CPT symmetry, Quantum Gravity and entangled neutral kaons

Antonio Di Domenico
Dipartimento di Fisica, Sapienza Università di Roma and INFN sezione di Roma, Italy

Fourteenth Marcel Grossmann Meeting - MG14

University of Rome "La Sapienza" - Rome, July 12-18, 2015

CPT: introduction

The three discrete symmetries of QM, C (charge conjugation: $q \rightarrow-q$), P (parity: $x \rightarrow-x$), and T (time reversal: $t \rightarrow-t$) are known to be violated in nature both singly and in pairs. Only CPT appears to be an exact symmetry of nature.

Exact CPT invariance holds for any quantum field theory (like the Standard Model) formulated on flat space-time which assumes:
(1) Lorentz invariance (2) Locality (3) Unitarity (i.e. conservation of probability).

Testing the validity of the CPT symmetry probes the most fundamental assumptions of our present understanding of particles and their interactions.

CPT: introduction

The three discrete symmetries of QM, C (charge conjugation: $q \rightarrow-q$), P (parity: $x \rightarrow-x$), and T (time reversal: $t \rightarrow-t$) are known to be violated in nature both singly and in pairs. Only CPT appears to be an exact symmetry of nature.

Intuitive justification of CPT symmetry [1]:
For an even-dimensional space => reflection of all axes is equivalent to a rotation e.g. in 2-dim. space: reflection of 2 axes $=$ rotation of π around the origin

In 4-dimensional pseudo-euclidean space-time PT reflection is NOT equivalent to a rotation. Time coordinate is not exactly equivalent to space coordinate. Charge conjugation is also needed to change sign to e.g. 4 -vector current j_{μ}. (or axial $4-\mathrm{v}$). CPT (and not PT) is equivalent to a rotation in the 4-dimensional space-time

CPT: introduction

Extension of CPT theorem to a theory of quantum gravity far from obvious.
(e.g. CPT violation appears in several QG models)
huge effort in the last decades to study and shed light on QG phenomenology
\Rightarrow Phenomenological CPTV parameters to be constrained by experiments
Consequences of CPT symmetry: equality of masses, lifetimes, $|q|$ and $|\mu|$ of a particle and its anti-particle.

Neutral meson systems offer unique possibilities to test CPT invariance; e.g. taking as figure of merit the fractional difference between the masses of a particle and its anti-particle:
neutral K system

$$
\left|m_{K^{0}}-m_{\bar{K}^{0}}\right| / m_{K}<10^{-18}
$$

neutral B system $\quad\left|m_{B^{0}}-m_{\bar{B}^{0}}\right| / m_{B}<10^{-14}$
proton- anti-proton

$$
\left|m_{p}-m_{\bar{p}}\right| / m_{p}<10^{-8}
$$

Other interesting CPT tests: e.g. the study of anti-hydrogen atoms, etc..

The neutral kaon: a two-level quantum system

Since the first observation of a $\mathrm{K}^{0}(\mathrm{~V}$ particle) in 1947, several phenomena observed and several tests performed:

- strangeness oscillations
- regeneration

- CP violation
- Direct CP violation
- precise CPT tests

One of the most intriguing physical systems in Nature.
T. D. Lee

Neutral K mesons are a unique physical system which appears to be created by nature to demonstrate, in the most impressive manner, a number of spectacular phenomena.

If the K mesons did not exist, they should have been invented "on purpose" in order to teach students the principles of quantum mechanics.

The neutral kaon system: introduction

The time evolution of a two-component state vector $|\Psi\rangle=a\left|K^{0}\right\rangle+b\left|\bar{K}^{0}\right\rangle$ in the $\left\{K^{0} \bar{K}^{0}\right\}$ space is given by (Wigner-Weisskopf approximation):

$$
i \frac{\partial}{\partial t} \Psi(t)=\mathbf{H} \Psi(t)
$$

\mathbf{H} is the effective hamiltonian (non-hermitian), decomposed into a Hermitian part (mass matrix \mathbf{M}) and an anti-Hermitian part (i/2 decay matrix Γ) :

$$
\mathbf{H}=\mathbf{M}-\frac{i}{2} \Gamma=\left(\begin{array}{ll}
m_{11} & m_{12} \\
m_{21} & m_{22}
\end{array}\right)-\frac{i}{2}\left(\begin{array}{ll}
\Gamma_{11} & \Gamma_{12} \\
\Gamma_{21} & \Gamma_{22}
\end{array}\right)
$$

Diagonalizing the effective Hamiltonian:
eigenstates

$$
\begin{aligned}
& \text { eigenvalues } \\
& \lambda_{S, L}=m_{S, L}-\frac{i}{2} \Gamma_{S, L} \\
& \left|K_{S, L}(t)\right\rangle=e^{-i \lambda_{S, L} t}\left|K_{S, L}(0)\right\rangle \\
& \tau_{S} \sim 90 \mathrm{ps} \quad \tau_{\mathrm{L}} \sim 51 \mathrm{~ns} \\
& \quad K_{L} \rightarrow \pi \pi \text { violates } \mathrm{CP}
\end{aligned}
$$

$$
\begin{aligned}
\left|K_{S, L}\right\rangle & =\frac{1}{\left.\sqrt{2\left(1+\left|\varepsilon_{S, L}\right|\right.}\right)}\left[\left(1+\varepsilon_{S, L}\right)\left|K^{0}\right\rangle \pm\left(1-\varepsilon_{S, L}\right)\left|\bar{K}^{0}\right\rangle\right] \\
& =\frac{1}{\sqrt{1}}\left[\left|K_{1,2}\right\rangle+\varepsilon_{S, L}\left|K_{2,1}\right\rangle\right] \quad \begin{array}{l}
\mid \mathrm{K}_{1,2}>\text { are } \\
\mathrm{CP}= \pm 1 \text { states }
\end{array}
\end{aligned}
$$

CPT violation: standard picture

CP violation:

$$
\varepsilon_{S, L}=\varepsilon \pm \delta
$$

T violation:

$$
\varepsilon=\frac{H_{12}-H_{21}}{2\left(\lambda_{S}-\lambda_{L}\right)}=\frac{-i \mathfrak{J} M_{12}-\Im \Gamma_{12} / 2}{\Delta m+i \Delta \Gamma / 2}
$$

CPT violation:

$$
\delta=\frac{H_{11}-H_{22}}{2\left(\lambda_{S}-\lambda_{L}\right)}=\frac{1}{2} \frac{\left(m_{\bar{K}^{0}}-m_{K^{0}}\right)-(i / 2)\left(\Gamma_{\bar{K}^{0}}-\Gamma_{K^{0}}\right)}{\Delta m+i \Delta \Gamma / 2}
$$

- $\delta \neq 0$ implies CPT violation
- $\varepsilon \neq 0$ implies T violation
- $\varepsilon \neq 0$ or $\delta \neq 0$ implies CP violation
(with a phase convention $\mathfrak{J} \Gamma_{12}=0$)
$\Delta m=m_{L}-m_{S}, \quad \Delta \Gamma=\Gamma_{S}-\Gamma_{L}$
$\Delta m=3.5 \times 10^{-15} \mathrm{GeV}$
$\Delta \Gamma \approx \Gamma_{\mathrm{S}} \approx 2 \Delta m=7 \times 10^{-15} \mathrm{GeV}$

neutral kaons vs other oscillating meson systems

	$<\mathbf{m}>$ $(\mathbf{G e V})$	$\Delta \mathbf{m}$ $(\mathbf{G e V})$	$<\Gamma>$ $(\mathbf{G e V})$	$\Delta \Gamma / 2$ $(\mathbf{G e V})$
K^{0}	0.5	3×10^{-15}	3×10^{-15}	3×10^{-15}
D^{0}	1.9	6×10^{-15}	2×10^{-12}	1×10^{-14}
$\mathrm{~B}^{0}{ }_{\mathrm{d}}$	5.3	3×10^{-13}	4×10^{-13}	$\mathrm{O}\left(10^{-15}\right)$ $(\mathrm{SM}$ prediction)
$\mathrm{B}_{\mathrm{s}}^{0}$	5.4	1×10^{-11}	4×10^{-13}	3×10^{-14}

"Standard" CPT tests

CPT test at CPLEAR

Test of CPT in the time evolution of neutral kaons using the semileptonic asymmetry

$$
\begin{aligned}
& \int A_{\delta}(\tau)=\frac{\bar{R}_{+}(\tau)-\alpha R_{-}(\tau)}{\bar{R}_{+}(\tau)+\alpha R_{-}(\tau)}+\frac{\bar{R}_{-}(\tau)-\alpha R_{+}(\tau)}{\bar{R}_{-}(\tau)+\alpha R_{+}(\tau)} \\
& \left\{R_{+(-)}(\tau)=R\left(K_{t=0}^{0} \rightarrow\left(e^{+(-)} \pi^{-(+)} v\right)_{t=\tau}\right)\right. \\
& \bar{R}_{-(+)}(\tau)=R\left(\bar{K}_{t=0}^{0} \rightarrow\left(e^{-(+)} \pi^{+(-)} v\right)_{t=\tau}\right) \\
& \alpha=1+4 \Re \varepsilon_{L} \\
& A_{\delta}\left(\tau \gg \tau_{S}\right)=8 \mathfrak{R} \delta
\end{aligned}
$$

$$
\mathfrak{R} \delta=(0.30 \pm 0.33 \pm 0.06) \times 10^{-3}
$$

CPLEAR PLB444 (1998) 52

The Bell-Steinberger relationship

Unitarity constraint:

$$
\left.\left(-\frac{d}{d t} \||K(t)\rangle \|^{2}\right)_{t=0}=\sum_{f}\left|a_{S}\langle f| T\right| K_{S}\right\rangle+\left.a_{L}\langle f| T\left|K_{L}\right\rangle\right|^{2}
$$

Sum over all possible decay products (sum over few decay products for kaons;

$$
\text { many for } B \text { and } D \text { mesons => not easy to evaluate) }
$$ many for B and D mesons => not easy to evaluate)

$$
\left.\Gamma_{S, L}=\sum_{f}|\langle f| T| K_{S, L}\right\rangle\left.\right|^{2}
$$

and a not trivial one, i.e. the B-S relationship:
All observables

$$
\left\langle K_{L} \mid K_{S}\right\rangle=2(\Re \varepsilon+i \Im \delta)=\frac{\sum_{f}\langle f| T\left|K_{S}\right\rangle\langle f| T\left|K_{L}\right\rangle^{*}}{i\left(\lambda_{S}-\lambda_{L}^{*}\right)}
$$ quantities

"Standard" CPT test

measuring the time evolution of a neutral kaon beam into semileptonic decays: $\Re \delta=(0.30 \pm 0.33 \pm 0.06) \times 10^{-3}$

CPLEAR

PLB444 (1998) 52
using the unitarity constraint (Bell-Steinberger relation)

$$
\operatorname{Im} \delta=(-0.7 \pm 1.4) \times 10^{-5}
$$

$$
2 \Im \delta=\Im\left[\left\langle K_{L} \mid K_{S}\right\rangle\right]=\Im\left[\frac{\sum_{f}\langle f| T\left|K_{S}\right\rangle\langle f| T\left|K_{L}\right\rangle^{*}}{i\left(\lambda_{S}-\lambda_{L}^{*}\right)}\right]
$$

PDG fit (2014)

$$
\delta=\frac{1}{2} \frac{\left(m_{\bar{K}^{0}}-m_{K^{0}}\right)-(i / 2)\left(\Gamma_{\bar{K}^{0}}-\Gamma_{K^{0}}\right)}{\Delta m+i \Delta \Gamma / 2}
$$

$$
\begin{array}{l:l:l}
\hline\left(\Gamma_{\mathrm{K}^{0}}-\Gamma_{\bar{K}^{0}}\right) & \square 95 \% \mathrm{CL} \\
& \boxed{0} \% \mathrm{CL}
\end{array}
$$

Combining Re δ and Im δ results

Assuming $\quad\left(\Gamma_{\bar{K}^{0}}-\Gamma_{K^{0}}\right)=0$, i.e. no CPT viol. in decay:

$$
\left|m_{\bar{K}^{0}}-m_{K^{0}}\right|<4.0 \times 10^{-19} \mathrm{GeV} \quad \text { at } 95 \% \text { c.l. }
$$

10

Entangled neutral kaon pairs

Neutral kaons at a ϕ-factory

Production of the vector meson ϕ in $\mathrm{e}^{+} \mathrm{e}^{-}$annihilations:

- $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \phi \quad \sigma_{\phi} \sim 3 \mu \mathrm{~b}$

$$
\mathrm{W}=\mathrm{m}_{\phi}=1019.4 \mathrm{MeV}
$$

- $\operatorname{BR}\left(\phi \rightarrow \mathrm{K}^{0} \mathrm{~K}^{0}\right) ~ \sim 34 \%$
- $\sim 10^{6}$ neutral kaon pairs per
 pb^{-1} produced in an antisymmetric quantum state with $J^{P C}=1^{--}$:

$$
\begin{aligned}
& \mathbf{p}_{\mathrm{K}}=110 \mathrm{MeV} / \mathrm{c} \\
& \lambda_{\mathrm{S}}=6 \mathrm{~mm} \quad \lambda_{\mathrm{L}}=3.5 \mathrm{~m}
\end{aligned}
$$

$$
\begin{array}{|l}
|i\rangle=\frac{1}{\sqrt{2}}\left[\left|K^{0}(\vec{p})\right\rangle\left|\bar{K}^{0}(-\vec{p})\right\rangle-\left|\bar{K}^{0}(\vec{p})\right\rangle\left|K^{0}(-\vec{p})\right\rangle\right] \\
=\frac{N}{\sqrt{2}}\left[\left|K_{S}(\vec{p})\right\rangle\left\langle K_{L}(-\vec{p})\right\rangle-\left|K_{L}(\vec{p})\right\rangle\left|K_{S}(-\vec{p})\right\rangle\right] \\
N=\sqrt{\left(1+\left|\varepsilon_{S}\right|^{2}\right)\left(1+\left|\varepsilon_{L}\right|^{2}\right)} /\left(1-\varepsilon_{S} \varepsilon_{L}\right) \cong 1
\end{array}
$$

The KLOE detector at the Frascati ϕ-factory DAФNE

The KLOE detector at the Frascati ϕ-factory DAФNE

Integrated luminosity (KLOE)

Total KLOE $\int \mathcal{L} \mathrm{dt} \sim 2.5 \mathrm{fb}^{-1}$
(2001-05) $\rightarrow \sim 2.5 \times 10^{9} \mathrm{~K}_{S} \mathrm{~K}_{\mathrm{L}}$ pairs

Lead/scintillating fiber calorimeter drift chamber
4 m diameter $\times 3.3 \mathrm{~m}$ length helium based gas mixture

Test of Quantum Coherence

EPR correlations in entangled neutral kaon pairs from ϕ

EPR correlations in entangled neutral kaon pairs from ϕ

$|i\rangle=\frac{1}{\sqrt{2}}\left[\left|K^{0}\right\rangle\left|\bar{K}^{0}\right\rangle-\left|\bar{K}^{0}\right\rangle\left|K^{0}\right\rangle\right]$

EPR correlation:
no simultaneous decays ($\Delta t=0$) in the same final state due to the fully destructive quantum interference

Same final state for both kaons: $f_{1}=f_{2}=\pi^{+} \pi^{-}$

EPR correlations in entangled neutral kaon pairs from ϕ

$$
|i\rangle=\frac{1}{\sqrt{2}}\left[\left|K^{0}\right\rangle\left|\bar{K}^{0}\right\rangle-\left|\bar{K}^{0}\right\rangle\left|K^{0}\right\rangle\right]
$$

EPR correlation:
no simultaneous decays ($\Delta t=0$) in the same final state due to the fully destructive quantum interference

Same final state for both kaons: $f_{1}=f_{2}=\pi^{+} \pi^{-}$

$\phi \rightarrow K_{\mathrm{S}} \mathbf{K}_{\mathrm{L}} \rightarrow \pi^{+} \pi^{-} \pi^{+} \pi^{-}$: test of quantum coherence

$$
\begin{aligned}
|i\rangle= & \frac{1}{\sqrt{2}}\left[\left|K^{0}\right\rangle\left|\bar{K}^{0}\right\rangle-\left|\bar{K}^{0}\right\rangle\left|K^{0}\right\rangle\right] \\
I\left(\pi^{+} \pi^{-}, \pi^{+} \pi^{-} ; \Delta t\right)= & \frac{N}{2}\left[\left|\left\langle\pi^{+} \pi^{-}, \pi^{+} \pi^{-} \mid K^{0} \bar{K}^{0}(\Delta t)\right\rangle\right|^{2}+\left|\left\langle\pi^{+} \pi^{-}, \pi^{+} \pi^{-} \mid \bar{K}^{0} K^{0}(\Delta t)\right\rangle\right|^{2}\right. \\
& \left.-2 \mathfrak{R}\left(\left\langle\pi^{+} \pi^{-}, \pi^{+} \pi^{-} \mid K^{0} \bar{K}^{0}(\Delta t)\right\rangle\left\langle\pi^{+} \pi^{-}, \pi^{+} \pi^{-} \mid \bar{K}^{0} K^{0}(\Delta t)\right\rangle^{*}\right)\right]
\end{aligned}
$$

$\phi \rightarrow K_{\mathrm{S}} \mathbf{K}_{\mathrm{L}} \rightarrow \pi^{+} \pi^{-} \pi^{+} \pi^{-}$: test of quantum coherence

$$
\begin{gathered}
|i\rangle=\frac{1}{\sqrt{2}}\left[\left|K^{0}\right\rangle\left|\bar{K}^{0}\right\rangle-\left|\bar{K}^{0}\right\rangle\left|K^{0}\right\rangle\right] \\
I\left(\pi^{+} \pi^{-}, \pi^{+} \pi^{-} ; \Delta t\right)= \\
=\frac{N}{2}\left[\left|\left\langle\pi^{+} \pi^{-}, \pi^{+} \pi^{-} \mid K^{0} \bar{K}^{0}(\Delta t)\right\rangle\right|^{2}+\left|\left\langle\pi^{+} \pi^{-}, \pi^{+} \pi^{-} \mid \bar{K}^{0} K^{0}(\Delta t)\right\rangle\right|^{2}\right. \\
\\
\left.-\left(1-\zeta_{0 \overline{0}}\right) \cdot 2 \mathfrak{R}\left(\left\langle\pi^{+} \pi^{-}, \pi^{+} \pi^{-} \mid K^{0} \bar{K}^{0}(\Delta t)\right\rangle\left\langle\pi^{+} \pi^{-}, \pi^{+} \pi^{-} \mid \bar{K}^{0} K^{0}(\Delta t)\right\rangle^{*}\right)\right]
\end{gathered}
$$

$\phi \rightarrow K_{\mathrm{S}} \mathrm{K}_{\mathrm{L}} \rightarrow \pi^{+} \pi^{-} \pi^{+} \pi^{-}$: test of quantum coherence

$$
\begin{gathered}
|i\rangle=\frac{1}{\sqrt{2}}\left[\left|K^{0}\right\rangle\left|\bar{K}^{0}\right\rangle-\left|\bar{K}^{0}\right\rangle\left|K^{0}\right\rangle\right] \\
I\left(\pi^{+} \pi^{-}, \pi^{+} \pi^{-} ; \Delta t\right)=\frac{N}{2}\left[\left|\left\langle\pi^{+} \pi^{-}, \pi^{+} \pi^{-} \mid K^{0} \bar{K}^{0}(\Delta t)\right\rangle\right|^{2}+\left|\left\langle\pi^{+} \pi^{-}, \pi^{+} \pi^{-} \mid \bar{K}^{0} K^{0}(\Delta t)\right\rangle\right|^{2}\right. \\
\underbrace{\text { Decoherence parameter: }} \\
\zeta_{0 \overline{0}}=0 \quad \rightarrow \quad \mathrm{QM} \\
\zeta_{0 \overline{0}}=1 \quad \rightarrow \text { total decoherence } \\
\begin{array}{l}
\text { (also known as Furry's hypothesis } \\
\text { or spontaneous factorization) } \\
\text { [W.Furry, PR 49 (1936) 393] }
\end{array} \\
\text { Bertlmann, Grimus, Hiesmayr PR D60 (1999) 114032 } \\
\text { Bertlmann, Durstberger, Hiesmayr PRA 68 012111 (2003) }
\end{gathered}
$$

$\phi \rightarrow K_{\mathrm{S}} \mathrm{K}_{\mathrm{L}} \rightarrow \pi^{+} \pi^{-} \pi^{+} \pi^{-}$: test of quantum coherence

$$
|i\rangle=\frac{1}{\sqrt{2}}\left[\left|K^{0}\right\rangle\left|\bar{K}^{0}\right\rangle-\left|\bar{K}^{0}\right\rangle\left|K^{0}\right\rangle\right]
$$

$$
I\left(\pi^{+} \pi^{-}, \pi^{+} \pi^{-} ; \Delta t\right)=\frac{N}{2}\left[\left|\left\langle\pi^{+} \pi^{-}, \pi^{+} \pi^{-} \mid K^{0} \bar{K}^{0}(\Delta t)\right\rangle\right|^{2}+\left|\left\langle\pi^{+} \pi^{-}, \pi^{+} \pi^{-} \mid \bar{K}^{0} K^{0}(\Delta t)\right\rangle\right|^{2}\right.
$$

$\left.-1-\zeta_{00}-2 \cdot 2 \mathfrak{R}\left(\left\langle\pi^{+} \pi^{-}, \pi^{+} \pi^{-} \mid K^{0} \bar{K}^{0}(\Delta t)\right\rangle\left\langle\pi^{+} \pi^{-}, \pi^{+} \pi^{-} \mid \bar{K}^{0} K^{0}(\Delta t)\right\rangle^{*}\right)\right]$

Decoherence parameter:

$$
\zeta_{0 \overline{0}}=0 \quad \rightarrow \quad \mathrm{QM}
$$

$$
\zeta_{0 \overline{0}}=1 \quad \rightarrow \text { total decoherence }
$$

(also known as Furry's hypothesis or spontaneous factorization) [W.Furry, PR 49 (1936) 393]
Bertlmann, Grimus, Hiesmayr PR D60 (1999) 114032
Bertlmann, Durstberger, Hiesmayr PRA 68012111 (2003)

$\phi \rightarrow K_{S} \mathbf{K}_{\mathrm{L}} \rightarrow \pi^{+} \pi^{-} \pi^{+} \pi^{-}$: test of quantum coherence

- Analysed data: L=1.5 fb-1
- Fit including Δt resolution and efficiency effects + regeneration

KLOF result: PLB 642(2006) 315

$\zeta_{0 \overline{0}}=\left(1.4 \pm 9.5_{\mathrm{STAT}} \pm 3.8_{\mathrm{SYST}}\right) \times 10^{-7}$
Observable suppressed by CP violation: $\left|\eta_{+-}\right|^{2} \sim|\varepsilon|^{2} \sim 10^{-6}$ $=>$ terms $\zeta_{00} /\left|\eta_{+-}\right|^{2}=>$ high sensitivity to ζ_{00}

From CPLEAR data, Bertlmann et al. (PR D60 (1999) 114032) obtain:

$$
\zeta_{0 \overline{0}}=0.4 \pm 0.7
$$

In the B-meson system, BELLE coll.
(PRL 99 (2007) 131802) obtains:
$\zeta_{\overline{0} 0}^{B}=0.029 \pm 0.057$

$\phi \rightarrow K_{S} \mathbf{K}_{\mathrm{L}} \rightarrow \pi^{+} \pi^{-} \pi^{+} \pi^{-}$: test of quantum coherence

- Analysed data: $L=1.5 \mathrm{fb}^{-1}$
- Fit including Δt resolution and efficiency effects + regeneration

KLOE result: PLB $642(2006) 315$

$\zeta_{\overline{0} \overline{0}}=\left(1.4 \pm 9.5_{\text {STAT }} \pm 3.8_{\mathrm{SYST}}\right) \times 10^{-7}$
Observable suppressed by CP violation: $\left|\eta_{+-}\right|^{2} \sim|\varepsilon|^{2} \sim 10^{-6}$ $=>$ terms $\zeta_{00} /\left|\eta_{+-}\right|^{2}=>$ high sensitivity to ζ_{00}

From CPLEAR data, Bertlmann et al. (PR D60 (1999) 114032) obtain:

$$
\zeta_{0 \overline{0}}=0.4 \pm 0.7
$$

In the B-meson system, BELLE coll. (PRL 99 (2007) 131802) obtains:
$\zeta^{B}=0.029 \pm 0.057$
Best precision achievable in an entangled system

$\phi \rightarrow \mathbf{K}_{\mathrm{S}} \mathbf{K}_{\mathrm{L}} \rightarrow \pi^{+} \pi^{-} \pi^{+} \pi^{-}$: test of quantum coherence

- Analysed data: $\mathrm{L}=1.5 \mathrm{fb}^{-1}$
- Fit including Δt resolution and efficiency effects + regeneration

KLOE result. PLB $642(2006$) 315
$\zeta_{0 \overline{0}}=\left(1.4 \pm 9.5_{\mathrm{STAT}} \pm 3.8_{\mathrm{SYST}}\right) \times 10^{-7}$
Observable suppressed by CP violation: $\left|\eta_{+-}\right|^{2} \sim|\varepsilon|^{2} \sim 10^{-6}$ $=>$ terms $\zeta_{00}\left|\eta_{+-}\right|^{2}=>$ high sensitivity to ε

From CPLEAR data, Bertlmann et al. (PR D60 (1999) 114032) obtain:

$$
\zeta_{0 \overline{0}}=0.4 \pm 0.7
$$

FIG. 2. Bell inequalities test. The selected state is $\left|\Phi^{-}\right\rangle$

In the B-meson system, BELLE coll. (PRL 99 (2007) 131802) obtains:
$\zeta_{\bar{a} \bar{o}}^{B}=0.029 \pm 0.057$
Best precision achievable in an entangled system

Search for decoherence and CPT violation effects

Decoherence and CPT violation

S. Hawking (1975)

Possible decoherence due quantum gravity effects (BH evaporation) (apparent loss of unitarity):
Black hole information loss paradox =>
Possible decoherence near a black hole.
("like candy rolling
on the tongue" by J. Wheeler)

Hawking [1] suggested that at a microscopic level, in a quantum gravity picture, non-trivial space-time fluctuations (generically space-time foam) could give rise to decoherence effects, which would necessarily entail a violation of CPT [2].

Modified Liouville - von Neumann equation for the density matrix of the kaon system with 3 new CPTV parameters $\alpha, \beta, \gamma[3]$:

[1] Hawking, Comm.Math.Phys. 87 (1982) 395; [2] Wald, PR D21 (1980) 2742; [3] Ellis et. al, NP B241 (1984) 381; Ellis, Mavromatos et al. PRD53 (1996)3846; Handbook on kaon interferometry [hep-ph/0607322], M. Arzano PRD90 (2014) 024016

Decoherence and CPT violation

(BH evaporation)
("like candy rolling on the tongue" by J. Wheeler)

Hawking [1] suggested that at a microscopic level, in a quantun gravity picture, non-trivial space-time fluctuations (generically space-time foam) could give rise to decoherence effects, which would necessarily entail a violation of CPT [2].

Modified Liouville - von Neumann equation for the density matrix of the kaon system with 3 new CPTV parameters α, β, γ [3]:

[1] Hawking, Comm.Math.Phys. 87 (1982) 395; [2] Wald, PR D21 (1980) 2742;[3] Ellis et. al, NP B241 (1984) 381; Ellis, Mavromatos et al. PRD53 (1996)3846; Handbook on kaon interferometry [hep-ph/0607322], M. Arzano PRD90 (2014) 024016

Decoherence and CPT violation

S. Hawking (1975)

Possible decoherence due quantum gravity effects (BH evaporation) (apparent loss of unitarity):
Black hole information loss paradox =>
Possible decoherence near a black hole.
("like candy rolling
on the tongue" by J. Wheeler)

Hawking [1] suggested that at a microscopic level, in a quantum gravity picture, non-trivial space-time fluctuations (generically space-time foam) could give rise to decoherence effects, which would necessarily entail a violation of CPT [2].

Modified Liouville - von Neumann equation for the density matrix of the kaon system with 3 new CPTV parameters α, β, γ [3]:

$$
\dot{\rho}(t)=\underbrace{-i H \rho+i \rho H^{+}}_{\mathrm{QM}}+L(\rho ; \alpha, \beta, \gamma) \quad \alpha, \beta, \gamma=O\left(\frac{M_{K}^{2}}{M_{\text {PLANCK }}}\right) \approx 2 \times 10^{-20} \mathrm{GeV}
$$

[1] Hawking, Comm.Math.Phys. 87 (1982) 395; [2] Wald, PR D21 (1980) 2742;[3] Ellis et. al, NP B241 (1984) 381; Ellis, Mavromatos et al. PRD53 (1996)3846; Handbook on kaon interferometry [hep-ph/0607322], M. Arzano PRD90 (2014) 024016

$\phi \rightarrow \mathbf{K}_{\mathrm{s}} \mathbf{K}_{\mathrm{L}} \rightarrow \pi^{+} \pi^{-} \pi^{+} \pi^{-}:$decoherence and CPT violation

Study of time evolution of single kaons decaying in $\pi+\pi^{-}$and semileptonic final state

CPLEAR PLB 364, 239 (1999)

$$
\begin{aligned}
& \alpha=(-0.5 \pm 2.8) \times 10^{-17} \mathrm{GeV} \\
& \beta=(2.5 \pm 2.3) \times 10^{-19} \mathrm{GeV} \\
& \gamma=(1.1 \pm 2.5) \times 10^{-21} \mathrm{GeV}
\end{aligned}
$$

single
 kaons

In the complete positivity hypothesis
$\alpha=\gamma \quad, \quad \beta=0$
=> only one independent parameter: γ
The fit with $I\left(\pi^{+} \pi^{-}, \pi^{+} \pi^{-} ; \Delta t, \gamma\right)$ gives:
KLOE result $L=1.5 \mathrm{fb}^{-1}$

$$
\gamma=\left(0.7 \pm 1.2_{\text {STAT }} \pm 0.3_{\text {SYST }}\right) \times 10^{-21} \mathrm{GeV}
$$

$$
\begin{aligned}
& \text { entangled } \\
& \text { kaons }
\end{aligned}
$$

$\phi \rightarrow K_{S} K_{L} \rightarrow \pi^{+} \pi^{-} \pi^{+} \pi^{-}:$CPT violation in entangled K states

In presence of decoherence and CPT violation induced by quantum gravity (CPT operator "ill-defined") the definition of the particle-antiparticle states could be modified. This in turn could induce a breakdown of the correlations imposed by Bose statistics (EPR correlations) to the kaon state:
[Bernabeu, et al. PRL 92 (2004) 131601, NPB744 (2006) 180].

$$
\mathrm{I}\left(\pi^{+} \pi^{-}, \pi^{+} \pi^{-} ; \Delta \mathrm{t}\right) \quad \text { (a.u.) }
$$

$$
\begin{aligned}
|i\rangle & \left.\left.\propto\left(\left|K^{0}\right\rangle\left|\bar{K}^{0}\right\rangle-\left|\bar{K}^{0}\right\rangle\left|K^{0}\right\rangle\right)+\omega(\rangle K^{0}\right\rangle\left|\bar{K}^{0}\right\rangle+\left|\bar{K}^{0}\right\rangle\left|K^{0}\right\rangle\right) \\
& \propto\left(\left|K_{S}\right\rangle\left|K_{L}\right\rangle-\left|K_{L}\right\rangle\left|K_{S}\right\rangle\right)+\omega\left(\left|K_{S}\right\rangle\left|K_{S}\right\rangle-\left|K_{L}\right\rangle\left|K_{L}\right\rangle\right)
\end{aligned}
$$

at most one expects:

$$
|\omega|^{2}=O\left(\frac{E^{2} / M_{\text {PLANCK }}}{\Delta \Gamma}\right) \approx 10^{-5} \Rightarrow|\omega| \sim 10^{-3}
$$

In some microscopic models of space-time foam arising from non-critical string theory:
[Bernabeu, Mavromatos, Sarkar PRD 74 (2006) 045014]

$$
|\omega| \sim 10^{-4} \div 10^{-5}
$$

The maximum sensitivity to ω is expected for $\mathrm{f}_{1}=\mathrm{f}_{2}=\pi^{+} \pi^{-}$
All CPTV effects induced by QG $(\alpha, \beta, \gamma, \omega)$ could be simultaneously disentangled.

$\phi \rightarrow K_{\mathrm{S}} \mathrm{K}_{\mathrm{L}} \rightarrow \pi^{+} \pi^{-} \pi^{+} \pi^{-}:$CPT violation in entangled K states

Im $\omega \times 10^{-2}$
Fit of $I\left(\pi^{+} \pi^{-}, \pi^{+} \pi^{-} ; \Delta t, \omega\right)$:

- Analysed data: $1.5 \mathrm{fb}^{-1}$

KLOE result: PLB 642(2006) 315
Found. Phys. 40 (2010) 852

$$
\begin{aligned}
& \mathfrak{\Re} \omega=\left(-1.6_{-2.1 \text { STAT }}^{+3.0} \pm 0.4_{\text {SYST }}\right) \times 10^{-4} \\
& \mathfrak{S} \omega=\left(-1.7_{-3.0 S T A T}^{+3.3} \pm 1.2_{\text {SYST }}\right) \times 10^{-4} \\
& |\omega|<1.0 \times 10^{-3} \text { at } 95 \% \text { C.L. }
\end{aligned}
$$

$$
-0.0084 \leq \Re \omega \leq 0.0100 \text { at } 95 \% \text { C.L. }
$$

CPT symmetry and Lorentz invariance test

CPT and Lorentz invariance violation (SME)

- CPT theorem :

Exact CPT invariance holds for any quantum field theory which assumes:
(1) Lorentz invariance (2) Locality (3) Unitarity (i.e. conservation of probability).

- "Anti-CPT theorem" (Greenberger 2002):

Any unitary, local, point-particle quantum field theory that violates CPT invariance necessarily violates Lorentz invariance.

- Kostelecky et al. developed a phenomenological effective model providing a framework for CPT and Lorentz violations, based on spontaneous breaking of CPT and Lorentz symmetry, which might happen in quantum gravity (e.g. in some models of string theory) Standard Model Extension (SME) [Kostelecky PRD61, 016002, PRD64, 076001]

CPT violation in neutral kaons according to SME:

- At first order CPTV appears only in mixing parameter δ (no direct CPTV in decay)
- δ cannot be a constant (momentum dependence)

$$
\varepsilon_{S, L}=\varepsilon \pm \delta \quad \delta=i \sin \phi_{S W} e^{i \phi_{S W}} \gamma_{K}\left(\Delta a_{0}-\vec{\beta}_{K} \cdot \Delta \vec{a}\right) / \Delta m
$$

where $\Delta \mathrm{a}_{\mu}=\mathrm{a}_{\mu}{ }^{92}-\mathrm{a}_{\mu}{ }^{91}$ are four parameters associated to SME lagrangian terms $-a_{\mu} \bar{q} \gamma^{\mu} q$ for the valence quarks and related to CPT and Lorentz violation.

The Earth as a moving laboratory

FIG. 1: Standard Sun-centered inertial reference frame [9].

Search for CPTV and LV: results

$\delta=i \sin \phi_{S W} e^{i \phi_{S W}} \gamma_{K}\left(\Delta a_{0}-\vec{\beta}_{K} \cdot \Delta \vec{a}\right) / \Delta m$

Search for CPTV and LV: results

$\delta=i \sin \phi_{S W} e^{i \phi_{S W}} \gamma_{K}\left(\Delta a_{0}-\vec{\beta}_{K} \cdot \Delta \vec{a}\right) / \Delta m$
Data divided in
4 sidereal time bins $\times 2$ angular bins Simultaneous fit of the $\Delta \mathrm{t}$ distributions to extract $\Delta \mathrm{a}_{\mu}$ parameters
with $\mathrm{L}=1.7 \mathrm{fb}^{-1} \mathrm{KLOE}$ final result
PLB 730 (2014) 89-94

$$
\begin{aligned}
& \Delta a_{0}=\left(-6.0 \pm 7.7_{\text {STAT }} \pm 3.1_{\text {SYST }}\right) \times 10^{-18} \mathrm{GeV} \\
& \Delta a_{X}=\left(0.9 \pm 1.5_{\text {STAT }} \pm 0.6_{\text {SYST }}\right) \times 10^{-18} \mathrm{GeV} \\
& \Delta a_{Y}=\left(-2.0 \pm 1.5_{\text {STAT }} \pm 0.5_{\text {SYST }}\right) \times 10^{-18} \mathrm{GeV} \\
& \Delta a_{Z}=\left(-3.1 \pm 1.7_{\text {STAT }} \pm 0.6_{\text {SYST }}\right) \times 10^{-18} \mathrm{GeV}
\end{aligned}
$$

presently the most precise measurements in the quark sector of the SME

B meson system:
$\Delta \mathrm{a}^{\mathrm{B}}{ }_{\mathrm{x}, \mathrm{y}},\left(\Delta \mathrm{a}^{\mathrm{B}}{ }_{0}-0.30 \Delta \mathrm{a}^{\mathrm{B}}{ }_{\mathrm{Z}}\right) \sim \mathrm{O}\left(10^{-13} \mathrm{GeV}\right)$
[Babar PRL 100 (2008) 131802]
D meson system:
$\Delta \mathrm{a}_{\mathrm{x}, \mathrm{y}},\left(\Delta \mathrm{a}^{\mathrm{D}}{ }_{0}-0.6 \Delta \mathrm{a}^{\mathrm{D}}{ }_{\mathrm{z}}\right) \sim \mathrm{O}\left(10^{-13} \mathrm{GeV}\right)$
[Focus PLB 556 (2003) 7]

Direct CPT symmetry test in neutral kaon transitions

Direct test of CPT symmetry in neutral kaon transitions

-EPR correlations at a ϕ-factory (or B-factory) can be exploited to study other transitions involving also orthogonal "CP states" K_{+}and K.

$\left\|K_{+}\right\rangle=\left\|K_{1}\right\rangle$	$(C P=+1)$		
$\left\|K_{-}\right\rangle=\left\|K_{2}\right\rangle$	$(C P=-1)$	\quad	$\|i\rangle=\frac{1}{\sqrt{2}}\left[\left\|K^{0}(\vec{p})\right\rangle\left\|\bar{K}^{0}(-\vec{p})\right\rangle-\left\|\bar{K}^{0}(\vec{p})\right\rangle\left\|K^{0}(-\vec{p})\right\rangle\right]$
---:			
$\left.=\frac{1}{\sqrt{2}}\left[\left\|K_{+}(\vec{p})\right\rangle\left\|K_{-}(-\vec{p})\right\rangle-\left\|K_{-}(\vec{p})\right\rangle K_{+}(-\vec{p})\right\rangle\right]$			

-decay as filtering measurement -entanglement -> preparation of state

Direct test of CPT symmetry in neutral kaon transitions

-EPR correlations at a ϕ-factory (or B-factory) can be exploited to study other transitions involving also orthogonal "CP states" K_{+}and K_{-}

$$
\begin{array}{ll}
\left|K_{+}\right\rangle=\left|K_{1}\right\rangle & (C P=+1) \\
\left|K_{-}\right\rangle=\left|K_{2}\right\rangle & (C P=-1)
\end{array}
$$

$$
\begin{aligned}
|i\rangle & =\frac{1}{\sqrt{2}}\left[\left|K^{0}(\vec{p})\right\rangle\left|\bar{K}^{0}(-\vec{p})\right\rangle-\left|\bar{K}^{0}(\vec{p})\right\rangle\left|K^{0}(-\vec{p})\right\rangle\right] \\
& =\frac{1}{\sqrt{2}}\left[\left|K_{+}(\vec{p})\right\rangle\left|K_{-}(-\vec{p})\right\rangle-\left|K_{-}(\vec{p})\right\rangle\left|K_{+}(-\vec{p})\right\rangle\right]
\end{aligned}
$$

-decay as filtering measurement -entanglement -> preparation of state

Direct test of CPT symmetry in neutral kaon transitions

-EPR correlations at a ϕ-factory (or B-factory) can be exploited to study other transitions involving also orthogonal "CP states" K_{+}and K.

$$
\begin{array}{ll}
\left|K_{+}\right\rangle & =\left|K_{1}\right\rangle \\
\left|K_{-}\right\rangle=\left|K_{2}\right\rangle & (C P=+1) \\
(C P=-1)
\end{array}
$$

$$
\begin{aligned}
|i\rangle & =\frac{1}{\sqrt{2}}\left[\left|K^{0}(\vec{p})\right\rangle\left|\bar{K}^{0}(-\vec{p})\right\rangle-\left|\bar{K}^{0}(\vec{p})\right\rangle\left|K^{0}(-\vec{p})\right\rangle\right] \\
& =\frac{1}{\sqrt{2}}\left[\left|K_{+}(\vec{p})\right\rangle\left|K_{-}(-\vec{p})\right\rangle-\left|K_{-}(\vec{p})\right\rangle\left|K_{+}(-\vec{p})\right\rangle\right]
\end{aligned}
$$

-decay as filtering measurement -entanglement -> preparation of state

Direct test of CPT symmetry in neutral kaon transitions

-EPR correlations at a ϕ-factory (or B-factory) can be exploited to study other transitions involving also orthogonal "CP states" K_{+}and K.

$$
\begin{array}{ll}
\left|K_{+}\right\rangle=\left|K_{1}\right\rangle & (C P=+1) \\
\left|K_{-}\right\rangle=\left|K_{2}\right\rangle & (C P=-1)
\end{array}
$$

$$
\begin{aligned}
|i\rangle & =\frac{1}{\sqrt{2}}\left[\left|K^{0}(\vec{p})\right\rangle\left|\bar{K}^{0}(-\vec{p})\right\rangle-\left|\bar{K}^{0}(\vec{p})\right\rangle\left|K^{0}(-\vec{p})\right\rangle\right] \\
& =\frac{1}{\sqrt{2}}\left[\left|K_{+}(\vec{p})\right\rangle\left|K_{-}(-\vec{p})\right\rangle-\left|K_{-}(\vec{p})\right\rangle\left|K_{+}(-\vec{p})\right\rangle\right]
\end{aligned}
$$

-decay as filtering measurement -entanglement -> preparation of state

Direct test of CPT symmetry in neutral kaon transitions

-EPR correlations at a ϕ-factory (or B-factory) can be exploited to study other transitions involving also orthogonal "CP states" K_{+}and K_{-}
$\left|K_{+}\right\rangle=\left|K_{1}\right\rangle(C P=+1)$
$\left|K_{-}\right\rangle=\left|K_{2}\right\rangle(C P=-1)$
-decay as filtering measurement -entanglement -> preparation of state

Note: CP and T conjugated process

$$
\bar{K}^{0} \rightarrow K_{-} \quad K_{-} \rightarrow K^{0}
$$

$$
K_{-} \rightarrow \bar{K}^{0} \quad \text { CPT-conjugated process }
$$

Direct test of CPT symmetry in neutral kaon transitions

CPT symmetry test

Reference			$\mathcal{C P} \mathcal{T}$-conjugate	
Transition	Decay products		Transition	Decay products
$\mathrm{K}^{0} \rightarrow \mathrm{~K}_{+}$	$\left(\ell^{-}, \pi \pi\right)$	$\mathrm{K}_{+} \rightarrow \overline{\mathrm{K}}^{0}$	$\left(3 \pi^{0}, \ell^{-}\right)$	
$\mathrm{K}^{0} \rightarrow \mathrm{~K}_{-}$	$\left(\ell^{-}, 3 \pi^{0}\right)$	$\mathrm{K}_{-} \rightarrow \overline{\mathrm{K}}^{0}$	$\left(\pi \pi, \ell^{-}\right)$	
$\overline{\mathrm{K}}^{0} \rightarrow \mathrm{~K}_{+}$	$\left(\ell^{+}, \pi \pi\right)$	$\mathrm{K}_{+} \rightarrow \mathrm{K}^{0}$	$\left(3 \pi \pi^{0}, \ell^{+}\right)$	
$\overline{\mathrm{K}}^{0} \rightarrow \mathrm{~K}_{-}$	$\left(\ell^{+}, 3 \pi^{0}\right)$	$\mathrm{K}_{-} \rightarrow \mathrm{K}^{0}$	$\left(\pi \pi, \ell^{+}\right)$	

One can define the following ratios of probabilities:

$$
\begin{aligned}
& R_{1, \mathcal{C P} \mathcal{T}}(\Delta t)=P\left[\mathrm{~K}_{+}(0) \rightarrow \overline{\mathrm{K}}^{0}(\Delta t)\right] / P\left[\mathrm{~K}^{0}(0) \rightarrow \mathrm{K}_{+}(\Delta t)\right] \\
& R_{2, \mathcal{C P} \mathcal{T}}(\Delta t)=P\left[\mathrm{~K}^{0}(0) \rightarrow \mathrm{K}_{-}(\Delta t)\right] / P\left[\mathrm{~K}_{-}(0) \rightarrow \overline{\mathrm{K}}^{0}(\Delta t)\right] \\
& R_{3, \mathcal{C P} \mathcal{T}}(\Delta t)=P\left[\mathrm{~K}_{+}(0) \rightarrow \mathrm{K}^{0}(\Delta t)\right] / P\left[\overline{\mathrm{~K}}^{0}(0) \rightarrow \mathrm{K}_{+}(\Delta t)\right] \\
& R_{4, \mathcal{C P} \mathcal{T}}(\Delta t)=P\left[\overline{\mathrm{~K}}^{0}(0) \rightarrow \mathrm{K}_{-}(\Delta t)\right] / P\left[\mathrm{~K}_{-}(0) \rightarrow \mathrm{K}^{0}(\Delta t)\right]
\end{aligned}
$$

Any deviation from $\mathrm{R}_{\mathrm{i}, \mathrm{CPT}}=1$ constitutes a violation of CPT-symmetry

[^0]
Direct test of CPT symmetry in neutral kaon transitions

for visualization purposes, plots with $\operatorname{Re}(\delta)=3.310^{-4} \operatorname{Im}(\delta)=1.610^{-5}(\ldots \operatorname{Im}(\delta)=0)$

Future perspectives

KLOE-2 at upgraded DAФNE

DAФNE upgraded in luminosity:

- a new scheme of the interaction region has been implemented (crabbed waist scheme)
- increase of L by a factor ~ 3 demonstrated by an experimental test (without KLOE solenoid), PRL104, 174801, 2010.

KLOE-2 experiment:

- extend the KLOE physics program at DAФNE upgraded in luminosity - collect $\mathrm{O}(10) \mathrm{fb}^{-1}$ of integrated luminosity in the next 2-3 years

Physics program (see EPJC 68 (2010) 619-681)

- Neutral kaon interferometry, CPT symmetry \& QM tests
- Kaon physics, CKM, LFV, rare K_{S} decays
- η, η ' physics
- Light scalars, $\gamma \gamma$ physics
- Hadron cross section at low energy, a_{μ}
- Dark forces: search for light U boson

Detector upgrade:

- $\gamma \gamma$ tagging system
- inner tracker
- small angle and quad calorimeters
- FEE maintenance and upgrade
- Computing and networking update
- etc.. (Trigger, software, ...)

Inner tracker at KLOE

Prospects for KLOE-2

Param.	Present best published measurement	$\begin{gathered} \text { KLOE-2 (IT) } \\ \text { L=5 fb }{ }^{-1} \text { (stat.) } \end{gathered}$	$\begin{gathered} \text { KLOE-2 (IT) } \\ \mathrm{L}=10 \mathrm{fb}^{-1} \text { (stat.) } \end{gathered}$
ζ_{00}	$(0.1 \pm 1.0) \times 10^{-6}$	$\pm 0.26 \times 10^{-6}$	$\pm 0.18 \times 10^{-6}$
$\zeta_{\text {SL }}$	$(0.3 \pm 1.9) \times 10^{-2}$	$\pm 0.49 \times 10^{-2}$	$\pm 0.35 \times 10^{-2}$
α	$(-0.5 \pm 2.8) \times 10^{-17} \mathrm{GeV}$	$\pm 5.0 \times 10^{-17} \mathrm{GeV}$	$\pm 3.5 \times 10^{-17} \mathbf{~ G e V}$
β	$(2.5 \pm 2.3) \times 10^{-19} \mathrm{GeV}$	$\pm 0.50 \times 10^{-19} \mathrm{GeV}$	$\pm 0.35 \times 10^{-19} \mathrm{GeV}$
γ	$(1.1 \pm 2.5) \times 10^{-21} \mathrm{GeV}$ compl. pos. hyp. $(0.7 \pm 1.2) \times 10^{-21} \mathrm{GeV}$	$\begin{aligned} & \pm 0.75 \times 10^{-21} \mathrm{GeV} \\ & \text { compl. pos. hyp. } \\ & \pm 0.33 \times 10^{-21} \mathrm{GeV} \end{aligned}$	$\begin{gathered} \pm 0.53 \times 10^{-21} \mathrm{GeV} \\ \text { compl. pos. hyp. } \\ \pm 0.23 \times 10^{-21} \mathrm{GeV} \end{gathered}$
$\operatorname{Re}(\omega)$	$(-1.6 \pm 2.6) \times 10^{-4}$	$\pm 0.70 \times 10^{-4}$	$\pm 0.49 \times 10^{-4}$
$\mathbf{I m}(\omega)$	$(-1.7 \pm 3.4) \times 10^{-4}$	$\pm 0.86 \times 10^{-4}$	$\pm 0.61 \times 10^{-4}$
$\Delta \mathrm{a}_{0}$	$(-6.0 \pm 8.3) \times 10^{-18} \mathrm{GeV}$	$\pm 2.2 \times 10^{-18} \mathrm{GeV}$	$\pm 1.6 \times 10^{-18} \mathrm{GeV}$
$\Delta \mathrm{a}_{\mathrm{z}}$	$(3.1 \pm 1.8) \times 10^{-18} \mathrm{GeV}$	$\pm 0.50 \times 10^{-18} \mathrm{GeV}$	$\pm 0.35 \times 10^{-18} \mathrm{GeV}$
$\Delta \mathrm{a}_{\mathrm{x}}$	$(0.9 \pm 1.6) \times 10^{-18} \mathrm{GeV}$	$\pm 0.44 \times 10^{-18} \mathrm{GeV}$	$\pm 0.31 \times 10^{-18} \mathrm{GeV}$
$\Delta \mathbf{a}_{\mathbf{Y}}$	$(-2.0 \pm 1.6) \times 10^{-18} \mathrm{GeV}$	$\pm 0.44 \times 10^{-18} \mathrm{GeV}$	$\pm 0.31 \times 10^{-18} \mathrm{GeV}$

Conclusions

-The entangled neutral kaon system at a ϕ-factory is an excellent laboratory for the study of CPT symmetry, discrete symmetries in general, and the basic principles of Quantum Mechanics;

- Several parameters related to possible
-CPT violation
-Decoherence
-Decoherence and CPT violation
-CPT violation and Lorentz symmetry breaking have been measured at KLOE, in same cases with a precision reaching the interesting Planck's scale region;
- All results are consistent with no CPT symmetry violation and no decoherence
- Neutral kaon interferometry, CPT symmetry and QM tests are one of the main issues of the KLOE-2 physics program. (G. Amelino-Camelia et al. EPJC 68 (2010) 619-681)
-The precision of several tests could be improved by about one order of magnitude

Spare slides

Analogy with spin $1 / 2$ particles

$$
\left|1^{--}\right\rangle=\frac{1}{\sqrt{2}}\left[\left|K^{0}\right\rangle\left|\bar{K}^{0}\right\rangle-\left|\bar{K}^{0}\right\rangle\left|K^{0}\right\rangle\right] \quad \vec{\rightarrow} \quad|S=0\rangle=\frac{1}{\sqrt{2}}[|A \uparrow\rangle|A \downarrow\rangle-|A \downarrow\rangle|A \uparrow\rangle]
$$

ϕ

Singlet ($\mathrm{S}=0$)

$$
P\left(K^{0}, t_{1} ; K^{0}, t_{2}\right)=\frac{1}{4}\left[1-\cos \left(\Delta m\left(t_{1}-t_{2}\right)\right)\right]
$$

ideal case with $\Gamma_{\mathrm{S}}=\Gamma_{\mathrm{L}}=0$ (no decay!)
with the actual Γ_{S} and Γ_{L} (kaons decay!):

$$
\begin{aligned}
P\left(K^{0}, t_{1} ; K^{0}, t_{2}\right)= & \frac{1}{8}\left\{e^{-\Gamma_{L} t_{1}-\Gamma_{S} t_{2}}+e^{-\Gamma_{S} t_{1}-\Gamma_{L} t_{2}}\right. \\
& \left.-2 e^{-\left(\Gamma_{S}+\Gamma_{L}\right)\left(t_{1}+t_{2}\right) / 2} \cos \left[\Delta m\left(t_{2}-t_{1}\right)\right]\right\}
\end{aligned}
$$

The time difference plays the same role as the angle between the spin analyzers
kaons change their identity with time, but remain correlated

Neutral kaon interferometry

$$
|i\rangle=\frac{N}{\sqrt{2}}\left[\left|K_{S}(\vec{p})\right\rangle\left|K_{L}(-\vec{p})\right\rangle-\left|K_{L}(\vec{p})\right\rangle\left|K_{S}(-\vec{p})\right\rangle\right]
$$

Double differential time distribution:

$$
I\left(f_{1}, t_{1} ; f_{2}, t_{2}\right)=C_{12}\left\{\left|\eta_{1}\right|^{2} e^{-\Gamma_{L} t_{1}-\Gamma_{S} t_{2}}+\left|\eta_{2}\right|^{2} e^{-\Gamma_{S} t_{1}-\Gamma_{L} t_{2}}\right.
$$

$$
-2\left|\eta_{1} \| \eta_{2}\right| e^{-\left(\Gamma_{S}+\Gamma_{L}\right)\left(t_{1}+t_{2}\right) / 2} \cos \left[\Delta m\left(t_{2}-t_{1}\right)+\phi_{1}-\phi_{2}\right]
$$

where $t_{l}\left(t_{2}\right)$ is the proper time of one (the other) kaon decay into $f_{1}\left(f_{2}\right)$ final state and:

$$
\begin{aligned}
& \eta_{i}=\left|\eta_{i}\right| e^{i \phi_{i}}=\left\langle f_{i}\right| T\left|K_{L}\right\rangle /\left\langle f_{i}\right| T\left|K_{S}\right\rangle \\
& \left.C_{12}=\frac{|N|^{2}}{2}\left|\left\langle f_{1}\right| T\right| K_{S}\right\rangle\left.\left\langle f_{2}\right| T\left|K_{S}\right\rangle\right|^{2}
\end{aligned}
$$

characteristic interference term

 at a ϕ-factory $=>$ interferometryFrom these distributions for various final states f_{i} one can measure the following quantities: $\Gamma_{S}, \Gamma_{L}, \Delta m,\left|\eta_{i}\right|, \phi_{\mathrm{i}} \equiv \arg \left(\eta_{i}\right)$

Search for CPT and Lorentz invariance violation (SME)

$\delta=i \sin \phi_{S W} e^{i \phi_{S W}} \gamma_{K}\left(\Delta a_{0}-\vec{\beta}_{K} \cdot \Delta \vec{a}\right) / \Delta m$
δ depends on sidereal time t since laboratory frame rotates with Earth.
For a ϕ-factory there is an additional dependence on the polar and azimuthal angle θ, ϕ of the kaon momentum in the laboratory frame:

$$
\begin{aligned}
\delta(\vec{p}, t)= & \frac{i \sin \phi_{S W} e^{i \phi_{S W}}}{\Delta m} \gamma_{K} \underline{\underline{\Delta a_{0}}} \quad \begin{array}{c}
\text { (in general z lab. axis is } \\
\\
\end{array}+\beta_{K} \underline{\Delta a_{Z}(\cos \theta \cos \chi-\sin \theta \sin \phi \sin \chi)} \quad \begin{array}{l}
\text { to Earth's surface) }
\end{array} \\
& +\beta_{K}\left[\underline{-\Delta a_{X}} \sin \theta \sin \phi+\underline{\Delta a_{Y}}(\cos \theta \sin \chi+\sin \theta \cos \phi \cos \chi)\right] \sin \Omega t \\
& \left.+\beta_{K}\left[\underline{+\Delta a_{Y}} \sin \theta \sin \phi+\underline{\Delta a_{X}}(\cos \theta \sin \chi+\sin \theta \cos \phi \cos \chi)\right] \cos \Omega t\right\}
\end{aligned}
$$

Ω : Earth's sidereal frequency χ : angle between the z lab. axis and the Earth's rotation axis

Search for CPT and Lorentz invariance violation (SME)

$\delta=i \sin \phi_{S W} e^{i \phi_{S W}} \gamma_{K}\left(\Delta a_{0}-\vec{\beta}_{K} \cdot \Delta \vec{a}\right) / \Delta m$
δ depends on sidereal time t since laboratory frame rotates with Earth.
For a ϕ-factory there is an additional dependence on the polar and azimuthal angle θ, ϕ of the kaon momentum in the laboratory frame:

$$
\begin{aligned}
\delta(\vec{p}, t)= & \frac{i \sin \phi_{S W} e^{i \phi_{S W}}}{\Delta m} \gamma_{K}\left\{\Delta a_{0}\right. \\
& +\beta_{K} \underline{\Delta a_{Z}(\cos \theta \cos \chi-\sin \theta \sin \phi \sin \chi)} \\
& +\beta_{K}\left[\underline{-\Delta a_{X}} \sin \theta \sin \phi+\underline{\Delta a_{Y}}(\cos \theta \sin \chi+\sin \theta \cos \phi \cos \chi)\right] \sin \Omega t \\
& \left.+\beta_{K}\left[\underline{+\Delta a_{Y}} \sin \theta \sin \phi+\underline{\Delta a_{X}}(\cos \theta \sin \chi+\sin \theta \cos \phi \cos \chi)\right] \cos \Omega t\right\}
\end{aligned}
$$

At DAФNE K mesons are produced with angular distribution $\mathrm{dN} / \mathrm{d} \Omega \propto \sin ^{2} \theta$

Ω : Earth's sidereal frequency χ : angle between the z lab. axis and the Earth's rotation axis

Search for CPTV and LV: exploiting EPR correlations

$|i\rangle=\frac{1}{\sqrt{2}}\left[\left|K^{0}\right\rangle\left|\bar{K}^{0}\right\rangle-\left|\bar{K}^{0}\right\rangle\left|K^{0}\right\rangle\right]$

$$
\eta_{i}=\left|\eta_{i}\right| e^{i \phi_{i}}=\left\langle f_{i}\right| T\left|K_{L}\right\rangle /\left\langle f_{i}\right| T\left|K_{S}\right\rangle
$$

$$
I\left(f_{1}, f_{2} ; \Delta t\right) \propto\left\{\left|\eta_{1}\right|^{2} e^{-\Gamma_{L} \Delta t}+\left|\eta_{2}\right|^{2} e^{-\Gamma_{S} \Delta t}-2\left|\eta_{1}\right|\left|\eta_{2}\right| e^{-\left(\Gamma_{S}+\Gamma_{L}\right) \Delta t / 2} \cos \left(\Delta m \Delta t+\phi_{2}-\phi_{1}\right)\right\}
$$

$$
\eta_{+-}^{(1)}=\varepsilon(1-\delta(+\vec{p}, t) / \varepsilon)
$$

$$
\eta_{+-}^{(2)}=\varepsilon(1-\delta(-\vec{p}, t) / \varepsilon)
$$

Search for CPTV and LV: exploiting EPR correlations

$|i\rangle=\frac{1}{\sqrt{2}}\left[\left|K^{0}\right\rangle\left\langle\bar{K}^{0}\right\rangle-\left|\bar{K}^{0}\right\rangle\left|K^{0}\right\rangle\right]$

$$
\eta_{i}=\left|\eta_{i}\right| e^{i \phi_{i}}=\left\langle f_{i}\right| T\left|K_{L}\right\rangle /\left\langle f_{i}\right| T\left|K_{S}\right\rangle
$$

$$
I\left(f_{1}, f_{2} ; \Delta t\right) \propto\left\{\left|\eta_{1}\right|^{2} e^{-\Gamma_{L} \Delta t}+\left|\eta_{2}\right|^{2} e^{-\Gamma_{S} \Delta t}-2\left|\eta_{1} \| \eta_{2}\right| e^{-\left(\Gamma_{S}+\Gamma_{L}\right) \Delta t / 2} \cos \left(\Delta m \Delta t+\phi_{2}-\phi_{1}\right)\right\}
$$

Search for CPTV and LV: exploiting EPR correlations

$|i\rangle=\frac{1}{\sqrt{2}}\left[\left|K^{0}\right\rangle\left|\bar{K}^{0}\right\rangle-\left|\bar{K}^{0}\right\rangle\left|K^{0}\right\rangle\right]$

$$
\eta_{i}=\left|\eta_{i}\right| e^{i \phi_{i}}=\left\langle f_{i}\right| T\left|K_{L}\right\rangle /\left\langle f_{i}\right| T\left|K_{S}\right\rangle
$$

$$
I\left(f_{1}, f_{2} ; \Delta t\right) \propto\left\{\left|\eta_{1}\right|^{2} e^{-\Gamma_{L} \Delta t}+\left|\eta_{2}\right|^{2} e^{-\Gamma_{S} \Delta t}-2\left|\eta_{1}\right|\left|\eta_{2}\right| e^{-\left(\Gamma_{S}+\Gamma_{L}\right) \Delta t / 2} \cos \left(\Delta m \Delta t+\phi_{2}-\phi_{1}\right)\right\}
$$

$$
\left.\eta_{+-}^{(2)}=\varepsilon(1-\delta-\vec{p}, t) / \varepsilon\right)
$$

$$
\mathfrak{\Im}(\delta / \varepsilon)
$$

from the asymmetry at small $\Delta \mathrm{t}$
$\mathfrak{R}(\delta / \varepsilon) \approx 0$ because $\delta \perp \varepsilon$ from the asymmetry at large $\Delta \mathrm{t}$

[^0]: J. Bernabeu, A.D.D., P. Villanueva: NPB 868 (2013) 102
 J. Bernabeu, A.D.D. in preparation

