left(\mathrm{K}_{\mathrm{L}}^{->\pi^{+} \pi^{-}}\right) / \mathrm{A}\left(\mathrm{K}_{\mathrm{S}^{-}}>\pi^{+} \pi^{-}\right)\right|^{2} \sim|\varepsilon|^{2} \sim 10^{-6}\right)$

EPR correlations in entangled neutral kaon pairs from ϕ

$$
|i\rangle=\frac{1}{\sqrt{2}}\left[\left|K^{0}\right\rangle\left|\bar{K}^{0}\right\rangle-\left|\bar{K}^{0}\right\rangle\left|K^{0}\right\rangle\right]
$$

EPR correlation:
no simultaneous decays ($\Delta t=0$) in the same final state due to the fully destructive quantum interference

Same final state for both kaons: $f_{1}=f_{2}=\pi^{+} \pi^{-}$ (this specific channel is suppressed by CP viol.

$$
\left.\left|\eta_{+-}\right|^{2}=\left|\mathrm{A}\left(\mathrm{~K}_{\mathrm{L}}->\pi^{+} \pi^{-}\right) / \mathrm{A}\left(\mathrm{~K}_{\mathrm{S}}^{->\pi^{+} \pi^{-}}\right)\right|^{2} \sim|\varepsilon|^{2} \sim 10^{-6}\right)
$$

EPR correlations in entangled neutral kaon pairs from ϕ

$$
|i\rangle=\frac{1}{\sqrt{2}}\left[\left|K^{0}\right\rangle\left|\bar{K}^{0}\right\rangle-\left|\bar{K}^{0}\right\rangle\left|K^{0}\right\rangle\right]
$$

EPR correlation:
no simultaneous decays ($\Delta t=0$) in the same final state due to the fully destructive quantum interference

Same final state for both kaons: $f_{1}=f_{2}=\pi^{+} \pi^{-}$ (this specific channel is suppressed by CP viol.

$$
\left.\left|\eta_{+-}\right|^{2}=\left|\mathrm{A}\left(\mathrm{~K}_{\mathrm{L}}->\pi^{+} \pi^{-}\right) / \mathrm{A}\left(\mathrm{~K}_{\mathrm{S}}^{->\pi^{+} \pi^{-}}\right)\right|^{2} \sim|\varepsilon|^{2} \sim 10^{-6}\right)
$$

EPR correlations in entangled neutral kaon pairs from ϕ

$$
|i\rangle=\frac{1}{\sqrt{2}}\left[\left|K^{0}\right\rangle\left|\bar{K}^{0}\right\rangle-\left|\bar{K}^{0}\right\rangle\left|K^{0}\right\rangle\right]
$$

EPR correlation:
no simultaneous decays ($\Delta t=0$) in the same final state due to the fully destructive quantum interference

Same final state for both kaons: $f_{1}=f_{2}=\pi^{+} \pi^{-}$ (this specific channel is suppressed by CP viol. $\left.\left|\eta_{+-}\right|^{2}=\left|\mathrm{A}\left(\mathrm{K}_{\mathrm{L}}->\pi^{+} \pi^{-}\right) / \mathrm{A}\left(\mathrm{K}_{\mathrm{S}}->\pi^{+} \pi^{-}\right)\right|^{2} \sim|\varepsilon|^{2} \sim 10^{-6}\right)$

$$
\Delta t=\left|t_{1}-t_{2}\right|
$$

$\phi \rightarrow K_{\mathrm{S}} \mathbf{K}_{\mathrm{L}} \rightarrow \pi^{+} \pi^{-} \pi^{+} \pi^{-}$: test of quantum coherence

$$
\begin{aligned}
|i\rangle= & \frac{1}{\sqrt{2}}\left[\left|K^{0}\right\rangle\left|\bar{K}^{0}\right\rangle-\left|\bar{K}^{0}\right\rangle\left|K^{0}\right\rangle\right] \\
I\left(\pi^{+} \pi^{-}, \pi^{+} \pi^{-} ; \Delta t\right)= & \frac{N}{2}\left[\left|\left\langle\pi^{+} \pi^{-}, \pi^{+} \pi^{-} \mid K^{0} \bar{K}^{0}(\Delta t)\right\rangle\right|^{2}+\left|\left\langle\pi^{+} \pi^{-}, \pi^{+} \pi^{-} \mid \bar{K}^{0} K^{0}(\Delta t)\right\rangle\right|^{2}\right. \\
& \left.-2 \mathfrak{R}\left(\left\langle\pi^{+} \pi^{-}, \pi^{+} \pi^{-} \mid K^{0} \bar{K}^{0}(\Delta t)\right\rangle\left\langle\pi^{+} \pi^{-}, \pi^{+} \pi^{-} \mid \bar{K}^{0} K^{0}(\Delta t)\right\rangle^{*}\right)\right]
\end{aligned}
$$

$\phi \rightarrow K_{\mathrm{S}} \mathbf{K}_{\mathrm{L}} \rightarrow \pi^{+} \pi^{-} \pi^{+} \pi^{-}$: test of quantum coherence

$$
\begin{gathered}
|i\rangle=\frac{1}{\sqrt{2}}\left[\left|K^{0}\right\rangle\left|\bar{K}^{0}\right\rangle-\left|\bar{K}^{0}\right\rangle\left|K^{0}\right\rangle\right] \\
I\left(\pi^{+} \pi^{-}, \pi^{+} \pi^{-} ; \Delta t\right)= \\
=\frac{N}{2}\left[\left|\left\langle\pi^{+} \pi^{-}, \pi^{+} \pi^{-} \mid K^{0} \bar{K}^{0}(\Delta t)\right\rangle\right|^{2}+\left|\left\langle\pi^{+} \pi^{-}, \pi^{+} \pi^{-} \mid \bar{K}^{0} K^{0}(\Delta t)\right\rangle\right|^{2}\right. \\
\\
\left.-\left(1-\zeta_{0 \overline{0}}\right) \cdot 2 \mathfrak{R}\left(\left\langle\pi^{+} \pi^{-}, \pi^{+} \pi^{-} \mid K^{0} \bar{K}^{0}(\Delta t)\right\rangle\left\langle\pi^{+} \pi^{-}, \pi^{+} \pi^{-} \mid \bar{K}^{0} K^{0}(\Delta t)\right\rangle^{*}\right)\right]
\end{gathered}
$$

$\phi \rightarrow K_{\mathrm{S}} \mathrm{K}_{\mathrm{L}} \rightarrow \pi^{+} \pi^{-} \pi^{+} \pi^{-}$: test of quantum coherence

$$
\begin{gathered}
|i\rangle=\frac{1}{\sqrt{2}}\left[\left|K^{0}\right\rangle\left|\bar{K}^{0}\right\rangle-\left|\bar{K}^{0}\right\rangle\left|K^{0}\right\rangle\right] \\
I\left(\pi^{+} \pi^{-}, \pi^{+} \pi^{-} ; \Delta t\right)=\frac{N}{2}\left[\left|\left\langle\pi^{+} \pi^{-}, \pi^{+} \pi^{-} \mid K^{0} \bar{K}^{0}(\Delta t)\right\rangle\right|^{2}+\left|\left\langle\pi^{+} \pi^{-}, \pi^{+} \pi^{-} \mid \bar{K}^{0} K^{0}(\Delta t)\right\rangle\right|^{2}\right. \\
\underbrace{\text { Decoherence parameter: }} \\
\zeta_{0 \overline{0}}=0 \quad \rightarrow \quad \mathrm{QM} \\
\zeta_{0 \overline{0}}=1 \quad \rightarrow \text { total decoherence } \\
\begin{array}{l}
\text { (also known as Furry's hypothesis } \\
\text { or spontaneous factorization) } \\
\text { [W.Furry, PR 49 (1936) 393] }
\end{array} \\
\text { Bertlmann, Grimus, Hiesmayr PR D60 (1999) 114032 } \\
\text { Bertlmann, Durstberger, Hiesmayr PRA 68 012111 (2003) }
\end{gathered}
$$

$\phi \rightarrow K_{\mathrm{S}} \mathrm{K}_{\mathrm{L}} \rightarrow \pi^{+} \pi^{-} \pi^{+} \pi^{-}$: test of quantum coherence

$$
|i\rangle=\frac{1}{\sqrt{2}}\left[\left|K^{0}\right\rangle\left|\bar{K}^{0}\right\rangle-\left|\bar{K}^{0}\right\rangle\left|K^{0}\right\rangle\right]
$$

$I\left(\pi^{+} \pi^{-}, \pi^{+} \pi^{-} ; \Delta t\right)=\frac{N}{2}\left[\left|\left\langle\pi^{+} \pi^{-}, \pi^{+} \pi^{-} \mid K^{0} \bar{K}^{0}(\Delta t)\right\rangle\right|^{2}+\left|\left\langle\pi^{+} \pi^{-}, \pi^{+} \pi^{-} \mid \bar{K}^{0} K^{0}(\Delta t)\right\rangle\right|^{2}\right.$

$\left.-1-\zeta_{0 \overline{0}} \cdot 2 \mathfrak{R} 2\left(\left\langle\pi^{+} \pi^{-}, \pi^{+} \pi^{-} \mid K^{0} \bar{K}^{0}(\Delta t)\right\rangle\left\langle\pi^{+} \pi^{-}, \pi^{+} \pi^{-} \mid \bar{K}^{0} K^{0}(\Delta t)\right\rangle^{*}\right)\right]$

Decoherence parameter:

$$
\zeta_{0 \overline{0}}=0 \quad \rightarrow \quad \mathrm{QM}
$$

$$
\zeta_{0 \overline{0}}=1 \quad \rightarrow \text { total decoherence }
$$

(also known as Furry's hypothesis or spontaneous factorization) [W.Furry, PR 49 (1936) 393]
Bertlmann, Grimus, Hiesmayr PR D60 (1999) 114032
Bertlmann, Durstberger, Hiesmayr PRA 68012111 (2003)

$\phi \rightarrow \mathbf{K}_{\mathrm{S}} \mathbf{K}_{\mathrm{L}} \rightarrow \pi^{+} \pi^{-} \pi^{+} \pi^{-}$: test of quantum coherence

- Analysed data: L=1.5 fb-1
- Fit including Δt resolution and efficiency effects + regeneration

KLOE result: PLB $642(2006) 315$

$\zeta_{0 \overline{0}}=\left(1.4 \pm 9.5_{\mathrm{STAT}} \pm 3.8_{\mathrm{SYST}}\right) \times 10^{-7}$
Observable suppressed by CP violation: $\left|\eta_{+-}\right|^{2} \sim|\varepsilon|^{2} \sim 10^{-6}$ $=>$ terms $\zeta_{00} /\left|\eta_{+-}\right|^{2}=>$ high sensitivity to ζ_{00}

From CPLEAR data, Bertlmann et al. (PR D60 (1999) 114032) obtain:

$$
\zeta_{0 \overline{0}}=0.4 \pm 0.7
$$

In the B-meson system, BELLE coll.
(PRL 99 (2007) 131802) obtains:
$\zeta_{\underline{a}}^{B}=0.029 \pm 0.057$

$\phi \rightarrow \mathbf{K}_{\mathrm{S}} \mathbf{K}_{\mathrm{L}} \rightarrow \pi^{+} \pi^{-} \pi^{+} \pi^{-}$: test of quantum coherence

- Analysed data: L=1.5 fb-1
- Fit including Δt resolution and efficiency effects + regeneration

KLOE result: PLB $642(2006) 315$

$\zeta_{\overline{0}}=\left(1.4 \pm 9.5_{\text {STAT }} \pm 3.8_{\mathrm{SYST}}\right) \times 10^{-7}$
Observable suppressed by CP violation: $\left|\eta_{+-}\right|^{2} \sim|\varepsilon|^{2} \sim 10^{-6}$ $=>$ terms $\zeta_{00} /\left|\eta_{+-}\right|^{2}=>$ high sensitivity to ζ_{00}

From CPLEAR data, Bertlmann et al. (PR D60 (1999) 114032) obtain:

$$
\zeta_{0 \overline{0}}=0.4 \pm 0.7
$$

In the B-meson system, BELLE coll. (PRL 99 (2007) 131802) obtains:
$\zeta^{B}=0.029 \pm 0.057$
Best precision achievable in an entangled system

$\phi \rightarrow \mathbf{K}_{\mathrm{S}} \mathbf{K}_{\mathrm{L}} \rightarrow \pi^{+} \pi^{-} \pi^{+} \pi^{-}$: test of quantum coherence

- Analysed data: $\mathrm{L}=1.5 \mathrm{fb}^{-1}$
- Fit including Δt resolution and efficiency effects + regeneration

KIOE result: PLB 642(2006) 315

$\zeta_{0 \overline{0}}=\left(1.4 \pm 9.5_{\text {STAT }} \pm 3.8_{\text {SYST }}\right) \times 10^{-7}$
Observable suppressed by CP violation: $\left|\eta_{+-}\right|^{2} \sim|\varepsilon|^{2} \sim 10^{-6}$ $=>$ terms $\zeta_{00} /\left.\eta_{+-}\right|^{2}=>$ high sensitivity

Cinelli et al. PHYSICAL REVIEW A 70, 022321 (2004)

FIG. 2. Bell inequalities test. The selected state is $\left|\Phi^{-}\right\rangle$ $=(1 / \sqrt{2})\left(\left|H_{1}, H_{2}\right\rangle-\left|V_{1}, V_{2}\right\rangle\right)$.

$\Delta t / \tau_{\mathrm{s}}$ (PRL 99 (2007) 131802) obtains:
$\zeta_{\overline{0} \bar{O}}^{B}=0.029 \pm 0.057$
Best precision achievable in an entangled system

Search for decoherence and CPT violation effects

Decoherence and CPT violation

S. Hawking (1975)

Possible decoherence due quantum gravity effects (BH evaporation) (apparent loss of unitarity):
Black hole information loss paradox =>
Possible decoherence near a black hole.
("like candy rolling
on the tongue" by J. Wheeler)

Hawking [1] suggested that at a microscopic level, in a quantum gravity picture, non-trivial space-time fluctuations (generically space-time foam) could give rise to decoherence effects, which would necessarily entail a violation of CPT [2].

Modified Liouville - von Neumann equation for the density matrix of the kaon system with 3 new CPTV parameters $\alpha, \beta, \gamma[3]$:

$$
\dot{\rho}(t)=\underbrace{-i H \rho+i \rho H^{+}}_{\mathrm{QM}}+L(\rho ; \alpha, \beta, \gamma) \quad \begin{aligned}
& \text { extra term inducing } \\
& \text { decoherence: } \\
& \text { pure state }=>\text { mixed state }
\end{aligned}
$$

[1] Hawking, Comm.Math.Phys. 87 (1982) 395; [2] Wald, PR D21 (1980) 2742;[3] Ellis et. al, NP B241 (1984) 381; Ellis, Mavromatos et al. PRD53 (1996)3846; Handbook on kaon interferometry [hep-ph/0607322],
M. Arzano PRD90 (2014) 024016 => Theories with Planck scale deformed symmetries can induce decoherence

Decoherence and CPT violation

S. Hawking (1975)

Possible decoherence due quantum gravity effects (BH evaporation) (apparent loss of unitarity):
Black hole information loss paradox =>
Possible decoherence near a black hole.
("like candy rolling
on the tongue" by J. Wheeler)

Hawking [1] suggested that at a microscopic level, in a quantum gravity picture, non-trivial space-time fluctuations (generically space-time foam) could give rise to decoherence effects, which would necessarily entail a violation of CPT [2].

Modified Liouville - von Neumann equation for the density matrix of the kaon system with 3 new CPTV parameters α, β, γ [3]:

$$
\dot{\rho}(t)=\underbrace{-i H \rho+i \rho H^{+}}_{\mathrm{QM}}+L(\rho ; \alpha, \beta, \gamma) \quad \begin{aligned}
& \text { at most: } \\
& \alpha, \beta, \gamma=O\left(\frac{M_{K}^{2}}{M_{P L A N C K}}\right) \approx 2 \times 10^{-20} \mathrm{GeV} .
\end{aligned}
$$

[1] Hawking, Comm.Math.Phys. 87 (1982) 395; [2] Wald, PR D21 (1980) 2742;[3] Ellis et. al, NP B241 (1984) 381; Ellis, Mavromatos et al. PRD53 (1996)3846; Handbook on kaon interferometry [hep-ph/0607322],
M. Arzano PRD90 (2014) $024016=>$ Theories with Planck scale deformed symmetries can induce decoherence

$\phi \rightarrow \mathbf{K}_{S} \mathbf{K}_{\mathrm{L}} \rightarrow \pi^{+} \pi^{-} \pi^{+} \pi^{-}:$decoherence and CPT violation

Study of time evolution of single kaons decaying in $\pi+\pi^{-}$and semileptonic final state

CPLEAR PLB 364, 239 (1999)

$$
\begin{aligned}
& \alpha=(-0.5 \pm 2.8) \times 10^{-17} \mathrm{GeV} \\
& \beta=(2.5 \pm 2.3) \times 10^{-19} \mathrm{GeV} \\
& \gamma=(1.1 \pm 2.5) \times 10^{-21} \mathrm{GeV}
\end{aligned}
$$

single
 kaons

In the complete positivity hypothesis
$\alpha=\gamma \quad, \quad \beta=0$
=> only one independent parameter: γ
The fit with $I\left(\pi^{+} \pi^{-}, \pi^{+} \pi^{-} ; \Delta t, \gamma\right)$ gives:
KLOE result $L=1.5 \mathrm{fb}^{-1}$

$$
\gamma=\left(0.7 \pm 1.2_{\text {STAT }} \pm 0.3_{\text {SYST }}\right) \times 10^{-21} \mathrm{GeV}
$$

PLB 642(2006) 315
Found. Phys. 40 (2010) 852

$$
\begin{aligned}
& \text { entangled } \\
& \text { kaons }
\end{aligned}
$$

CPT symmetry and Lorentz invariance test

[^0]
CPT and Lorentz invariance violation (SME)

- CPT theorem :

Exact CPT invariance holds for any quantum field theory which assumes:
(1) Lorentz invariance (2) Locality (3) Unitarity (i.e. conservation of probability).

- "Anti-CPT theorem" (Greenberger 2002):

Any unitary, local, point-particle quantum field theory that violates CPT invariance necessarily violates Lorentz invariance.

- Kostelecky et al. developed a phenomenological effective model providing a framework for CPT and Lorentz violations, based on spontaneous breaking of CPT and Lorentz symmetry, which might happen in quantum gravity (e.g. in some models of string theory) Standard Model Extension (SME) [Kostelecky PRD61, 016002, PRD64, 076001]

CPT violation in neutral kaons according to SME:

- At first order CPTV appears only in mixing parameter δ (no direct CPTV in decay)
- δ cannot be a constant (momentum dependence)

$$
\varepsilon_{S, L}=\varepsilon \pm \delta \quad \delta=i \sin \phi_{S W} e^{i \phi_{S W}} \gamma_{K}\left(\Delta a_{0}-\vec{\beta}_{K} \cdot \Delta \vec{a}\right) / \Delta m
$$

where $\Delta \mathrm{a}_{\mu}=\mathrm{a}_{\mu}{ }^{92}-\mathrm{a}_{\mu}{ }^{91}$ are four parameters associated to SME lagrangian terms $-a_{\mu} \bar{q} \gamma^{\mu} q$ for the valence quarks and related to CPT and Lorentz violation.

The Earth as a moving laboratory

FIG. 1: Standard Sun-centered inertial reference frame [9].

[^1]
Search for CPT and Lorentz invariance violation (SME)

$\delta=i \sin \phi_{S W} e^{i \phi_{S W}} \gamma_{K}\left(\Delta a_{0}-\vec{\beta}_{K} \cdot \Delta \vec{a}\right) / \Delta m$
δ depends on sidereal time t since laboratory frame rotates with Earth.
For a ϕ-factory there is an additional dependence on the polar and azimuthal angle θ, ϕ of the kaon momentum in the laboratory frame:

$$
\begin{array}{rlr}
\delta(\vec{p}, t)= & \left.\frac{i \sin \phi_{S W} e^{i \phi_{S W}} \gamma_{K}\left\{\underline{\Delta a_{0}}\right.}{\Delta m} \quad \begin{array}{ll}
\text { (in general z lab. axis is r } \\
& +\beta_{K} \underline{\Delta a_{Z}(\cos \theta \cos \chi-\sin \theta \sin \phi \sin \chi)} \\
& +\beta_{K}\left[-\Delta a_{X} \sin \theta \sin \phi+\Delta a_{Y}(\cos \theta \sin \chi+\sin \theta \cos \phi \cos \chi)\right] \sin \Omega t \\
& \left.+\beta_{K}\left[+\underline{\Delta a_{Y}} \sin \theta \sin \phi+\underline{\Delta a_{X}}(\cos \theta \sin \chi+\sin \theta \cos \phi \cos \chi)\right] \cos \Omega t\right\}
\end{array}\right\} .
\end{array}
$$

Ω : Earth's sidereal frequency $\quad \chi$: angle between the z lab. axis and the Earth's rotation axis

Search for CPT and Lorentz invariance violation (SME)

$\delta=i \sin \phi_{S W} e^{i \phi_{S W}} \gamma_{K}\left(\Delta a_{0}-\vec{\beta}_{K} \cdot \Delta \vec{a}\right) / \Delta m$
δ depends on sidereal time t since laboratory frame rotates with Earth.
For a ϕ-factory there is an additional dependence on the polar and azimuthal angle θ, ϕ of the kaon momentum in the laboratory frame:

$$
\begin{aligned}
\delta(\vec{p}, t)= & \frac{i \sin \phi_{S W} e^{i \phi_{S W}}}{\Delta m} \gamma_{K}\left\{\Delta a_{0}\right. \\
& +\beta_{K} \underline{\Delta a_{Z}(\cos \theta \cos \chi-\sin \theta \sin \phi \sin \chi)} \\
& +\beta_{K}\left[\underline{-\Delta a_{X}} \sin \theta \sin \phi+\underline{\Delta a_{Y}}(\cos \theta \sin \chi+\sin \theta \cos \phi \cos \chi)\right] \sin \Omega t \\
& \left.+\beta_{K}\left[\underline{+\Delta a_{Y}} \sin \theta \sin \phi+\underline{\Delta a_{X}}(\cos \theta \sin \chi+\sin \theta \cos \phi \cos \chi)\right] \cos \Omega t\right\}
\end{aligned}
$$

At DAФNE K mesons are produced with angular distribution $\mathrm{dN} / \mathrm{d} \Omega \propto \sin ^{2} \theta$

Ω : Earth's sidereal frequency $\quad \chi$: angle between the z lab. axis and the Earth's rotation axis

Search for CPTV and LV: exploiting EPR correlations

$$
\begin{aligned}
& |i\rangle=\frac{1}{\sqrt{2}}\left[\left|K^{0}\right\rangle\left|\bar{K}^{0}\right\rangle-\left|\bar{K}^{0}\right\rangle\left|K^{0}\right\rangle\right] \\
& \eta_{i}=\left|\eta_{i}\right| e^{i \phi_{i}}=\left\langle f_{i}\right| T\left|K_{L}\right\rangle /\left\langle f_{i}\right| T\left|K_{S}\right\rangle \\
& I\left(f_{1}, f_{2} ; \Delta t\right) \propto\left\{\left|\eta_{1}\right|^{2} e^{-\Gamma_{L} \Delta t}+\left|\eta_{2}\right|^{2} e^{-\Gamma_{S} \Delta t}-2\left|\eta_{1} \| \eta_{2}\right| e^{-\left(\Gamma_{S}+\Gamma_{L}\right) \Delta t / 2} \cos \left(\Delta m \Delta t+\phi_{2}-\phi_{1}\right)\right\} \\
& \eta_{+-}^{(1)}=\varepsilon(1-\delta(+\vec{p}, t) / \varepsilon) \\
& \eta_{+-}^{(2)}=\varepsilon(1-\delta(-\vec{p}, t) / \varepsilon)
\end{aligned}
$$

Search for CPTV and LV: exploiting EPR correlations

$$
\begin{aligned}
& |i\rangle=\frac{1}{\sqrt{2}}\left[\left|K^{0}\right\rangle\left|\bar{K}^{0}\right\rangle-\left|\bar{K}^{0}\right\rangle\left|K^{0}\right\rangle\right] \\
& \eta_{i}=\left|\eta_{i}\right| e^{i \phi_{i}}=\left\langle f_{i}\right| T\left|K_{L}\right\rangle /\left\langle f_{i}\right| T\left|K_{S}\right\rangle \\
& I\left(f_{1}, f_{2} ; \Delta t\right) \propto\left\{\left|\eta_{1}\right|^{2} e^{-\Gamma_{L} \Delta t}+\left|\eta_{2}\right|^{2} e^{-\Gamma_{S} \Delta t}-2\left|\eta_{1} \| \eta_{2}\right| e^{-\left(\Gamma_{S}+\Gamma_{L}\right) \Delta t / 2} \cos \left(\Delta m \Delta t+\phi_{2}-\phi_{1}\right)\right\} \\
& \eta_{+-}^{(2)}=\varepsilon(1-\delta(-\vec{p}, t) / \varepsilon)
\end{aligned}
$$

Search for CPTV and LV: exploiting EPR correlations

$|i\rangle=\frac{1}{\sqrt{2}}\left[\left|K^{0}\right\rangle\left|\bar{K}^{0}\right\rangle-\left|\bar{K}^{0}\right\rangle\left|K^{0}\right\rangle\right]$

$$
\eta_{i}=\left|\eta_{i}\right| e^{i \phi_{i}}=\left\langle f_{i}\right| T\left|K_{L}\right\rangle /\left\langle f_{i}\right| T\left|K_{S}\right\rangle
$$

$$
I\left(f_{1}, f_{2} ; \Delta t\right) \propto\left\{\left|\eta_{1}\right|^{2} e^{-\Gamma_{L} \Delta t}+\left|\eta_{2}\right|^{2} e^{-\Gamma_{S} \Delta t}-2\left|\eta_{1}\right|\left|\eta_{2}\right| e^{-\left(\Gamma_{S}+\Gamma_{L}\right) \Delta t / 2} \cos \left(\Delta m \Delta t+\phi_{2}-\phi_{1}\right)\right\}
$$

$$
\left.\eta_{+-}^{(2)}=\varepsilon(1-\delta-\vec{p}, t) / \varepsilon\right)
$$

$$
\mathfrak{\Im}(\delta / \varepsilon)
$$

from the asymmetry at small $\Delta \mathrm{t}$
$\mathfrak{R}(\delta / \varepsilon) \approx 0$ because $\delta \perp \varepsilon$ from the asymmetry at large $\Delta \mathrm{t}$

Search for CPTV and LV: exploiting EPR correlations

Search for CPTV and LV: results

$\delta=i \sin \phi_{S W} e^{i \phi_{S W}} \gamma_{K}\left(\Delta a_{0}-\vec{\beta}_{K} \cdot \Delta \vec{a}\right) / \Delta m$

Search for CPTV and LV: results

$\delta=i \sin \phi_{S W} e^{i \phi_{S W}} \gamma_{K}\left(\Delta a_{0}-\vec{\beta}_{K} \cdot \Delta \vec{a}\right) / \Delta m$
Data divided in

4 sidereal time bins x 2 angular bins Simultaneous fit of the $\Delta \mathrm{t}$ distributions to extract $\Delta \mathrm{a}_{\mu}$ parameters
with $\mathrm{L}=1.7 \mathrm{fb}^{-1} \mathrm{KLOE}$ final result
PLB 730 (2014) 89-94

$$
\begin{aligned}
& \Delta a_{0}=\left(-6.0 \pm 7.7_{\text {STAT }} \pm 3.1_{\text {SYST }}\right) \times 10^{-18} \mathrm{GeV} \\
& \Delta a_{X}=\left(0.9 \pm 1.5_{\text {STAT }} \pm 0.6_{\text {SYST }}\right) \times 10^{-18} \mathrm{GeV} \\
& \Delta a_{Y}=\left(-2.0 \pm 1.5_{\text {STAT }} \pm 0.5_{\text {SYST }}\right) \times 10^{-18} \mathrm{GeV} \\
& \Delta a_{Z}=\left(-3.1 \pm 1.7_{\text {STAT }} \pm 0.6_{\text {SYST }}\right) \times 10^{-18} \mathrm{GeV}
\end{aligned}
$$

presently the first complete and most precise measurement in the quark sector of the SME

B meson system:
$\Delta \mathrm{a}^{\mathrm{B}}{ }_{\mathrm{x}, \mathrm{y}},\left(\Delta \mathrm{a}^{\mathrm{B}}-0.30 \Delta \mathrm{a}^{\mathrm{B}}{ }_{\mathrm{Z}}\right) \sim \mathrm{O}\left(10^{-13} \mathrm{GeV}\right)$
[Babar PRL 100 (2008) 131802]
$\Delta \mathrm{a}^{\mathrm{B} 0}{ }_{\mathrm{x}, \mathrm{y}, \mathrm{z}, 0} \sim \mathrm{O}\left(10^{-15} \mathrm{GeV}\right)$
$\Delta \mathrm{a}^{\mathrm{BS}}{ }_{\mathrm{x}, \mathrm{y}, \mathrm{z}, 0} \sim \mathrm{O}\left(10^{-14} \mathrm{GeV}\right)$
[LHCb PRL 116, 241601 (2016)]
D meson system:
$\Delta \mathrm{a}_{\mathrm{x}, \mathrm{y}},\left(\Delta \mathrm{a}^{\mathrm{D}}{ }_{0}-0.6 \Delta \mathrm{a}^{\mathrm{D}}{ }_{\mathrm{Z}}\right) \sim \mathrm{O}\left(10^{-13} \mathrm{GeV}\right)$
[Focus PLB 556 (2003) 7]

Other K meson results
$\mathrm{KTeV}: \Delta \mathrm{a}_{\mathrm{X}}, \Delta \mathrm{a}_{\mathrm{Y}}<9.2 \times 10^{-22} \mathrm{GeV} @ 90 \% \mathrm{CL}$ $\left|\Delta \mathrm{a}_{0}-0.60 \Delta \mathrm{a}_{\mathrm{z}}\right|<510^{-21} \mathrm{GeV}$
[Kostelecky PRL 80 (1998) 1818]

Direct CPT symmetry test in neutral kaon transitions

(or a very general and model independent test)

Direct test of CPT symmetry in neutral kaon transitions

-EPR correlations at a ϕ-factory (or B-factory) can be exploited to study other transitions involving also orthogonal "CP states" K_{+}and K_{-}

$\left\|K_{+}\right\rangle=\left\|K_{1}\right\rangle$	$(C P=+1)$		
$\left\|K_{-}\right\rangle=\left\|K_{2}\right\rangle$	$(C P=-1)$	\quad	$\|i\rangle=\frac{1}{\sqrt{2}}\left[\left\|K^{0}(\vec{p})\right\rangle\left\|\bar{K}^{0}(-\vec{p})\right\rangle-\left\|\bar{K}^{0}(\vec{p})\right\rangle\left\|K^{0}(-\vec{p})\right\rangle\right]$
---:			
$\left.=\frac{1}{\sqrt{2}}\left[\left\|K_{+}(\vec{p})\right\rangle\left\|K_{-}(-\vec{p})\right\rangle-\left\|K_{-}(\vec{p})\right\rangle K_{+}(-\vec{p})\right\rangle\right]$			

-decay as filtering measurement -entanglement -> preparation of state

Direct test of CPT symmetry in neutral kaon transitions

-EPR correlations at a ϕ-factory (or B-factory) can be exploited to study other transitions involving also orthogonal "CP states" K_{+}and K_{-}

$$
\begin{array}{ll}
\left|K_{+}\right\rangle=\left|K_{1}\right\rangle & (C P=+1) \\
\left|K_{-}\right\rangle=\left|K_{2}\right\rangle & (C P=-1)
\end{array}
$$

-decay as filtering measurement -entanglement -> preparation of state

Direct test of CPT symmetry in neutral kaon transitions

-EPR correlations at a ϕ-factory (or B-factory) can be exploited to study other transitions involving also orthogonal "CP states" K_{+}and K.

$$
\begin{array}{ll}
\left|K_{+}\right\rangle=\left|K_{1}\right\rangle & (C P=+1) \\
\left|K_{-}\right\rangle=\left|K_{2}\right\rangle & (C P=-1)
\end{array}
$$

-decay as filtering measurement -entanglement -> preparation of state

Direct test of CPT symmetry in neutral kaon transitions

-EPR correlations at a ϕ-factory (or B-factory) can be exploited to study other transitions involving also orthogonal "CP states" K_{+}and K.

$$
\begin{array}{ll}
\left|K_{+}\right\rangle=\left|K_{1}\right\rangle & (C P=+1) \\
\left|K_{-}\right\rangle=\left|K_{2}\right\rangle & (C P=-1)
\end{array}
$$

-decay as filtering measurement -entanglement -> preparation of state

Direct test of CPT symmetry in neutral kaon transitions

-EPR correlations at a ϕ-factory (or B-factory) can be exploited to study other transitions involving also orthogonal "CP states" K_{+}and K_{-}
$\left|K_{+}\right\rangle=\left|K_{1}\right\rangle(C P=+1)$
$\left|K_{-}\right\rangle=\left|K_{2}\right\rangle(C P=-1)$
-decay as filtering measurement -entanglement -> preparation of state

Note: CP and T conjugated process

$$
\bar{K}^{0} \rightarrow K_{-} \quad K_{-} \rightarrow K^{0}
$$

Direct test of CPT symmetry in neutral kaon transitions

CPT symmetry test J. Bernabeu, A.D.D., P. Villanueva, JHEP 10 (2015) 139

Reference			$\mathcal{P} \mathcal{T}$-conjugate	
Transition	Decay products		Transition	Decay products
$\mathrm{K}^{0} \rightarrow \mathrm{~K}_{+}$	$\left(\ell^{-}, \pi \pi\right)$	$\mathrm{K}_{+} \rightarrow \overline{\mathrm{K}}^{0}$	$\left(3 \pi^{0}, \ell^{-}\right)$	
$\mathrm{K}^{0} \rightarrow \mathrm{~K}_{-}$	$\left(\ell^{-}, 3 \pi^{0}\right)$		$\mathrm{K}_{-} \rightarrow \overline{\mathrm{K}}^{0}$	$\left(\pi \pi, \ell^{-}\right)$
$\overline{\mathrm{K}}^{0} \rightarrow \mathrm{~K}_{+}$	$\left(\ell^{+}, \pi \pi\right)$		$\mathrm{K}_{+} \rightarrow \mathrm{K}^{0}$	$\left(3 \pi^{0}, \ell^{+}\right)$
$\overline{\mathrm{K}}^{0} \rightarrow \mathrm{~K}_{-}$	$\left(\ell^{+}, 3 \pi^{0}\right)$	$\mathrm{K}_{-} \rightarrow \mathrm{K}^{0}$	$\left(\pi \pi, \ell^{+}\right)$	

One can define the following ratios of probabilities:

$$
\begin{aligned}
& R_{1, \mathcal{C P T}}(\Delta t)=P\left[\mathrm{~K}_{+}(0) \rightarrow \overline{\mathrm{K}}^{0}(\Delta t)\right] / P\left[\mathrm{~K}^{0}(0) \rightarrow \mathrm{K}_{+}(\Delta t)\right] \\
& R_{2, \mathcal{C P} \mathcal{T}}(\Delta t)=P\left[\mathrm{~K}^{0}(0) \rightarrow \mathrm{K}_{-}(\Delta t)\right] / P\left[\mathrm{~K}_{-}(0) \rightarrow \overline{\mathrm{K}}^{0}(\Delta t)\right] \\
& R_{3, \mathcal{C P} \mathcal{T}}(\Delta t)=P\left[\mathrm{~K}_{+}(0) \rightarrow \mathrm{K}^{0}(\Delta t)\right] / P\left[\overline{\mathrm{~K}}^{0}(0) \rightarrow \mathrm{K}_{+}(\Delta t)\right] \\
& R_{4, \mathcal{C P} \mathcal{T}}(\Delta t)=P\left[\overline{\mathrm{~K}}^{0}(0) \rightarrow \mathrm{K}_{-}(\Delta t)\right] / P\left[\mathrm{~K}_{-}(0) \rightarrow \mathrm{K}^{0}(\Delta t)\right]
\end{aligned}
$$

Any deviation from $\mathrm{R}_{\mathrm{i}, \mathrm{CPT}}=1$ constitutes a violation of CPT-symmetry

Direct test of CPT symmetry in neutral kaon transitions

for visualization purposes, plots with $\operatorname{Re}(\delta)=3.310^{-4} \operatorname{Im}(\delta)=1.610^{-5}(\ldots \operatorname{Im}(\delta)=0)$

Direct test of CPT symmetry in neutral kaon transitions

for visualization purposes, plots with $\operatorname{Re}(\delta)=3.310-\operatorname{tm}(\delta)=1.610^{-5}(\ldots \operatorname{lm}(\delta)=0)$

Direct test of CPT symmetry in neutral kaon transitions

- It would be possible to directly test the CPT symmetry in transition processes between meson states, rather than comparing masses, lifetimes, or other intrinsic properties of particle and anti-particle states.
- The proposed CPT test for neutral kaons is model independent and fully robust. (It can then be translated in terms of $\delta, \alpha, \beta, \gamma, \Delta \mathrm{a}_{\mu}$ etc..).
- Possible spurious effects induced by CP violation in the decay and/or a violation of the $\Delta S=\Delta Q$ rule have been shown to be well under control.
- CPT violating effects may not appear at first order in diagonal mass terms (survival probabilities) while they can manifest at first order in transitions (nondiagonal terms).
- Connection with charge semileptonic asymmetries of K_{S} and K_{L}. From KLOE preliminary results [A.D.D. in Handbook on kaon interf. Fras. Phys. Ser. 43 (2007)]:

$$
\frac{R_{2, \mathrm{CPT}}^{\exp }\left(\Delta t \gg \tau_{S}\right)}{R_{4, \mathrm{CPT}}^{\exp }\left(\Delta t \gg \tau_{S}\right)} \simeq 1+2\left(A_{L}-A_{S}\right)=1.004 \pm 0.020
$$

- KLOE-2 can reach a statistical sensitivity of $\mathrm{O}\left(10^{-3}\right)$ See Schubert's talk J. Bernabeu, A.D.D., P. Villanueva, JHEP 10 (2015) 139 for B mesons

Next Future perspectives

KLOE-2 at upgraded DAФNE

DAФNE upgraded in luminosity:

- For the very first time the "crab-waist" concept - an interaction scheme, developed in Frascati, where the transverse dimensions of the beams and their crossing angle are tuned to maximize the machine luminosity - has been applied in presence of a high-field detector solenoid.

KLOE-2 experiment:

- extend the KLOE physics program at DAФNE upgraded in luminosity - Collect $\mathrm{L}>5 \mathrm{fb}^{-1}$ of integrated luminosity in the next couple of years

Physics program (see EPJC 68 (2010) 619-681)

- Neutral kaon interferometry, CPT symmetry \& QM tests
- Kaon physics, CKM, LFV, rare K_{S} decays
- η, η ' physics
- Light scalars, $\gamma \gamma$ physics
- Hadron cross section at low energy, a_{μ}
- Dark forces: search for light U boson

Detector upgrade:

- $\gamma \gamma$ tagging system
- inner tracker
- small angle and quad calorimeters
- FEE maintenance and upgrade
- Computing and networking update
- etc.. (Trigger, software, ...)

Inner tracker at KLOE-2

KLOE-2 data taking in progress

Prospects for KLOE-2

Param.	Present best published measurement	$\begin{aligned} & \text { KLOE-2 (IT) } \\ & \mathrm{L}=5 \mathrm{fb}^{-1} \text { (stat.) } \end{aligned}$	$\begin{gathered} \text { KLOE-2 (IT) } \\ \mathrm{L}=10 \mathrm{fb}^{-1} \text { (stat.) } \end{gathered}$
ζ_{00}	$(0.1 \pm 1.0) \times 10^{-6}$	$\pm 0.26 \times 10^{-6}$	$\pm 0.18 \times 10^{-6}$
$\xi_{\text {SL }}$	$(0.3 \pm 1.9) \times 10^{-2}$	$\pm 0.49 \times 10^{-2}$	$\pm 0.35 \times 10^{-2}$
α	$(-0.5 \pm 2.8) \times 10^{-17} \mathrm{GeV}$	$\pm 5.0 \times 10^{-17} \mathrm{GeV}$	$\pm 3.5 \times 10^{-17} \mathrm{GeV}$
β	$(2.5 \pm 2.3) \times 10^{-19} \mathrm{GeV}$	$\pm 0.50 \times 10^{-19} \mathrm{GeV}$	$\pm 0.35 \times 10^{-19} \mathrm{GeV}$
γ	$(1.1 \pm 2.5) \times 10^{-21} \mathrm{GeV}$ compl. pos. hyp. $(0.7 \pm 1.2) \times 10^{-21} \mathrm{GeV}$	$\begin{aligned} & \pm 0.75 \times 10^{-21} \mathrm{GeV} \\ & \text { compl. pos. hyp. } \\ & \pm 0.33 \times 10^{-21} \mathrm{GeV} \end{aligned}$	$\begin{aligned} & \pm 0.53 \times 10^{-21} \mathrm{GeV} \\ & \text { compl. pos. hyp. } \\ & \pm 0.23 \times 10^{-21} \mathrm{GeV} \end{aligned}$
$\operatorname{Re}(\omega)$	$(-1.6 \pm 2.6) \times 10^{-4}$	$\pm 0.70 \times 10^{-4}$	$\pm 0.49 \times 10^{-4}$
$\mathbf{I m}(\omega)$	$(-1.7 \pm 3.4) \times 10^{-4}$	$\pm 0.86 \times 10^{-4}$	$\pm 0.61 \times 10^{-4}$
$\Delta \mathrm{a}_{0}$	$(-6.0 \pm 8.3) \times 10^{-18} \mathrm{GeV}$	$\pm 2.2 \times 10^{-18} \mathrm{GeV}$	$\pm 1.6 \times 10^{-18} \mathrm{GeV}$
$\Delta \mathrm{a}_{\mathrm{z}}$	$(3.1 \pm 1.8) \times 10^{-18} \mathrm{GeV}$	$\pm 0.50 \times 10^{-18} \mathrm{GeV}$	$\pm 0.35 \times 10^{-18} \mathrm{GeV}$
$\Delta \mathrm{a}_{\mathrm{x}}$	$(0.9 \pm 1.6) \times 10^{-18} \mathrm{GeV}$	$\pm 0.44 \times 10^{-18} \mathrm{GeV}$	$\pm 0.31 \times 10^{-18} \mathrm{GeV}$
$\Delta \mathrm{a}_{\mathrm{Y}}$	$(-2.0 \pm 1.6) \times 10^{-18} \mathrm{GeV}$	$\pm 0.44 \times 10^{-18} \mathrm{GeV}$	$\pm 0.31 \times 10^{-18} \mathrm{GeV}$

Conclusions

-The entangled neutral kaon system at a ϕ-factory is an excellent laboratory for the study of CPT symmetry, discrete symmetries in general, and the basic principles of Quantum Mechanics;

- Several parameters related to possible
-CPT violation
-Decoherence
-Decoherence and CPT violation
-CPT violation and Lorentz symmetry breaking have been measured at KLOE, in same cases with a precision reaching the interesting Planck's scale region;
- All results are consistent with no CPT symmetry violation and no decoherence
- Neutral kaon interferometry, CPT symmetry and QM tests are one of the main issues of the KLOE-2 physics program.
- The precision of several tests could be improved by about one order of magnitude, possibly revealing such kind of effects or further pushing their experimental limits.

Spare slides

$\phi \rightarrow K_{S} K_{L} \rightarrow \pi^{+} \pi^{-} \pi^{+} \pi^{-}:$CPT violation in entangled K states

In presence of decoherence and CPT violation induced by quantum gravity (CPT operator "ill-defined") the definition of the particle-antiparticle states could be modified. This in turn could induce a breakdown of the correlations imposed by Bose statistics (EPR correlations) to the kaon state:
[Bernabeu, et al. PRL 92 (2004) 131601, NPB744 (2006) 180].

$$
\mathrm{I}\left(\pi^{+} \pi^{-}, \pi^{+} \pi^{-} ; \Delta \mathrm{t}\right) \quad \text { (a.u.) }
$$

$$
\begin{aligned}
|i\rangle & \left.\propto\left(\left|K^{0}\right\rangle\left|\bar{K}^{0}\right\rangle-\left|\bar{K}^{0}\right\rangle\left|K^{0}\right\rangle\right)+(\omega\rangle\left|K^{0}\right\rangle\left|\bar{K}^{0}\right\rangle+\left|\bar{K}^{0}\right\rangle\left|K^{0}\right\rangle\right) \\
& \propto\left(\left|K_{S}\right\rangle\left|K_{L}\right\rangle-\left|K_{L}\right\rangle\left|K_{S}\right\rangle\right)+\omega\left(\left|K_{S}\right\rangle\left|K_{S}\right\rangle-\left|K_{L}\right\rangle\left|K_{L}\right\rangle\right)
\end{aligned}
$$

at most one expects:

$$
|\omega|^{2}=O\left(\frac{E^{2} / M_{\text {PLANCK }}}{\Delta \Gamma}\right) \approx 10^{-5} \Rightarrow|\omega| \sim 10^{-3}
$$

In some microscopic models of space-time foam arising from non-critical string theory:
[Bernabeu, Mavromatos, Sarkar PRD 74 (2006) 045014]

$$
|\omega| \sim 10^{-4} \div 10^{-5}
$$

The maximum sensitivity to ω is expected for $f_{1}=f_{2}=\pi^{+} \pi^{-}$
All CPTV effects induced by QG $(\alpha, \beta, \gamma, \omega)$ could be simultaneously disentangled.

$\phi \rightarrow K_{\mathrm{S}} \mathrm{K}_{\mathrm{L}} \rightarrow \pi^{+} \pi^{-} \pi^{+} \pi^{-}:$CPT violation in entangled K states

Im $\omega \times 10^{-2}$
Fit of $I\left(\pi^{+} \pi^{-}, \pi^{+} \pi^{-} ; \Delta t, \omega\right)$:

- Analysed data: $1.5 \mathrm{fb}^{-1}$

KLOE result: PLB 642(2006) 315
Found. Phys. 40 (2010) 852

$$
\begin{aligned}
& \mathfrak{\Re} \omega=\left(-1.6_{-2.1 \text { STAT }}^{+3.0} \pm 0.4_{\text {SYST }}\right) \times 10^{-4} \\
& \mathfrak{J} \omega=\left(-1.7_{-3.0 S T A T}^{+3.3} \pm 1.2_{\text {SYST }}\right) \times 10^{-4} \\
& |\omega|<1.0 \times 10^{-3} \text { at } 95 \% \text { C.L. }
\end{aligned}
$$

$$
-0.0084 \leq \mathfrak{R} \omega \leq 0.0100 \text { at } 95 \% \text { C.L. }
$$

[^0]: A. Di Domenico

[^1]: A. Di Domenico

