
Renormalization and Classical MEchanics

Renormalization (group): cancellations fixing apparently singular problems
can be (easily) exhibited by decomposing the singularity into “scales”, i.e.
as sums of regular terms.

An interesting illustration is the analysis of the KAM problem. First
consider a trivial case (“1–scale problem)

hj(ψ ) = ε∂jf(ψ + h (ψ )) ψ = (ψ1, ψ2) ∈ T 2

f(α ) =
∑

| ν |≤N

ei ν ·α f ν , f ν = f− ν

Then cnsider the KAM problem

(ω · ∂ )2 hj(ψ ) = ε∂jf(ψ + h (ψ )) j = 1, 2

ω = (ω1, ω2) ∈ R2, |ω · ν | ≥ 1

C | ν |τ , C, τ > 0

(example: ω = (1,
√
2)).

Perturbative solution: h (ψ ) = ε h (1)(ψ ) + ε2 h (2)(ψ ) + . . . =⇒

h (k)(ψ ) =
[

∑

s≥0

1

s !
∂ ψ ∂

s
ψ f(ψ )h s

](k−1)
=

=
∑

s≥0

1

s !

∑

∑

kij=k−1

∂ ψ ∂
s
ψ f(ψ )

ℓ
∏

i=1

si
∏

j=1

h (kij)

This is rather involved as an algebraic relation! A characteristic feature
of the method: graph symbols (rather than algebraic ones). We can

represent h
(k)
j as

(k)j

1Represent. of h (k): the label j = 1, . . . , ℓ indicates the j-th component of h (k).
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Rewrite h
(k)
j , for k − 1 = k1 + . . .+ k| s |, as

(k1)

(k2)j v

j1

j| s |

∑

s

(k| s |)

2:The root is marked j. Node v → ∂ψ ∂
s
ψ
. The dummy labels ji wil be suppressed.

Since h (ψ ) is periodic we compute its FT. h ν : as a graph

(k1)

(k2)j, ν v0

ν v0

ν 1

ν | s |

∑

s ,k1+...=k−1

ν
0
+ ν

1
+...= ν

(k| s |)

Iteration:

.

=
∑

j, ν ν v0

v0

v1

ν v1

ν (λ)

Incoming momenta ν n into each node.
Current through a generic line λ = v0v1: ν (λ) =

∑

w≤v1
ν v (i.e. current

is conserved at each node).

Value:

Val(ϑ) =
1

k!

∏

λ=(v′v)

(i ν v′ · i ν v)
∏

v

f ν
v
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Number of trees ≤ k!22k. Each value is trivially bounded by

|Val(ϑ)| ≤ 1

k!
N2k−1F k =⇒ convergence if |ε| < ε0 <

1
22N2F

Cancellations

(1) If ν = 0 then the sum of the values is 0 ! In fact if we sum the

values of the trees obtained by detaching the root line from the node v0
and we reattach it to the other nodes w the value does not change other

than by the factor “propagator” of the root line which equals ν wj hence

the sum of all values is proportional to
∑

w ν wj ≡ ν = 0

(2) The same argument justifies discarding the (otherwise undefined)
values of the trees which contain an internal line with 0 current: this
is the cancellation found by Lindstedt, Newcomb (in special) and by
Poincaré (in general).

(3) If there are two lines that are comparabe (in the tree partial order)
and which have the same current ν

.

ν

6

ν1

2

3

ν v

4

5

this means that
∑6

i=1 ν i = 0 : and if we detach the line starting in v
and we attach it to the nodes j = 1, . . . , 6 we only change the propagator
of the line jv which assumes one after the other all values ν j · ν v: their
sum vanishes ( 0 ). There we could have also excluded the graphs in
which two comparable lines have the same momentum? NO overlapping

divergences.
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KAM: An “infrared” singularity

Same representation! But new propagator. Value: it is obtained by
discarding graphs in which at least oneline carries a 0 current (Poincaré),

Val(ϑ) =
1

k!

∏

λ≡(v′v)∈ϑ

− ν v · ν ′
v

(ω 0 · ν (λ))2
∏

v∈ϑ

f ν
v

where the root should be interpreted as:
i( ν

v0
)j

(ω
0
· ν )2 .

The momentum of every node ν v is bounded, but the currents ν (λ) can
be as large as k N : =⇒ large propagators or small divisors (not zero,
though) will be possible.

Is this a real problem? yes: because the value of the single graph ϑ0

ν ν νv1

v′1

v2

v′2

v k
3

v′k
3

w

w1

w2

w′
k
3
−1

Fig.4 A graph (comb) resonating if ν vj = − ν v′
j
= ν 0: it has et trop gande valeur.

is easily computed and yields a value k!Val(ϑ0 ≥ const(k!)a (a = τ/3).

One must make use of the cancellations seen in the trivial case. Indeed if
we disregard certain graphs then =⇒ easy bound. Indeed if Nn = number
of propagators of scale n i.e

2n−1 < C|ω · ν | ≤ 2n n = 0,−1,−2, . . .

the value is trivially bounded by

1

k!
N2k−1F kC2k

1
∏

n=−∞

2−2nNn

On the other hand to generate a propagator of scale n it is necessary that
| ν | > 2−n/τ and therefore the line must be preceded by at least 2−n/τ/N
graph lines.
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Once such resonance is created and C ω · ν (λ) ≃ 2n one might think that
one should “wait” as many new lines (2−n/τ/N) in order of being able to
recondtruct a propagator of the same size)The conlusion would be that
if we only dispose of k lines (Siegel,Pöschel) then

Nn < const
k

2−n/τ
=⇒

1
∏

n=−∞

2−2nc 2n/τ k =Mk

The “comb” graph exposes the faulty argument: between two equal
propagators there might be just a single line: one should thereofore
show that if bewteen two lines with equal propagator the are not many
“intermediate” lines then we can collect several graphs whose sum can
be bounded by counting the repeated propagators just once

The mechanism is simple

+
v′ w1

w2

v v′ w1

w2

v

The simple cancellation

If in a graph one gets the situation of the figure with ν w1
= − ν w2

.
We detach from the node w1 the entering line and atach it to w2: this
amounts to a change in sign (because of the vector part of the propagator
ν w1

· ν v, which becomes). However the current on the line www2 changes
from ν w2

to ν w2
+ ν and (ω · ν w2

) changes into (ω · ν w2
+ ω ·

ν )
def
= (ω · ν w2

+δ): hence by summing the two terms and those obtained
by exchanging the sign of ν w one gets the 4 terms

(
1

(ω · ν w2
)2

− 1

(ω · ν w2
+ δ)2

+
1

(−ω · ν w2
)2

− 1

(−ω · ν w2
+ δ)2

)

which vanishes to order 2 if δ = 0. If δ ≪ ω · ν w2
(the only interesting

case) then we bound by const δ2 which “removes one of the two small

divosors.
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If we have a chain of m resonating propagators we repeat the operations
and we sum over 4m graphs obtaining =⇒ bound prop. to δ2m; which
compensates the product of the (δ2(m+1)) propagators: only one of the
m denominators remains!

But one must avoid superposing the cancellations. Given a graph we
define the “clusters”of propagators of scale n:

v1

v2

v3

v5

v6

v4

T

T ′

T ′′

v7

Example of 3 clusters (encercled as visual help).

A cluster is formed by lines, forming a connected set, of scale ≥ n with
at least one line of scale n =⇒: which leads to a hierarchical structure
typical of multiscale problems.

We declare a cluster a self–energy cluster if

• the sum of the moments inside a cluster vanished et
• a single line enters the cluster
• the number of internal lines is not large of the order 2−n/τ (i.eif the
presence of the cluster would not permit to apply the mentioned argument
of Siegel–P̈oschel)

There will not be conflicts between the cancellations (i.ewe shall not
need the same graph to exhibit the cancellations needed in two unrelated
graphs) if in the operation of detaching attaching of the lines that enter
a self energy graph the scales of the graph lines do not change (as one
might fera they could): this is verified.
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Then with each self energy graph one shall generate via the resummation
just indicated a factor as small as the size of the two (equal) divisors
relative to the entering and exiting line. We can proceed as if the self

energy subgraph did not produce an extra small divisor and the Siegel-

Pöschel bound remains valid.

The technique can be pushed further: since inside every line we can insert
as many self energy graphs as we want.

v1 v2 vn

Inserting self energy graphs on a line

Since the value of a graph in which we insert a self e. graph on a line with
current ν is changed by a factor depending only on ν We can imagine
definingM( ν )/(ω · ν )2 to be the sum of the factors that are obtained by
adding together the values of all possible self-e. graphs and then inserting
them in all lines of a graph without self-e. graphs.

Summing over the insertions of the factorsM generates a geometric series.
One sees that formally this means replacing 1

(ω · ν )2 by

1

(ω · ν )2
∞
∑

k=0

( M( ν )

(ω · ν )2
)k

=
1

(ω · ν )2 −M( ν )

Therefore if one can show that the series defining M( ν ) is convergent
and smaller than (ω · ν )2O(ε) one achieves a proof of the KAM and an
expression of the solution which involves only summations over graphs
values of graphs without self-energy graphs (which can be bounded trivially).
Difficult; and requires a proof: but possible.The technique can be extended
to lower dimensional invariant tori of hyperbolic type. The self-e. graphs
do not necessarily verify M( ν ) proportional to (ω · ν )2: however one
can check that M( ν ) < 0 at least formally (i.ediregarding convergence
problems). The renormalized graphs are “even better” at least formally:
this can be used to prove that M( ν ) is well defined and > 0 so that
one achieves an (alternative) proof of the existence of hyperbolic lower
dimesional tori under suitable nondegeneracy conditions.
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