Nonequilibrium Stationary States

System subject to nonconservative forces: hence to thermostats. Ex-
ample
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Thermostats (1), (3) are irreversible while (2) is reversible i.e. it gen-

erates a dynamics Syz such that I.S; = S_,I wih I(p, z) e (—p, x).
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One says that motion has a well defined statistics p if

LS 2o F(S"2)——— [ u(dy) F(y) for (a.s.) all z
Assumption: (Chaotic hypothesis (M, S) is such that

(1) covariance
T Sz (2) = “hyperbolic”

(3) dense orbit

(Ruelle 73, Cohen, G, 95)

Consequence: a.a. initial data x have statistics p independent on z:
S RB-statistics

In equilibrium: = ergodicity = statistical mechanics

For instance: in the conservative case the stationary states are char-
acterized by two parameters U, V: u = ppyv. And Boltzmann’s heat
theorem follows

Let p(U,V) be the pyy average momentum transfer to walls

Let T(U,V) be the puy,v average kinetic energy

Then 442 (TU’V)dV = exact (hence = dS): a parameterless uni-
versal relation




Are there such consequences in nonequlibrium? when the chaotic
hypothesis becomes the chaotic hypothesis?

A “nonequilibrium ensemble” is a collection of probability distribu-
tions on phase space which are stationary and are parameterized
by macroscopic parameters like U, V| E in the example and by the
thermostat force.

Experimentally discovered property (Evans,Cohen,Morriss, 93) in
nunerical study of a reversible system of 54 particles. Define the
observable

1 /T/2 O'(Sta?) def

T —7/2 0+

has probability of being between p and p+dp proportional to e~ 7¢(P)+--
and ((p) verifies the “Fluctuation Relation”

((=p) =C((p) —por  (“FR")
A

This is a theorem in systems verifying the chaotic hypothesis (Co-
hen,G, 95).

Several experimental (numerical) checks

Nonnumerical tests attempted but, so far, not successfully (difficulty
of observing such large fluctuations)
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Need a “local fluctuation result” (G98).

Chain (or d-dimensional lattice) of “Arnold cat maps”

where
p (e _ (1 1) (#n 51(27-)) S8 )
Ej_<@;2>_<1 0) <@j2>+n<52(£j) e fZ(fnn(j))

where f; depends on nearest neighbors only (eg f1 = cos(¢;4+1,1 —
201+ fi-11)

For n # 0 and ¢ small the system is chaotic (for most f,d) and
dissipative uniformly in the size V of the system.

—logdet 9S.(p)0¢p =0o(p) has (o) =0,V

(‘3SVO(£VO fvoc)
8£VO

oy, = logdet

Th.: ifp= ¢ ZZ?/Q ov, (S7 ¢ ) then the probability is e~"o7¢(®)

VO T
and

C(=p) =((p) —poy

Real systems are almost always modeled by non reversible thermost-
sats

Equivalence conjectures.



