Misura della luminosità al Large Hadron Collider

Andrea Messina

Università degli studi La Sapienza 24-25 Maggio 2012

Programma

- The Large Hadron Collider
- Gli esperimenti
 - ✓ trigger
- La luminosita'
- collisioni adroniche
 - \checkmark sezione d'urto, teorema ottico
 - $\checkmark\,$ cinematica , molteplicita' di particelle cariche in collisioni adroniche
- Misure di luminosita'
 - ✓ relativa
 - ✓ assoluta

The Large Hadron Collider

Andrea Messina

```
page 3 /105
```

Roma, 24-25 Maggio 2012

The Large Hadron Collider

The Large Hadron Collider

Andrea Messina

page 5 /105

confronto acceleratori

	LEP	HERA	PEP-II/KEKB	Tevatron	LHC	ILC
Particles collided	e*e*	ер	e*e-	рр	pp	e ⁺ e ⁻
Date of operation	1989- 2000	1992-2007	1999-2008 / 1999-now	1987-now	2009- now	TBD
Max beam energy [GeV]	104.6	30 (e) / 920 (p)	8x3.5/9x3.1	980	7	250
Luminosity [10 ³⁰ cm ⁻² s ⁻¹]	16 (Z) / 100	75	21083 / 12069	402	10 000	20000
Time between collisions [ns]	22000	96	4.2/8	396	25	300
Number of bunches	4	189 (e) / 180 (p)	1732 / 1585	36	2808	2625
Number of particles / bunch (10 [°])	45	3 (e) / 7(p)	5.2 (e ⁻) 8 (e ⁺) / 5.7 (e ⁻) 6.4(e ⁺)	26(p) / 9(p)	11.5	2

Gli esperimenti

Sezioni d'urto e rates di produzione

Process	Cross section (nb) at 14 TeV CM energy	Production rates (Hz) at L=10 ³⁴ cm ⁻² s ⁻¹
Inelastic	10 ⁸	10 ⁹
bb	5×10 ⁵	5×10 ⁶
$W \to \ell \nu$	15	150
$Z \to \ell \ell$	2	20
tt	1	10
$Z'(1 { m TeV})$	0.05	0.5
$\tilde{g}\tilde{g}(1~{ m TeV})$	0.05	0.5
H (120 GeV)	0.04	0.4
H (180 GeV)	0.02	0.2

Conversions:

1 pb⁻¹=10³⁶ cm⁻² 15 nb · 10³⁴ cm⁻²s⁻¹=150 Hz

Segnatura sperimentale

Trigger

Confronto trigger/Daq

Luminosita'

• sezione d'urto e' data da:

$$\sigma = \frac{\dot{N_f}}{\Phi N_b} = \frac{\dot{N_f}}{\mathcal{L}}; \quad \mathcal{L} = \Phi N_b$$

• la luminosita' istantanea ${\cal L}$ ha le dimensioni del flusso $\Phi~cm^{-2}s^{-1}$

 maggiore e' il flusso, maggiore e' la luminosita', piu' alto e' il numero di conteggi per unita' di tempo nello stato finale

$$\mathcal{L}dt = \mathcal{L}_{int} \quad [cm^{-2}]$$

- la luminosita' integrata nel tempo piu' essere misurata in unita' di sezione d'urto inversa, ie barn⁻¹
- in un campione di eventi corrispondente a 10 nb⁻¹ ci aspettiamo 10⁹ eventi di minimum bias ($\sigma \sim 100 \ mb$) e un centinaio di W ($\sigma \sim 10 \ nb$)

Luminosita' di un collisore

dove n_b e' il numero di pacchetti, N_1 e N_2 sono rispettivamente il numero medio di particelle in ciascun pacchetto nei due fasci, f e' la frequenza di incrocio, e Aeff e' la sezione trasversa

Luminosita' di un collisiore

$$N_{1} = N_{2} \sim 10^{10}$$

$$n_{b} = 2$$

$$A_{eff} \sim (50\mu m)^{2}$$

$$f = 11kHz$$

$$\Rightarrow \mathcal{L} \sim 10^{28} cm^{-2} s^{-1}$$

la corrente di un fascio di particelle e' n_bN. L'energia immagazzinata nel fascio e' proporzionale al numero totale di particelle. Se la corrente l'energia massima accessibile e' limitata, per massimizzare la luminosita' e' piu' conveniente mettere tutte le particelle in un unico pacchetto: la luminosita' cresce con il quadrato del numero di particelle nel pacchetto

Parametri di LHC

$$L = \frac{N_b^2 M f_{rev} \gamma_r}{4\pi \epsilon_n \beta^*} F \sim 10^{34} cm^{-2} s^{-1}$$

Number of particles per bunch	N _b	1.15 ‰ 1011
Number of bunches per beam	М	2808
Revolution frequency	f _{rev}	11245 Hz
Relativistic velocity factor	g,	7461 (" <i>E</i> = 7 TeV)
b-function at the collision point	b*	55 cm
Normalised rms transverse beam emittance	e _n	3.75 ‰ 10-4 cm
Geometric reduction factor	F	0.84

$$L = \frac{1}{4 \pi} \frac{N_b^2 M f_{rev}}{\sigma_x \sigma_y} F; (\sigma \ design \ 16 \mu m)$$

Numero di interazioni per incrocio

Ad una data luminosita' il numero di interazioni per incrocio sara':

$$\mu = \frac{\mathcal{L}}{n_b \cdot f} \cdot \sigma_{tot} = \frac{10^{28}}{11 k H z} * 50 mb \sim 0.01$$

Il numero di interazioni per incrocio cresce al crescere della luminosita' ed e' inversamente proporzionale al numero di pacchetti. Ad alta luminosita' per contenere il numero di interazioni per incrocio ad un valore ragionevole (~20) e' necessario avere molti pacchetti

Luminosita' e pileup

page 17 / 105

Determinazione della luminosita'

- la misura della luminosita' e' di estrema rilevanza sia per gli esperimenti che per l'acceleratore:
 - ✓ misure di sezione d'urto
 - $\checkmark\,$ ottimizzazione della luminosita' dell'acceleratore
 - ✓ determinazione di parametri dell'acceleratore data la luminosita'
- Siamo interessati sia alla misura della luminosita relativa che assoluta:
 - \checkmark relativa: e' riferita alla luminosita' ottenuta in delle condizioni specifiche
 - permette di ottenere tutte le informazioni utili sulle condizioni del rivelatore e dell'acceleratore: andamento della luminosita' in funzione del tempo e dei parametri dell'acceleratore
 - ✓ assoluta: e' necessario ottenere una costante di calibrazione che definisca la scala di luminosita' (barn⁻¹)
 - ♦ e' necessario avere una luminosita' assoluta per misurare una sezione d'urto

Misura relativa della luminosita'

 $L = \frac{R_{inelastic}}{Acceptance \times \epsilon \times \sigma_{inelastic}}$

- Poiche' la luminosita' e' proporzionale alla rate di collisione qualunque processo di interazione puo' essere utilizzato. Purche':
- I. sia possibile ottenere una misura robusta in breve tempo (~10s) per un ampio intervallo di luminosita' istantanee 10²⁷-10³⁴ cm⁻² s⁻¹
- 2. questa misura sia molto veloce, possibilmente sensibile al singolo pacchetto t~25ns
- 3. deve poter operare per diverse condizioni dell' acceleratore (mu)
- 4. la misura della luminosita' (processo e riveatore) non sia correlata con le misure da cui si vuole estrarre la sezione d'urto
- 5. avere piu' di un rivelatore che misuri la luminosita'. In particolare e' opportuno avere rivelatori che copraro regioni diverse in eta

Collisioni adroniche: σ_{tot}

Andrea Messina

page 21

Collisioni adroniche

• diffusione elastica: diffusione in avanti a piccoli angoli $\frac{d\sigma}{d\theta} \sim \frac{1}{\theta^4}$ gli adroni rimangono intatti

page 22

Collisioni adroniche

• diffusione inelastica singola diffrattiva: uno dei due adroni si dissocia in un sistema con massa invariante piccola. le particelle prodotte, in maggioranza pioni, procedono nella direzione dell'adrone iniziale

Collisioni adroniche

• diffusione inelastica doppio diffrattiva: entrambi gli adroni si dissociano in un sistema con massa invariante piccola. le particelle prodotte, in maggioranza pioni, procedono nella direzione dell'adrone iniziale

Collisioni adroniche

• diffusione inelastica non-diffrattiva: entrambi gli adroni si dissociano e i prodotti dell'interazione sono distributi in modo uniforme in rapidita' e hanno un impulso trasverso non trascurabile

Sezione d'urto

$$d\sigma \sim \frac{V}{v_{rel}} |\mathcal{A}_{i \to f}|^2 d\Phi_f$$

- $\frac{V}{v_{rel}}$ e' il fusso incidente
- $\mathcal{A}_{i \rightarrow f}$ e' l'ampiezza di trasizione da "i" verso "f"

 $\checkmark \mathcal{A}_{i \to f}$ contiene tutta la dinamica dell'interazione $i \to f$

- ♦ cioe' contiene la forza dell'interazione
- ♦ la dipendenza dai 4-impulsi dello stato iniziale e finale
- $d\Phi_f$ e' lo spazio delle fasi per lo stato finale "f"
 - ✓ nota la dipendenza di $A_{i\to f}$ da p_f $|A_{i\to f}|^2 d\Phi_f$ determina la probabilita' di trovare lo stato finale "f" all'interno del elemento di volume dello spazio delle fasi $d\Phi_f$
- $d\sigma$ e' una probabilita' e deve essere indipendente dal sistema di riferimento!

Teorema ottico

$$\begin{split} H_{I} &= I + iT; \\ H_{I}^{\dagger} H_{I} &= I; \\ &\Rightarrow (I - iT^{\dagger})(I + iT) = I; \\ I - i(T^{\dagger} - T) + T^{\dagger}T = I; \\ i(T^{\dagger} - T) &= T^{\dagger}T; \\ i &< f, p_{f} |(T^{\dagger} - T)|i, p_{i} > = \sum_{k} < f, p_{f} |T^{\dagger}|k, p_{k} > < k, p_{k} |T|i, p_{i} >; \\ &|f, p_{f} > = |i, p_{i} >; \\ i &< i, p_{i} |(T^{\dagger} - T)|i, p_{i} > = \sum_{k} |< k, p_{k} |T|i, p_{i} > |^{2}; \\ &\frac{4\pi\hbar}{m}\Im f_{el}(\theta = 0) = \sigma_{tot} \end{split}$$

 p_{cm}

Teorema ottico

- la componente in avanti della diffusione elastica e' legata alla diffusione in tutti i canali elastici ed inelastici (sezione d'urto totale)
- il semplice fatto che una particella possa essere diffusa da un bersaglio richiede che ci sia una componente di diffusione elastica in avanti tale da interferire distruttivamente con la particella incidente e conservare la corrente totale
 - \checkmark conservazione della corrente: unitarieta' della matrice di diffusione

Coordinate

 $d\Phi_{i\to f} = d\vec{x}d\vec{p} = Vp^2dp \ d\Omega \sim p^2dp \ d\cos\theta \ d\phi = \pi p^2dp \ d\cos\theta$

 $\vec{p} = \vec{p}_{\parallel} + \vec{p}_{T}$ $p_{T} = |\vec{p}| sin\theta$ $d\vec{p} = p^{2} dp d\Omega = dp_{\parallel} p_{T} dp_{T} d\phi$ $p_{\parallel} = |\vec{p}| cos\theta$

Cinematica

• facendo una cambiamento di sistema di riferimento $\vec{x} \rightarrow \vec{x}'$ con un boost nella direzione $\vec{p}_{\parallel}/|\vec{p}_{\parallel}|$ il 4-impulso nel nuovo sistema di riferimento e' datato da:

 $p'_{\parallel} = \gamma(p_{\parallel} + \beta E)$ $E' = \gamma(E + \beta p_{\parallel})$

lo spazio delle fasi $d\vec{p} = p^2 dp d\Omega = dp_{\parallel} p_T dp_T d\phi$ non e' invariante

La Sapienza

Spazio delle fasi (invariante)

$$d\vec{p} = p^2 dp d\Omega = dp_{\parallel} p_T dp_T d\phi$$

$$d^4p\delta(E^2 - p^2 - m^2) = \frac{d\vec{p}}{E} = p_T dp_T d\phi dy; \quad dy = \frac{dp_{\parallel}}{E}$$

 $E^2 - p_{\parallel}^2 = p_T^2 + m^2 \equiv m_T^2$

 $sinh^2y + cosh^2y = 1 \quad \Rightarrow \quad sinhy = \frac{p_{\parallel}}{m_T}; \quad coshy = \frac{E}{m_T}; \quad and \quad tanhy = \frac{p_{\parallel}}{E}$

- lo spazio delle fasi ha densita' constante in y
- ⇒ assumendo che p_T sia limitato dalla dinamica ($A_{i \rightarrow f}$) la produzione di particelle (a piccoli y) ha una distribuzione costante in y.

$$\Rightarrow E \frac{d\sigma}{d\vec{p}}$$

sezione d'urto invariante

Rapidita'

$$e^{y} = sinhy + coshy = \frac{E + p_{\parallel}}{m_{T}} = \frac{E + p_{\parallel}}{E - p_{\parallel}}$$
$$y \to y_{max} \text{ for } p_{T} \to 0; \ p_{\parallel} \to p \Rightarrow y_{max} = ln\sqrt{s/M^{2}}$$

Rapidita', p_T, s

$$y_{max} = ln\sqrt{s/M_T^2}$$
$$M_T^2 = M^2 + p_T^2$$

considerazioni puramente cinematiche (dipendenza di y da $p_T e$ s) mostrano come la regione di rapidita' in cui la sezione d'urto rimane costante

- si restringe al crescere di p_T
- si estende al crescere di s

questa dipendenza e' in entrambi in casi logaritmica

 $Ed^{3}\sigma/d^{3}p$ (cm²c³/GeV²

page 32 / 105

sezione d'urto adronica (rapidita')

Pseudo-rapidita' e rapidita'

$$e^{\mathcal{Y}} = \sinh y + \cosh y = \frac{E + p_{\parallel}}{E - p_{\parallel}} = \frac{1 + p_{\parallel}/E}{1 - p_{\parallel}/E} = \frac{1 + \beta \cos \theta}{1 - \beta \cos \theta}$$
$$\eta = \frac{1}{2} \ln \frac{1 + \cos \theta}{1 - \cos \theta} = -\ln(\tan \frac{\theta}{2})$$
$$\lim_{m \to 0} y(m) = \eta \qquad |\eta| \ge |y|$$

processi costanti in rapidita' non sono costati in pseudo-rapidita' (almeno per masse non trascurabili)

Andrea Messina

page 35 / 105

pseudo-rapidita'

$$\frac{\sigma}{d\eta} = \frac{d\sigma}{dy}\frac{dy}{d\eta} = k\beta(\eta)$$

per particelle di bassa energia, la funzione di trasformazione ha un minimo pronunciato.

Questo implica che la distribuzione di particelle in funzione di eta non e' piu' piatta!

pseudo-rapidita'

la pseudo-rapidita' e' funzione solo di theta e non della massa della particella (ie e' uguale per tutte le particelle)

per impulsi O(10M) la differenza tra y e eta < 10%

eta e' la variable usata per concepire un rivelatore di particelle

Rivelatore

Feynman scaling

$$W = 2\sqrt{s}$$

$$\int f_i(p_T, x_F) d^2 p_T = f_i(x_F) \int g(p_T) d^2 p_T = f_i(x_F)$$

$$< N >= \int f_i(p_T, x_F) \frac{d^3 p}{E} = \int f_i(x_F) \frac{dp_z}{\sqrt{W^2 x^2 + m_T^2}}$$

$$< N >= \int_{-1}^1 f_i(x_F) \frac{dx_F}{\sqrt{x_F^2 + \frac{m_T^2}{W62}}}$$

$$2\int_{0}^{1} f_{i}(x_{F}) \frac{dx_{F}}{\sqrt{x_{F}^{2} + \frac{m_{T}^{2}}{W^{2}}}} < 2\int_{0}^{1} B \frac{dx_{F}}{\sqrt{x_{F}^{2} + \frac{m_{T}^{2}}{W^{2}}}} = 2Bln \left(x_{F} + \sqrt{x_{F} + \frac{m_{T}^{2}}{W^{2}}}\right)^{1}$$
$$= 2Bln \left(x_{F} + \sqrt{x_{F} + \frac{m_{T}^{2}}{W^{2}}}\right) - 2Bln \frac{m_{T}}{W}$$
$$\Rightarrow < N > \propto lnW \propto ln\sqrt{s}$$

Andrea Messina

Ricapitolazione

- la generalizzazione invariante dello spazio delle fasi richiede l'introduzione della rapidita' y
- lo spazio delle fasi e' uniforme in y
- se pT e' limitato dalla dinamica a piccoli y la distribuzione di particelle e' costante
- $y_{max} = ln\sqrt{s/M^2}$
- $< N > \propto ln\sqrt{s}$
- per energie sufficientemente piu' grandi della masse in gioco la rapidita' tende alla pseudo-rapidita' eta (che e' una variabile angolare)
- eta e' la variabile rispetto alla quale vengono concepiti i rivelatori in esperimenti ai collisori adronici

Rivelatori utilizzati per la luminosita'

Forward detectors

insensibili al tempo morto del'esperimento

normalmente self triggering

Andrea Messina

MBTS

Segmented into 16 counters on each side.

- Plastic scintillator planes connected to photomultiplie tubes via wavelength shifting fiber.
- Highly efficient trigger on charged particles.
- Generally trigger on the Inclusive Or of both sided.
- MBTS is the primary Minimum Bias trigger.

• 2.1 < $|\eta| < 3.8$

Roma, 24-25 Maggio 2012

BCM

- » 4 detector modules on each side of the detector
- » mounted on PIXEL support structure
 - » modules at $z ≈ \pm 1.8m$
 - » r=5.5 cm (η≈4.2)
 - » 45° angle with respect to the beam pipe

TRT

PIXEL

BCM modules

VP1 image, courtesy T.Kittelmann

Misura relativa della luminosita'

$$R_{inelastic} = \sum_{bunch} \mu_{bunch} \cdot \frac{f_{rel}}{n_b}$$

la grandezza sconosciuta e' μ in generale e' diversa da pacchetto a paccetto. In realta' quello che misuriamo e' la rate media ovvero μ medio. μ e' distribuito secondo una distribuzione di Poisson.

In pratica si misura una grandezza "O" funzione di μ => O(μ) $O \propto \mu$

- I. per esempio la rate di eventi visti da un rivelatore e' proporzionale a μ
- 2. la rate di oggetti (hits, tracce) e' proporzionale a $\,\mu$

Per ottenera una misura accurata e' importante poter fare la misura per ciascun pacchetto, infatti nel caso in cui la relazione tra O e μ non e' lineare non sara' vero che la rate media totale e' uguale alla somma delle rate medie di ciascun pacchetto

Luminosity

this is the quantity to be measured as a function of time (min). It incorporates all the experimental effect associated to the measuring technique and detector

acts as a calibration constant, determined in specific experimental runs, measured by other experiments, or input from theory.

The physics process used to monitor the luminosity at LHC is the inelastic pp cross section (~ 70 mb @ 7TeV)

Techniques to measure μ

The idea is to define an observable that strongly depends on μ . The ideal case would be a linear dependence.

- Event counting:
 - ✓ measure the fraction of BC where a detector registered at least an event satisfying certain criteria
- Hit counting:
 - \checkmark counting the number of hits per BC
- Particle counting:
 - ✓ determine the number of particles per BC from observables that reflect the particle flux (eg: total current drawn by a liqud-argon module)

Conteggio eventi

contiamo gli eventi che lasciano un segnale sopra una certa soglia (hit) in un dato rivelatore (da almeno un lato OR, da entrambi i lati AND). Le efficienze riportate sotto sono per singla interazione ie mu =1 (esatto)

Α	С	LUCID	BCM	MBTS	ZDC		LUCID	BCM	MBTS	ZDC
Hits = 0	Hits = 0	$E_0 = 0.442$	0.711	0	0.472	$\epsilon_{sing} = 1 - \epsilon_0$	= 0.559	0.290	1.000	0.528
$Hits \geq 1$	Hits = 0	$\mathbf{E}_1 = 0.212$	0.125	0.004	0.215	$\boldsymbol{\varepsilon}_{A} = 1 - \boldsymbol{\varepsilon}_{0} - \boldsymbol{\varepsilon}_{0}$	2 = 0.347	0.165	0.998	0.313
Hits = 0	$Hits \ge 1$	E ₂ = 0.212	0.125	0.004	0.215	$\varepsilon_{\rm C} = 1 - \varepsilon_0 - \varepsilon$	1 = 0.347	0.165	0.998	0.313
$Hits \geq 1$	$Hits \ge 1$	E ₃ = 0.135	0.040	0.992	0.098	ε _{coinc} =1-ε ₀ -ε ₁ -ε	ε ₂ = 0.135	0.040	0.992	0.098

Event counting

Conteggio eventi

Problema: vogliamo conoscere la probabilita' di osservare n eventi per incrocio sapendo che il numero di interazioni per incrocio e' mu ed e' distribuito secondo una distribuzione di Poisson.

E' molto piu' semplice ragionare in termini di eventi "vuoti = senza interazione". Alla fine del calcolo usiamo l'unitarieta' della probabilita':

P(interazione) = I - P(non interazione)

page 50 /

Conteggio eventi vuoti

- I probability of having 0 interactions;
- II probability of having n interactions with 0 hits in both modules.

Term I is the Poissonian probability of having zero interactions:

$$I = P_{\mu}(0) = \frac{e^{-\mu}\mu^0}{0!} = e^{-\mu}$$
(10)

Given the probability to detect an interaction in single side mode (ε^{Sing} , see Table 4), term II is the combined probability of not detecting the *n* interactions occurring in a bunch:

$$II = (1 - \epsilon^{Sing})^n \tag{11}$$

Term II is convoluted with a Poissonian distribution of average μ (the sum starts from n = 1 to exclude term I):

$$\sum_{n=1}^{\infty} (1 - \epsilon^{Sing})^n \frac{e^{-\mu} \mu^n}{n!} = \sum_{n=0}^{\infty} (1 - \epsilon^{Sing})^n \frac{e^{-\mu} \mu^n}{n!} - e^{-\mu} = e^{-\epsilon^{Sing} \mu} - e^{-\mu} \quad (12)$$

The probability of observing an empty event is the sum of Equations 10 and 12:

$$N_{0/BX} = e^{-\mu} + e^{-\epsilon^{Sing}\mu} - e^{-\mu} = e^{-\epsilon^{Sing}\mu}$$
(13)

Andrea Messina

Conteggio eventi vuoti OR

The probability to have a bunch crossing with an average number of interactions that is <µ> is

$$P_{<\mu>0} = e^{(P_{10}-1)<\mu>} = \frac{M_0}{N_{BC}}$$
$$= \frac{\ln(\frac{M_0}{N_{BC}})}{P_{10}-1}$$

where M₀ is the number of detected empty events

N_{BC} is the number of bunch crossings

 P_{10} is the probability to measure an empty event when there is exactly one pp interaction $P_{10} = 0.711$ (BCM) =0.442 (LUCID) =0 (MBTS)

Conteggio eventi vuoti

Conteggio di eventi

C Event Counting AND

The fraction of detected events in the AND mode (FAND) can be written as

$$F_{extr}^{AND} = 1 - F_0^{OR}$$
(17)

Based on reference [17], the fraction of events with no hits in side A or C (F_0^{OR}) is the sum of:

- I probability of having 0 interactions;
- II probability of having n interactions with at least one detected in side A, together with any number not detected in both modules;
- III probability of having n interactions with at least one detected in side C, together with any number not detected in both modules.
- IV probability of having n interactions with 0 hits in both modules.

The calculations are performed under the same assumptions done in the previous section (efficiencies are not time-dependent and no migration effect). Assuming that interactions are Poissonian, Term I can be written as:

$$I = P_{\mu}(0) = \frac{e^{-\mu}\mu^0}{0!} = e^{-\mu}$$
(18)

To perform the calculations, exclusive detection efficiencies (e1, e2, e3 and e0) are defined in Table 11.

21	probability of detecting an interaction in A, but not in C
e2	probability of detecting an interaction in C, but not in A
83	probability of detecting an interaction in both modules
E0	probability of detecting no interactions $(=1-e_1-e_2-e_3)$

Table 11: Exclusive detection efficiencies.

Exclusive efficiencies are related to the inclusive ones defined in Table 3 by:

$$e_1 = e^A - e^{AND}$$

$$e_2 = e^C - e^{AND}$$

$$e_3 = e^{AND}$$

$$e_0 = 1 - e^A - e^C + e^{AND}$$
(19)

Term II (III) consists of all permutations of k interactions detected in module A (C) and n - k interactions not detected in any module:

$$I_n = \sum_{k=1}^n \epsilon_1^k \epsilon_0^{n-k} \binom{n}{k} = (\epsilon_1 + \epsilon_0)^n - \epsilon_0^n$$
(20)

$$III_{n} = \sum_{k=1}^{n} e_{0}^{k} e_{0}^{n-k} {n \choose k} = (e_{0} + e_{0})^{n} - e_{0}^{n}$$
(21)

Term IV is the probability of having an event with n interactions which are not detected neither by any module nor by both modules together.

$$IV_n = e_0^n$$
 (22)

Terms II, III and IV are convoluted with a Poissonian distribution with a average μ (the sum starts from n = 1 to avoid double counting of Term I):

$$II = \sum_{n=1}^{\infty} \frac{e^{-\mu} \mu^n}{n!} II_n = \sum_{n=1}^{\infty} \frac{e^{-\mu} \mu^n}{n!} [(e_1 + e_0)^n - e_0^n] = e^{-\mu} \left[e^{\mu(e_1 + e_0)} - e^{\mu e_0} \right]$$
(23)

$$III = \sum_{n=1}^{\infty} \frac{e^{-\mu} \mu^n}{n!} III_n = \sum_{n=1}^{\infty} \frac{e^{-\mu} \mu^n}{n!} \left[(\epsilon_2 + \epsilon_0)^n - \epsilon_0^n \right] = e^{-\mu} \left[e^{\mu (\epsilon_2 + \epsilon_0)} - e^{\mu \epsilon_0} \right]$$
(24)

$$IV = \sum_{n=1}^{\infty} \frac{e^{-\mu} \mu^n}{n!} IV_n = \sum_{n=1}^{\infty} \frac{e^{-\mu} \mu^n}{n!} \, \varepsilon_0^n = e^{-\mu} \left(e^{\mu \omega_0} - 1 \right) \tag{25}$$

The total probability of observing an empty event is the sum of Equations 18, 23, 24 and 25:

$$F_0^{OR} = I + II + III + IV = e^{-\mu(1-\alpha_0-\alpha_1)} + e^{-\mu(1-\alpha_0-\alpha_2)} - e^{-\mu(1-\alpha_0)}$$
(26)

Given the relations in Table 11, Equation 26 can be written as:

$$F_0^{OR} = e^{-\mu \varepsilon^A} + e^{-\mu \varepsilon^C} - e^{-\mu (\varepsilon^A + \varepsilon^C - \varepsilon^{AND})}$$
(27)

Eventually, the fraction of detected events is

$$F_{extx}^{AND} = 1 - F_0^{OR} = 1 - e^{-\mu e^A} - e^{-\mu e^C} + e^{-\mu (e^A + e^C - e^{AND})}$$
(28)

When $\mu \ll 1$, this equation simplifies to:

$$\mu \xrightarrow{\mu \ll 1} \frac{F_{ents}^{AND}}{e^{AND}}$$
 (29)

page 53

Andrea Messina

Conteggio di hits

D Hit Counting OR

In the OR mode, the average number of pp collisions per event (μ) is the ratio between the average number of particles per event (N_{part}^{OR}) and those per pp collision (n_{part}^{OR})

$$\mu = \frac{N_{part}^{OR}}{n_{part}^{OR}}$$
(30)

LUCID does not count particles, it only count hits. The way particles are distributed among the tubes depends on the type of interaction: non-diffractive, single- and double-diffractive. Assuming that particles are spread uniformly over the detector ⁸, the number of detected particles per tube is N_{part}/N_{taber} where $N_{tubes} = 32$. Assuming that particles in a tube are distributed according to a Poissonian, the number of hits in a event (N_{hitr}) can be written as the number of tubes times the probability to have at least one particle in a tube (namely a hit):

$$N_{hits} = N_{tubes} \left[1 - e^{-\frac{N_{surr}}{N_{tubes}}} \right]$$
(31)

Equation 31 can be inverted to turn the number of hits into particles:

$$N_{part} = -N_{tubes} \ln \left(1 - \frac{N_{kits}}{N_{tubes}}\right)$$
(32)

Since the logarithm goes to infinity when $N_{hits} = N_{tabet}$, N_{part} is constrained to be smaller than 200. By taking larger upper limits, the results presented in this note do not considerably change.

The numerator in Equation 30 (N_{part}^{OR}) is the average of the number of particles per event $(N_{part,i}^{OR})$ over N_{BX} events with an unknown μ :

$$N_{part}^{OR} = \frac{\sum_{i=1}^{N_{BX}} N_{part,i}^{OR}}{N_{BX}} = -\frac{N_{taber}}{N_{BX}} \sum_{i=1}^{N_{BY}} \ln\left(1 - \frac{N_{bitr,i}^{OR}}{N_{tabes}}\right)$$
(33)

The denominator in Equation 30 (n_{part}^{OR}) is the average of the number of particles per collision $(n_{part,j}^{OR})$ over N_{pp} collisions:

$$n_{part}^{OR} = \frac{\sum_{j=1}^{N_{pp}} n_{part,j}^{OR}}{N_{pp}} = -\frac{N_{tubes}}{N_{pp}} \sum_{j=1}^{N_{pp}} \ln\left(1 - \frac{n_{kdx,j}^{OR}}{N_{tubes}}\right) - \frac{n_{kdx,j}^{OR} \ll N_{tubes}}{N_{kdx}} + n_{kdx}^{OR}$$
(34)

By using Equation 33 and Equation 34, Equation 30 becomes:

$$\mu = \frac{N_{tabes}}{n_{hits}^{OR}} \cdot \frac{\sum_{i=1}^{N_{BX}} \ln\left(1 - \frac{N_{tabes}^{OR}}{N_{tabes}}\right)}{N_{BX}} \xrightarrow{\mu \ll 1} \frac{N_{hits}^{OR}}{n_{hits}^{OR}}$$
(35)

Confronto conteggio hit - eventi

Osservazioni: il conteggio di hit e' affetto meno dagli effetti di saturazione. Un'accettanza minore ritarda la saturazione (ma c'e' meno statistica a disposizione)

Misura dell'efficienza

- Simuazione Monte Carlo della fisica e del rivelatore in esame
 - ✓ Le incertezze del modello MC si propagano nella misura in 3 effetti:
 - ♦ calcolo della sezione d'urto visibile

$$\sigma_{\rm vis} = \varepsilon_{\rm ND} \sigma_{\rm ND} + \varepsilon_{\rm SD} \sigma_{\rm SD} + \varepsilon_{\rm DD} \sigma_{\rm DD}$$

- ♦ determinazione efficienza di trigger
- ♦ determinazione accettanza del rivelatore
- Confrontando le efficienze di due o piu' rivelatori tra loro. Nota l'efficienza di un rivelatore (e la correlazione) si determina l'efficienza del secondo rivelatore.
 - ✓ necessario quando un rivelatore seleziona gli eventi a livello di trigger e un'altro viene usato per determinare la luminosita'
- Per determinare l'efficienza di trigger e' indispensabile avere un campione di eventi selezionati senza imporre una condizione di trigger: "zero bias"

Misura dell'efficienza

Trigger (bias)

Efficienza di trigger

- l'efficienza di trigger viene studiata utilizzando un campione di eventi selezionato con un trigger complementate: ovvero un trigger che selezioni parte degli eventi selezionati dal trigger di cui vogliamo conoscere l'efficienza
- campioni dipendenti: **Trigger Efficiency** $\varepsilon_{item1} = \frac{n_{item1}}{N}$ $\varepsilon_{item2} = \frac{n_{item2}}{N}$ 0.995 nitem1&item2 Eitem1 item2 nitem2 0.99 Data, vs = 900 GeV nitem1&item2 Eitem2 item1 Nitem1 0.985 Eitem2 $\varepsilon_{item1} = \varepsilon_{item1|item2}$. Eitem2 item] ATLAS Preliminary 0.98 campioni indipendenti: $\begin{aligned} \varepsilon_{item1} &= \frac{n_{item1}}{N}, \\ \varepsilon_{item2} &= \frac{n_{item2}}{N}, \end{aligned} \quad \varepsilon_{item1} = \frac{n_{item1}}{n_{item2}} \cdot \varepsilon_{item2} \end{aligned}$

Misura della luminosita' in ATLAS

• steps:

- ✓ osservazione passaggio di protoni
- \checkmark primi eventi da collisione
- \checkmark messa in tempo esperimento
- $\checkmark\,$ raccolta di eventi di collisione rimozione fondo
- \checkmark determinazione efficienza rivelatore con la simulazione
- \checkmark determinazione luminosita'
- $\checkmark\,$ confronto tra rivelatori diversi

Passaggio di protoni

Beam pickups are electric pads sensitive to the passage of the the bunches and are installed (175m) on both sides of ATLAS

Messa in tempo del trigger

MBTS reminder:

- Late add-on of 2x16 scintillator paddles installed in front of LAr cryostat, on both sides
- For use during initial running
- 2.1 < η < 3.8

Andrea Messina

page 62 / 105

page 63 /

Sono collisioni?

LHC e' stato riempito con 16x16 pacchetti, 8 dei quali si incrociano nel punto di interazione di ATLAS. Ci aspettiamo che la rate di eventi per i pacchetti accoppiati sia molto piu' alta che per pacchetti non accoppiatti: il segnale e' dominato da collisioni

MBTS_I_I_Col: contribution from colliding bunches ~ IHz

Fondo dal fascio

Andrea Messina

Fondo del fascio

Eventi di collisione e di fondo

Luminosita' per pacchetto

Luminosita' specifica

Confronto tra rivelatori diversi

Prestazioni attuali di LHC

Luminosita' bunch-by-bunch

Costante di tempo della luminosita'

Un decadimento di tipo esponenziale e' in generale una buona approssimazione. L'ipotesi e' che la probabilita' di deterioramento della luminosita' e' costante nel tempo. Contributi dominanti al deterioramento provengono dal decadimento dell'intensita' del fascio, aumento della sezione trasversa

Andrea Messina
Ricapitolazione

- La luminosita' dipende dall'intesita' dei fasci dalla frequenza di interazione e dalla sezione trasversa dei fasci
- Luminosita' relativa e' fondamentale per conoscere le prestazioni dell'acceleratore
- la luminosita' e' proporzionale alla rate di eventi. Qualunque processo con una rate di alcuni hertz e' sufficiente per valutare la luminosita' relativa
- difficolta' stima dell'efficienza
- saturazione

Luminosita' assoluta

- Le misure di luminosita' relativa descritte fin ora sono affette da una grande incertezza sulla scala assoluta dovuta alla simulazione monte carlo necessaria a valuta l'efficienza e la la sezione d'urto totale
- Ci sono 2(3) metodi per ottenere la normalizzazione assoluta in modo
 ✓ Teorema ottico
 - $\checkmark\,$ metodo di Van der Meer

Applicazione teorema ottico

$$\begin{split} \sigma_{el} &= \frac{\pi \hbar^2}{p^2} |f(\theta)|^2 = \frac{\pi \hbar^2}{p^2} [(\Re f(\theta))^2 + (\Im f(\theta))]^2 \\ \sigma_{tot} &= \frac{4\pi \hbar}{p} \Im(f(\theta = 0)) \\ \frac{\sigma_{tot}^2}{\sigma_{el}} &= \frac{1}{4\pi} \left[1 + \frac{(\Re(f(\theta = 0)))^2}{(\Im(f(\theta = 0)))^2} \right] \longleftarrow \quad \text{from theory I-2\%} \end{split}$$

Se possiamo misurare la sezione d'urto eleastica nel limite di angolo zero, possiamo fare una misura indipendente della sezione d'urto totale e quindi estrarre la luminosita'. Il rapporto della parte immaginaria e reale di f deve essere calcolato (LHC ~ 0.1+/-0.02)

Molteplicita di particelle vs theta

page 7

Elastic scattering: EM interference

 Measure at very low t the elastic scattering => sensitive to Coulomb amplitude (ALFA)

Rivelatore: roman pot

page 78 / 105

Elastic scattering

- Very demanding beam conditions ($\theta \sim 3-6 \mu rad$):
 - ✓ Tiny angular divergence $\sigma^* = \sqrt{(\epsilon)}/\beta^* << \theta_{scat.}$
 - igstarrow very small emittances: $\epsilon \sim 1 \mu m$
 - ♦ large β*: 90m, 1540m(TOTEM), 2600m(ALFA)

 \checkmark parallel-to-point focussing => same angle same place in the detector

 \checkmark zero crossing angle => 156 bunches => low L (10²⁹ cm⁻² s⁻¹)

- Detector able to approach the beam within 1-1.5 mm (10-12 σ)
 - ✓ extremely precise detectors: Si (TOTEM), Sci-fibers (ALFA)
 - ✓ compact electronics, very good alignment

Elastic scattering: precision

- Optical theorem + total rate
 - ✓ Estimated TOTEM systematics on absolute L : 2-4 % (@ β *=1540m)
 - ← extrapolation to t = 0:5-6% @ β *=90m, <1% @ β *=1540m
 - total inelastic rate <1%</p>
- Optical theorem + Coulomb interference (2013-2014):
 - \checkmark Main challenge are the beam requirements to go at very small t:
 - will it be possible to reduce the emittance as low as required?
 - will the optical properties of the beam known at the required precision?
 - will the beam-halo allow to approach the beam so close

page 81

Absolute L: from beam parameters

In the hypothesis of beam densities uncorrelated in x, y

$$\begin{aligned} \mathscr{L} &= \mathbf{n}_{\mathbf{b}} \cdot f_r \cdot N_1 \cdot N_2 \cdot I_x(\rho_1(x) \cdot \rho_2(x)) \cdot I_y(\rho_1(y) \cdot \rho_2(y)) \\ I_x(\rho_1(x) \cdot \rho_2(x)) &= \int \rho_1(x) \cdot \rho_2(x) dx \\ \end{aligned}$$
we need to measure the overlap integrals in x and y

Andrea Messina

Luminosity & vdM scan method

to estimate the overlap integral

page 82 / 105

Fasci con profilo gaussiano

Nel caso in cui la densita' di particelle dei fasci sia rappresentata da una Gaussiana: $1 - (r - u)^2$

$$G(x,\sigma,\mu) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right)$$

possiamo calcolare esplicitamente l'integrale di convoluzione ottenendo:

$$I_x(G_1(x,\sigma_1,\mu_1=0)\cdot G_2(x,\sigma_2,\mu_2=0)) = \frac{1}{\sqrt{2\pi}}\cdot \frac{1}{\sqrt{\sigma_1^2 + \sigma_2^2}} = \frac{1}{\sqrt{2\pi}\Sigma_x}$$

da cui si ricava l'espressione generale della luminosita':

$$\mathscr{L} = \mathbf{n}_{\mathbf{b}} \cdot f_r \cdot \frac{N_1 \cdot N_2}{2\pi \cdot \Sigma_x \cdot \Sigma_y}$$

notare che $\sum_{x(y)}$ e' la sigma di convoluzione e non la sigma del fascio. Nel caso di fasci uguali $\sum_{x(y)} = \sqrt{2}\sigma_{x(y)}$ da cui: $\mathcal{L} = n_b f_f \frac{N_1 N_2}{4\pi\sigma_x\sigma_y}$

Metodo di van der Meer

Il metodo proposto da Van der Meer (1968 - ISR) per misurare la luminosita' assoluta consiste nel misurare direttamente l'integrale di convoluzione. Poiche' la rate di interazione e' proporzionale alla luminosita', lo sara' anche l'integrale di convoluzione. Nel caso in cui i due fasci non siano in asse ma i loro centri siano separati di una distanza h, avremo:

$$R(h) = \mathbf{A} \cdot I_x(\rho_1(x) \cdot \rho_2(x-h))$$

dove R(h) e' la rate di interazione quando i fasci sono separati di h, ed A e' una costante di proporzionalita' sconosciuta.

$$\int_{-\infty}^{\infty} R(h)dh = A \int_{-\infty}^{\infty} \left[\int_{-\infty}^{\infty} \rho_1(x)\rho_2(x-h)dx \right] dh = A \int_{-\infty}^{\infty} \rho_1(x) \left[\int_{-\infty}^{\infty} \rho_2(x-h)dh \right] dx = A \int_{-\infty}^{\infty} \rho_1(x)dx = A$$

da cui otteniamo che l'integrale di convoluzione e' dato da:

$$I_x(\rho_1(x) \cdot \rho_2(x)) = \frac{R(0)}{\int R(h)dh}$$

Andrea Messina

Metodo di van der Meer

La Sapienza

Metodo di van der Meer

Sezione d'urto visibile

Incertezze sistematiche

- intensita' dei fasci
- calibrazione scala assoluta delle lunghezze
- decentramento dei fasci
- scelta della funzione di fit della rate in funzione della separazione
- crescita della sezione trasversa dei fasci nel tempo
- fondo di eventi non da collisioni protone-protone
- dipendenza residua della rate dal numero di interazione per crossing

Roma, 24-25 Maggio 2012

Current measurements

DCCT: DC Current Transformer Measures the total current

FBCT: Fast Beam Current Transformer Measures the fraction of the current in each bunch.

Calibrazione scala delle lunghezze

For every scan step for beam 1 and beam 2,

- the beam spot centre (x , y) is measured averaging over the primary interaction vertices as determined by the ATLAS inner tracker
- the rate is measured using the Minimum Bias Trigger Scintillator (MBTS)

page 9

Calibrazione scala delle lunghezze

For every step in X (Y) for beam 1 (beam 2) a mini scan is performed using beam 2 (beam 1)

undetected beam motion =0.3%

BCID

IP1

IP5

IP2

IP1

IP5

- Observe up to 2 micron non-reproducibility in fitted peak position
 - NB. Beams not recentered between scans
 - Observed effect larger at larger β*; should scale as sqrt(β*)
- Visible systematic difference depending on cross-talk with other IPs

Mark Tibbets

page 92 / 105

Roma, 24-25 Maggio 2012

Crossing Angle and x-y correlation

movement of luminous region during a scan will allow to extract the correlation factor between the horizontal and vertical single beam profiles.

Parametrizzazione di F di overlap

BCID

- Refit data with alternative models
 - Cubic spline
 - Gauss+p0 fit to background subtracted data
 - p0 included in $\Sigma \& \mu_{vis}(0)$
 - Gauss+p0 fit to uncorrected data
 - p0 as background
- Largest deviation in means for any one algorithm/scan assigned as fit model systematic (0.3%)

page 94 / 105

REMINDER: σ_{int} should be identical for all BCIDs

Parametrizzazione di F di overlap

 $z = \frac{1}{4} \left(\left(\exp(-(x^2)) + \frac{1}{0.5} \exp\left(-\left(\frac{x}{0.5}\right)^2\right) \right) \right) \left(\left(\exp(-(y^2)) + \frac{1}{0.5} \exp\left(-\left(\frac{y}{0.5}\right)^2\right) \right) \right)$

 $z = \frac{1}{2} \left(\exp(-(x^2 + y^2)) + \frac{1}{0.5} \exp\left(-\frac{(x^2 + y^2)}{0.5^2}\right) \right)$

page 95 / 105

Emittance growth

Andrea Messina

Satellite bunches

Satellite bunches

7TeV vdM ATLAS Uncertainties

	ATLAS-CONF-2011-117 (Aug 2011 2/fb)	2011 5/fb projected	2012 projected	Comment
Beam centering	0.1	0.1	Measured in scan	Fill dependent
Beam jitter	0.3	0.3		
Non-reproducibility	0.4	0.8	Measured in scan	Fill dependent
Bunch consistency	0.4	0.5	Measured in scan	Fill dependent
Fit model	0.8	0.3	Measured in scan	Fill dependent
Bkgd subtraction		0.3	Measured in scan	Fill dependent
Reference L _{sp}		0.3	Measured in scan	Fill dependent
Dynamic beta		0.8		Collisions at IP1 only
Non-linear correlations	0.5	0.5	Measured in scan	Fill dependent
μ-dependence in scan	0.5	0.5	Measured in scan ~2011?	
Length scale calibration	0.3	0.3		Depends on β*
Inner det. Length scale	0.3	0.3		
BCM H/V consistency	0.7	0.7	?	
Total vdM uncertaity	1.5	1.75	~2011?	Without beam current

Full 2011 7TeV Uncertainty Table

	ATLAS-CONF-2011-117 (2/fb Aug 2011)	5/fb projected	2012 projection	Comment
DCCT	2.73	0.23		
FBCT	1.30	0.20		
Ghost charge	0.18	0.18		
Total BCP	3.0	0.35	~2011?	Thanks to BCNWG!
Total vdM	1.5	1.75	~2011?	
Total $\sigma_{_{\! \text{vis}}}$ uncertainty	3.4	1.8	~2011?	
Long term stability	1.0	1.0	~2011	Detector aging in 2012?
μ-dependence in physics running	1.0	1.0	~2011	Larger μ range for 2012
Afterglow subtraction	0.2	0.2		
Total monitoring	1.4	1.4	~2011	Unchanged from summer despite more data & higher µ values
Total 2011 7TeV pp	3.7	2.3	~2011?	

Andrea Messina

Dipendenza da μ

Scan in Single Physics Fill

Notation: $<\mu>$ is average μ for an algorithm over all bunches

- LHC Fill 2086 beams separated at IP1 then recentered
 - Effectively samples wide range of µ
 - Peak µ~12
 - FCal calibrated to BCM in this fill
 - Observe residual non-linearity
- Comparison between BCM, LUCID & Tile suggests consistency across physics µ range (2-12) of 1%
- AND algorithms diverge at μ < 2
 - Imperfect background subtraction in the region it becomes important
 - Subject of investigation, plot likely to change in this region

22

page100/105

Mark Tibbets

Luminosity from W/Z counting

- Leptonic decays of vector bosons provide a very clean signature
 - \checkmark good high-p_T lepton reconstruction
 - \checkmark low background
 - ✓ robust against pile-up
 - \checkmark relative good event statistics:

σ(W⇒lυ) ~ 10 nb; ε ~30%

 $L \sim 10^{32} \text{cm}^{-2} \text{s}^{-1} \Rightarrow 4 \text{pb}^{-1}/\text{day} \Rightarrow 12 \text{k events}/(\text{day}^*\text{channel})$

• robust theory predictions for production cross section:

$$\mathcal{L} = \frac{N_{cand} - N_{bkgd}}{\epsilon\sigma}$$

Luminosity from W/Z counting

	precision 2010	precision in 2012	comment
σ _{th} (μ _R , μ _F)	< %	< %	scale uncertainty at NNLO
PDF-> σ_{th}	4-5%	3-4%	LHC data
reco. efficiency	7-8%	3%	with Z data
Acceptance(PDF)	3%	2%	LHC data
Total	8-10%	4-5% ?	dominated PDF

Sommario

- definito in modo rigoroso la luminosita' come funzione delle caratteristiche del fascio e dell'integrale di convoluzione dei fasci
- discusso misure di luminosita' relative e metodi di conteggio
 ✓ conteggio di eventi e conteggio di hit
- discusso i metodi di misura della luminosita' assoluta
 - \checkmark teorema ottico e diffusione elettromagnetica
 - ✓ misura diretta dell'itegrale di convoluzione col metodo di Van der Meer

Ricapitolazione

- la misura della luminosita' assoluta e' basata su 2 metodi:
 - ✓ teorema ottico e scattering elettromagnetico, elimino il problema della stima della sezione d'urto totale
 - ✓ metodo di Van der Meer basato sulla misura esplicita' dell'itegrale di convoluzione dei due fasci

• Terzo metodo:

- ✓ Misura di una sezione d'urto ben nota teoricamente e misurabile con ottima precisione per normalizzare la scala assoluta:
 - ♦ W->Iv Z->II

Bibliografia

- Cinematica e molteplicita' di particelle:
 - ✓ Dan Green "High pT Physics at hadron colloders" Cambridge Press
 - ✓ J.F. Grosse-Oetringhaus, K. Reygers arXiv:0912.0023
- Misura della luminosita' ad ATLAS e CMS
 - ✓ <u>https://cdsweb.cern.ch/record/1334563/files/ATLAS-CONF-2011-011.pdf</u>
 - ✓ <u>https://cdsweb.cern.ch/record/1376384/files/ATLAS-CONF-2011-116.pdf</u>
 - ✓ <u>http://cdsweb.cern.ch/record/1376102/files/EWK-11-001-pas.pdf</u>
 - ✓ <u>http://cdsweb.cern.ch/record/1279145/files/EWK-10-004-pas.pdf</u>
- Sezione d'urto totale
 - ✓ <u>http://totem.web.cern.ch/Totem/</u>
 - http://atlas-project-lumi-fphys.web.cern.ch/atlas-project-lumi-fphys/ALFA/ default.html
- LHC lumi days
 - ✓ <u>http://indico.cern.ch/conferenceDisplay.py?confld=162948</u>
 - ✓ <u>http://indico.cern.ch/conferenceDisplay.py?confld=109784</u>

Andrea Messina

