
Nonequilibrium Stationary States

System subject to nonconservative forces: hence to thermostats. Ex-
ample

mẍ i = F i + E − ϑ i

E

E external non conservative force

ϑ thermostat force

ϑ thermostat models

(1) ϑ i = −ν p i
(viscous thermostat)

(2) ϑ i = −α p
i

α =

∑

ẋ
i
·E

∑

p 2

i
/m

(Gaussian thermostat)

(3) anelastic
√
η = restitution coefficient ( v · n → −√η v · n

(4) renormalize | v i| after each collision to | v ′

i| =
√

d
2
kBT
m

(5) stochastic thermostat and infinite reservoir thermostat (Rey Bel-
let)

Thermostats ←→ phase space contraction σ = −div ϑ = −
∑

∂ p
i

ϑ i(x, p)

(1) σ = ν N d

(2)σ =

∑

E · ẋ
i

kBT
L

kBTϑ
if dNkBT

def
=
∑ p 2

i

2m

(3) σ =
√
ηνcollision

def
= L

kBTϑ
. . ..

In general σ =
∑

p
i
· ∂ p

i

F i
def
=

∑

F
i
· ẋ

i

kBTϑ

Thermostats (1), (3) are irreversible while (2) is reversible i.e. it gen-

erates a dynamics Stx such that ISt = S−tI wih I(p, x)
def
= (−p, x).
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One says that motion has a well defined statistics µ if

1
T

∑T−1
n=0 F (Snx)−−−−→

T→∞

∫

µ(dy)F (y) for (a.s.) all x

Assumption: (Chaotic hypothesis (M,S) is such that

→
x Sx

(1) covariance

(2) x “hyperbolic”

(3) dense orbit

(Ruelle 73, Cohen, G, 95)

Consequence: a.a. initial data x have statistics µ independent on x:
SRB–statistics

In equilibrium: ⇒ ergodicity ⇒ statistical mechanics

For instance: in the conservative case the stationary states are char-
acterized by two parameters U, V : µ = µU,V . And Boltzmann’s heat

theorem follows

Let p(U, V ) be the µU,V average momentum transfer to walls

Let T (U, V ) be the µU,V average kinetic energy

Then dU+p(U,V )dV
T = exact (hence = dS): a parameterless uni-

versal relation
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Are there such consequences in nonequlibrium? when the chaotic
hypothesis becomes the chaotic hypothesis?

A “nonequilibrium ensemble” is a collection of probability distribu-
tions on phase space which are stationary and are parameterized
by macroscopic parameters like U, V,E in the example and by the
thermostat force.

Experimentally discovered property (Evans,Cohen,Morriss, 93) in
nunerical study of a reversible system of 54 particles. Define the
observable

1

τ

∫ τ/2

−τ/2

σ(Stx)

σ+

def
= p(x)

has probability of being between p and p+dp proportional to e−τζ(p)+...

and ζ(p) verifies the “Fluctuation Relation”

ζ(−p) = ζ(p)− pσ+ (“FR′′)

This is a theorem in systems verifying the chaotic hypothesis (Co-
hen,G, 95).

Several experimental (numerical) checks

Nonnumerical tests attempted but, so far, not successfully (difficulty
of observing such large fluctuations)
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Need a “local fluctuation result” (G98).

Chain (or d-dimensional lattice) of “Arnold cat maps”

•ϕ 0

0 •ϕ 1

1 •ϕ 2

2 . . . . . . •
ϕ

V −1

V−1

where

ϕ ′

j
=

(

ϕ′

j1

ϕ′

j2

)

=

(

1 1
1 0

)(

ϕj1

ϕj2

)

+ η

(

δ1(ϕ j
)

δ2(ϕ j
)

)

+ ε

(

f1(ϕ nn(j)
)

f2(ϕ nn(j)
)

)

where fj depends on nearest neighbors only (eg f1 = cos(ϕj+1,1 −
2ϕj,1 + fj−1,1)

For η 6= 0 and ε small the system is chaotic (for most f, δ) and
dissipative uniformly in the size V of the system.

− log det ∂Sε(ϕ )∂ ϕ = σ(ϕ ) has 〈σ〉 = σ+V

σV0
= log det

∂SV0
(ϕ

V0

ϕ
V c

0

)

∂ ϕ
V0

Th.: if p = 1
V0τ

∑T/2
−T/2 σV0

(Sj ϕ ) then the probability is e−V0τζ(p)

and
ζ(−p) = ζ(p)− pσ+

Real systems are almost always modeled by non reversible thermost-

sats

Equivalence conjectures.
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