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NS and GNS equations (d = 2 Geometry):

1) Side of the periodic cell = L,

2) Forcing term is F f ; i.e. a dimensional parameter F times a fixed f

3) Fourier comp. Fk have max. mod. 1; vanish but for one (or few) k

4) Viscosity ν

5) V = FL2/ν, C = ν/L2 have dimension of velocity and inverse time. The
velocity field is defined V u(x/L, Ct) with u dimensionless.

6) Reynolds number R : R2 = FL3ν−2, or R = ν−1
√
FL3

Equations (incompressible fluids):

(NS): u̇+R2(u · ∂)u = ∆u+ f − ∂p , ∂ · u = 0

(GNS): u̇+R2(u · ∂)u = α∆u+ f − ∂p , ∂ · u = 0

where α is constant in space but may depends on u.

Energy, Enstrophy, etc.

Energy (kinetic): Q0 =
∫

u2dx = (2π)2
∑

k |uk|2,
Enstrophy: Q1 =

∫

(∂u)2dx = (2π)2
∑

k |k2| |uk|2,
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Consider Euler equations (ν = 0) which are Hamiltonian: impose the con-
straint that Q0 ≡ constant constant via Gauss’ least effort principle. Of
course the “effort” has to be defined.

Effort: G1 as G1
def
=

(

∆−1(a− f − ∂p), (a− f − ∂p)
)

Resulting equations have been studied: are the above GNS equations with

α =

∑

k
fkuk

∑

k
|k|2|uk|2

. Or in Fourier transform:

u̇k = −iR2
∑

j+h=k

(j⊥ · h)(h · k)
|j||h||k| ujuh − αk2uk + fk

Effort definition is arbitrary. More general constraints on Euler eq.:

Qm = (2π)2
∑

k

|k|2m|uk|2 constant under

Gℓ,m =
(

(∆)−(ℓ−m)(a− f − ∂p), (a− f − ∂p)
)

as effort

The case ℓ = 1, m = 1 (→ α =

∑

k
|k|2fkuk

∑

k
|k|4|uk|2

) studied in [RS00] together

other cases (G-hyperviscous equations NS). Here I fix ℓ = 1, m = 0: energy
conserved with an effort G1.

Mathematically GNS is no easier than NS. Truncation (i.e. |ki| ≤ N) is
necessary. Physically the cut–off on NS should be of the order of |ki| < O(R2)
(very large). Chaos starts around R2 ∼ 70 (experimentally).

Our interest is not motivated by any deep meaning attached to the Gauss
principle: it is not used in any other way than in the above interpretation of
the equations that are interesting only for the reasons that follow (“equiv-
alemce conjecture”).
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In general G-hyperviscous equations are reversible: velocity reversal Iuk =
−uk anticommutes with time evolution St since I · St = S−t · I. They are
also dissipative and the phase space is contracted at rate (divergence of the
equations)

σGNS = 2
(

∑

i

|ki|2 −
Q2

Q1

)

· α +

∑

|ki|<N k2fki
uki

Q1

related to the (constant) NS dissipation σNS = 2
∑

|ki|<N |ki|2
def
=M . For

instance 〈σGNS〉 = M · 〈α〉+ o(M)

Equivalence conjecture

The stationary probability distributions on the phase space of the NS equa-
tions and the GNS equations are equivalent in the limit of large Reynolds
number, provided the value of Q0 is chosen so that σNS and 〈σGNS〉 coin-
cide or, equivalently, provided the value of Q0 is chosen so that 〈α〉 equals
1.

Equivalence takes place in the same sense as canonical and microcanonical
ensembles are equivalent.

It han been studied by [RS00] and they concluded that there was evidence
for its validity at least in the small truncations that they could study.
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Why? Note that α is the sum of the local Lyapunov exponents: they are
in number O(R2) and furthermore fluctuate on short time scales: therefore
the value of α will have fluctuations in time which are less strong than those
of the individual exponents whose sum is α. Then α can be regarded as a
constant for the purpose of studying observable on large scale. Locality is in
“momentum space” and R → ∞ corresponds to the thermodynamic limit.

Here we attempt to study

1) whether the equivalence extends beyond the original formulation and one
can identify even the Lyapunov spectrum of the two equations

2) given the equivalence we study the NS equation and try to see whether a
part of the fluid behaves like the entire sample and we look at the fluctuation
relation in a smaller portion of the fluid. This is necessary in order to compare
with certain experiments that are being attempted or planned ([CL][G]). In
macroscopic systems one can only hope to see important fluctuations if one
examines small portions of the systems (anlogy with density fluctuations in
equilibrium)
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Results on the Lyapunov exponents
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Lyapunov spectra for NS with normal viscosity (N = 5 truncation) at
R2 = 2222 (left) and R2 = 5000 (right), and corresponding GNS runs with
constrained energy Q0. The 2K − 2 nontrivial exponents are drawn by as-
sociating each value of the abscissa k = 1, 2, . . . , K − 1 with the k–th largest
exponent λk and the k–th smallest exponent λ′

k = λ2K−k−1. Symbols
“+” → NS spectra,
“∗” → GNS spectra,
“×” to the sums (λk + λ′

k)/2 (NS case).
No “pairing” of exponents to a common average value, unlike the cases of
isokinetic Gaussian systems [DM96].

.

-100

-50

0

50

0 4 8 12

λ k

λ 2K-k-1

k

R   = 5000
2

6



An attempt to check equivalence on systems with many more modes yields
the following result

.
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Lyapunov exponents [N = 7, R2 = 106, and forcing modes (4,−3), (3,−4)].
All 2K − 2 = 164 nontrivial exponents are drawn as in Fig.1.
(+) NS exponents
(×) → graph of (λk + λ′

k)/2 (NS only)
(∗) → corresponding GNS runs with fixed energy (∗) i.e. m = 0, ℓ = 1
(“box”) → fixed “enstrophy” i.e. m = 1, ℓ = 1,
(“square”) → fixed “palinstrophy” i.e. m = 2, ℓ = 1.
Error bars identified with the size of the symbols.
units of 1/λmax, λmax being the largest Lyapunov exponent; runs of length
T ∈ [125, 250].
Overlap (best between NS and GNS because ...) reflects the validity of the
extension of the EC to the whole spectrum and to different members of the
hierarchy of equations.

R2 δQ0/〈Q0〉NS △α △Q1 o(M)/M
800 0.005 0.030 0.053 0.068
1250 0.020 0.018 0.062 0.057
2222 0.002 0.039 0.058 0.077
4444 0.050 0.021 0.093 0.059
5000 0.010 0.008 0.058 0.033

Equivalence of NS and GNS dynamics, i.e. with ℓ = 1 and m = 0, for differ-
ent Reynolds numbers. The last column gives the relative difference of the
computed sums of the NS and GNS Lyapunov exponents, cfr. [GNStoNS]).
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Fluctuation relation (global)

The system is clearly chaotic (ie it has one, in fact many, positive Lyapunov
exponents). We study the asymmetry of fluctuations of the phase space
contraction rate. Define

σGNS, τ (i) =
1

τ 〈σGNS〉∞

∫ ti+1

ti

σGNS(Stu) dt,

with ti a sequence of time intervale of length τ spaced by a gap t (i = 1, ...,∼
T/(τ+t)). An histogram yields probability density of the distribution (in the

stationary state, “SRB”) πτ (p)
def
= expTζ(p) of the values of p = σGNS, τ (i).

It was observed (cf. [RS99]) that the “asymmetry”

F (p; τ) =
1

τ 〈σGNS〉 [log (π
τ (p))− log (πτ (−p))]

could be fitted linearly in p with slope c(τ), as (within error bars):

F (p; τ) = c(τ)p ,
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Fluctuation relation (local)

How to define the phase space contraction in a small cubic ideal cell V0 of
side L0 in the fluid? We propose (inspired by [CL], [GGK]) to define it for

GNS as well as for NS via (ω
def
=∇× u)

p̂L0
(t) =

∫

f(x) · u(x, t)χ
V0
(x) dx

Q1,L0
(t) =

∫

ω2(x, t)χ
V0
(x) dx ,

Q2,L0
(t) =

∫

(∇ω)2(x, t) χ
V0
(x) dx , αL0

(t) =
p̂L0

(t)

Q1,L0
(t)

,

By the expression (reducing to σGNS in the case L0 = L:

σ̂L0
= 2





(

L0

2π

)2
∑

|ki|≤N

|ki|2 − Q2,L0

Q1,L0



 · αL0
+

∫

∇f ∇ω χ
V0

dx

Q1,L0

.

or simply as proportional to

αL0
(t) ≡ work per unit time on V0

vorticity

The two def. differ by “boundary terms” and yield (in our experiments!) the
same results within errors.
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Experimental results: global fluctuations

Only on GNS (in NS σGNS = const !): even there it is a difficult task because
the attractor is sensibly smaller than phase space. Smallness implies s FR
with a slope different from 1 (theoritical result in systems that are hyperbolic
and with dense attractor) and equal to 1 − M

N
where M is the number of

exponents in “negative pairs” and M is the total number. Remarkably ≤ 1.
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Computed values of F (p; τ), large deviation asymmetry, for GNS at R2 =
686. The straight lines interpolate the data; error is statistical. Left: τ ≈ 1.2;
Right τ ≈ 2.5, in 1/λmax units. The fit below is over various τ . Data refer
to a 24–real modes truncation (2K = 24). The kurtosis of πτ would be 3 in
Gaussian case.
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The value c(τ) (GNS at fixed energy and 24–real modes truncation) (R2 =
686). Times τ , in the horizontal axis are given in 1/λmax units. The values
of τ corresponds to cases in which already F (p; τ) has linear graph. The
datum with smallest τ has not been used in constructing of the fit (but it
matches it, nevertheless).

The slope is related to the dimension of the attracting set ([BG]): hence it
can be compared with the KY dimension: it appears that this dimension is,
in all cases, below KY dimension.
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Local fluctuations experiments (preliminary)

We define the “local contraction rate” of phase space by localizing the global
expression for GNS (as in equilibrium one does for the energy fluctuations)
as explained above
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Theoretical interpretation (an attempt)

A FR will hold if several properties hold: among them at least

i) attracting set is smooth: this is not possible to check

ii) if there is a time reversal invariance on the attracting set

iii) if a kind of pairing holds: (λk(x) + λ2N−k(x))/2 averages to its limiting
value faster than the individual λk(x) and λ2N−k(x) approach their asymp-
totic value on a faster time scale

The first assumption cannot be checked directly (attracting set is “out of
reach”). The second property might be less difficult than it seems. Bonetto
and G. proposed to link it to a geometric property called Axiom C described
by the picture:

. (c)(b)(a)

Ix

x

x’

x

IA

A

~

Illustration of axiom-C. Bottom squares are the attr. set A, top squares
represent the repelling set IA. Left: with vertical surface depicts a point
x ∈ A with a piece of its stable manifold connecting A to IA. Center: a
point x′ ∈ IA with a piece of its unstable manifold. Right: the corresponding
intersection between stable manifold of x and unstable manifold of Ix. Thus
one associates a point Ĩx in IA with a point x in A.

Local time reversal: I∗ = Ĩ ◦ I. In axiom C systems time reversal symmetry
cannot be broken.

The third property can be tested experimentally: it seem verified in our case
although the time scales involved are not really so different to provide a clear
cut answer.

So test the consequences (predictions [BG], [G]): linear asymmetry with slope
< 1 and equal to the ratio of the dimension of the attracting set to the total
phase space dimension.
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