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SRB distribution for Anosov maps

The lectures illustrate a method due to F. Bonetto and P. Falco. This was part of a program
to obtain analyticity of the SRB distributions in weakly interactin chains of Anosov maps of
“cat” type. The program has been completed by F. Bonetto, P. Falco, A. Giuliani and with
some contributions by G. Gentile and GG it can be found in

Bonetto, F., Falco, P.L., Giuliani, A.: , Analyticity and large deviations for the SRB measure
of a lattice of coupled hyperbolic systems, Preprint 2003.

as well as in

Gallavotti, G., Bonetto, F., Gentile, G.: Aspects of the ergodic, qualitative and statistical

theory of motion, p. 1–517, to appear printed by Springer–Verlag.

Preprints in

http://ipparco.roma1.infn.it
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Anosov maps: paradigm of systems with chaotic evolution.
Admit a system of curvilinear coordinates based on smooth surfaces W s

x and Wu
x

(1) covariant: S∂W i
x = ∂W i

Sx, i = u, s;
(2) continuous: ∂W i

x depends continuously on x
(3) hyperbolic:

x

Wu
γ (x)

W s
γ (x)

(4) transitivity: there is a point with a dense orbit in phase space M under S
A key example is the map of the torus T 2 (Arnord’s or cat map) defined by

S

(
ϕ1

ϕ2

)
=

(
1 1
1 0

) (
ϕ1

ϕ2

)

Problem: check the above four properties (“by Fourier analysis”)
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Key question is which is the statistics µ of motions? i.e. does it exist µ such that (∀f smooth)

lim
T→∞

1

T

T−1∑

i=0

f(Six) =

∫

M

µ(dy) f(y)

for all but a set of zero volume of points x? if so µ is called SRB distribution for (M,S).

Anosov maps in general do not have an invariant distribution which admits a density with
respect to the volumeµ0 . Very simple examples are small perturbations of the above map,
e.g. (non trivial!)

Sε

(
ϕ1

ϕ2

)
=

{
ϕ1 + ϕ2 + ε sinϕ1

ϕ1

The lack of a density of µ with respect to µ0 is at the same time a difficulty and a main
point of interest. Question is more general: “Chaotic hypothesis”.

Anosov maps admit special partitions of M , called Markov partitions, P = (P1, . . . , Pn).
Histories σ on P of points x, i.e. sequences {σi} s.t. Skx ∈ Pσk

, consist of sequences s.t.
SPσi

∩Pσi+1
hence defining Tσσ′ = 1 if SPσ∩Pσ′ and 0 otherwise it is Tσiσi+1

≡ 1 (compatibility
matrix).
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It is easy to construct P from a fixed point O of S. The stable and unstable lines through
O cover densely phase space (a general property). Then

O
Portions of the stable and unstable manifolds of the Arnold’s (cat) map.
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The main property of Markovian partitions is

s

∆

u u

s

S∆

The map “point ←→ history” converts volume µ0 into a prob. dist. on T–compatible
sequences. The points with histories equal to σ−N , . . . , σN ′ between −N,N ′ form a rectangle

SNPσ−N

Pσ0

S−NPσN

δxs
δxu
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SNPσ−N

Pσ0

S−NPσN

δxs
δxu

In formulae

µ0(∩N
′

−NS
−kPσk

) = m0(C
−N ...0 ... N ′

σ−N ...σ0...σN′
) = λN+N ′

δuσN′
δsσ−N

N ′−1∏

j=−N

Tσjσj+1

The volume distribution µ0 becomes a Gibbs dist. m0 for a “spin system” interacting with
a hard core (expressed by Tσiσi+1

≡ 1) and 0 potential.
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For ε > 0 (small) the sides of the rectangles bedome slightly curved and the area of the
“rectangle” ∩N ′

−NS
−kPσk

is approximately

sinϕ(x)

N∏

i=1

λ−1
u (S−ix)

N ′∏

i=1

λs(S
ix)δuσ−N

δsσN′

x is a point in ∩N ′

−NS
−kPσk

and the sides are computed by composition rule of differentiations
and λu(x), λs(x) denote the expansion and the contraction of the length of the unstable/stable
manifold under S.
The functions λu(x), λs(x), ϕ(x) are no longer constant but can be shown to be Hölder

continuous with exponent α < 1 (i = u, s):

|λi(x)− λi(x′)| ≤ Ld(x, x′)α, | sinϕ(x)− sinϕ(x′)| ≤ Ld(x, x′)α

if d(x, x′) is the distance between x and x′ and L > 0 is a constant. Since the history code
determines points exponentially fast with the number of specified digits the latter functions
can be expressed as functions of the histories − logλ(ix) ≡ Λi(σ), i = u, s, − log sin(x) =
s(σ). and verify for ℓ, δ > 0

|Λi(σ)− Λi(σ′)| ≤ ℓ d(σ, σ′)δ, |s(σ)− s(σ′)| ≤ ℓ d(σ, σ′)δ
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The Hölder regularity allows us to represent Λi, s as exponentially convergent series, e.g.

Λu(σ) =Λu(1) + (Λu(1σ01)− Λu(1))+

+ (Λu(1σ−1σ0σ11)− Λu(1σ01)) + . . . =
∞∑

k=0

Φuk(σ−k . . . σk)
Noting that the history of Skx is τkσ

sinϕ(x)

N∏

i=1

λ−1
u (S−ix)

N∏

i=1

λs(S
ix)δuσ−N

δsσN
= e−s(σ)−

∑N

i=1
Λu(τ−iσ)−

∑N

i=1
Λs(τ iσ) =

= e
−

∑N

h≥k≥1
Φu

k(τhσ)−
∑N

h≥k≥1
Φs

k(τ−hσ)+c(σ)+∆N (σ)

∆N (σ) depends only on the σj with j close to ±N in the sense that |∆N (σ)−∆N (σ′)| < De−κℓ

if σ and σ′ differ only at distance ≥ ℓ from ±N ; likewise c(σ) depends only on the values of
σ at sites near the origin.

Conclusion:

(1) The volume distribution µ0 is Gibbs state with potential Φu to the right of the

origin and Φs to the left, locally perturbed near the origin.
(2) µ0-random initial data have the same future statistics µ and the same past statistics µ−.
They are Gibbs states for a 1-dim. spin system with hard core and different potentials.

Existence of statistics is solved. How to compute expectations? i.e. how to compute Φu(σ)....
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To compute Φu first construct the conjugacy H by the following

Let f(ϕ) be a real trigonometric polynomial, f(ϕ) =
∑
ν∈Z

2
,|ν|≤N e

iν·ϕf
ν
, defined on the

two-dimensional torus T
2 and let

Sεϕ = S0ϕ− εf(ϕ), with S0 =

(
1 1
1 0

)
.

For β ∈ (0, 1) there exist C(β) <∞ and ε0(β) > 0 such that for |ε| < ε0(β) the equation

H ◦ S0 = Sε ◦H

defines a unique homeomorphism ϕ → H(ϕ) which is analytic in ε in the complex disk
|ε| < ε0(β) and Hölder continuous with exponent at least as large as β and with Hölder
continuity modulus bounded by C(β).

Once H is constructed we shall have also consytructed a Markov partition for Sε as H–image
of the one for S. The Wu(x),W s(x) are in fact given by parametric equations of the form

ϕ(t) = H(ψ + tvα) t ∈ R, α = ±,

not immediately useful because H is not differentiable.
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Need the derivative λu(x) of Sε in the direction of the tangent plane to Wu(x). In principle,
from the parametric rep., it is not even clear its existence.

Calling Ω̂ the (non compact) space T
2 ×R

2
we define

Ŝ0(ϕ, v)
def
= (S0ϕ, S0v), Ŝε(ϕ, v)

def
= (S0ϕ+ εf(ϕ), S0v + ε(v

˜
· ∂ϕ

˜
)f(ϕ)),

and we find an isomorphism between Ŝε and Ŝ0 or, since this turns out to be in general
impossible, between Ŝε and Ŝ0,ε defined by

Ŝ0,ε(ϕ, v) = (S0ϕ, (S0 + Γε(ϕ))v).

with Γε(ϕ) a matrix diagonal on the basis v± (on which S0 is diagonal too). Therefore we

look for a map Ĥ of a simple form and such that Ŝε◦Ĥ = Ĥ ◦ Ŝ0,ε, i.e. (setting H(ψ) = h(ψ))

Ĥ : (ψ,w)←→ (ϕ, v) = (ψ + h(ψ), w +K(ψ)w),

with

Γ(ψ) =

(
γ+(ψ) 0

0 γ−(ψ)

)
, K(ψ) =

(
0 k+(ψ)

k−(ψ) 0

)
.
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The above is useful because the diagonal form of Γ implies that a tangent vector at ψ parallel

to v+ is mapped by Ŝ0,ε into (λ++γ+(ψ))v+, tangent at S0ψ so that in the coordinates (ψ, v)
is a tangent vector to the unstable manifold.
The unstable tangent vector corresponding to (ψ, v+) at the point ϕ = H(ψ) is simply
v++K(ψ)v+ by construction wu(ψ) = v++k+(ψ)v−; so that if we know how to compute K,Γ
and if K,Γ are Hölder continuous in ψ we get that the image of wu(ψ) is (λ+ + γ+(ψ))(v+ +
k+(S0ψ)v−) so that the expansion is

λu(ψ) = (λ+ + γ+(ψ))
|v+ + k+(S0ψ)v−|
|v+ + k+(ψ)v−|

Therefore all we need is h(ψ), γ+(ψ): we need the γ+ function to compute the po-

tential Φu(ψ) and h(ψ) to express the results in the original coordinates. Note that
k+(ψ) is not necessary (although it will be computed).

The methods that we use to solve the equations Sε ◦H = H ◦S0 and Ŝ0,ε(ϕ, v) = (S0ϕ, (S0+
Γε(ϕ))v). are the same and for simplicity I illustrate the first.
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Write ϕ = H(ψ) = ψ + h(ψ), ψ ∈ T
2
; then Sε ◦H = H ◦ S0 becomes

S0h(ψ)− h(S0ψ) = εf(ψ + h(ψ))

Hence we look for h(ψ) = εh(1)(ψ) + ε2h(2)(ψ) + · · ·. For instance to first order

S0h
(1)(ψ)− h(1)(S0ψ) = f(ψ).

Let v+, v− the two eigenvectors of S0; call λ < 1 the inverse of the largest one (λ = (
√

5−1)/2):
so that λ+ = λ−1, λ− = −λ. Split f, h into components on v±:

f(ψ) = f+(ψ)v+ + f−(ψ)v−, h(ψ) = h+(ψ)v+ + h−(ψ)v−,

and the equations for h
(1)
± are

λ+h
(1)
+ (ψ)− h(1)

+ (S0ψ) = f+(ψ),

λ−h
(1)
− (ψ)− h(1)

− (S0ψ) = f−(ψ).
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λ+h
(1)
+ (ψ)− h(1)

+ (S0ψ) = f+(ψ),

λ−h
(1)
− (ψ)− h(1)

− (S0ψ) = f−(ψ).

The equations can be solved by simply setting

h(1)
α (ψ) = −

∑

p∈Zα

αλ−|p+1|α
α fα(Sp0ψ), α = ±,

where Z+ = [0,∞)∩Z and Z− = (−∞, 0)∩Z. Therefore the equations for h
(k)
± become

h(k)
α (ψ) =

∞∑

s=0

1

s!

∑

k1+···+ks=k−1, ki≥0
α1,...,αs=±

∑

p∈Zα

αλ−|p+1|α
α ·

·
( s∏

j=1

(vαj
· ∂ϕ)

)
fα(Sp0ψ)

( s∏

j=1

h(kj )
αj

(Sp0ψ)
)
,
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Proceeding as usual in perturbation theory we shall use a graphical representation.

h(k)
α (ψ) =

∞∑

s=0

1

s!

∑

k1+···+ks=k−1, ki≥0
α1,...,αs=±

∑

p∈Zα

αλ−|p+1|α
α ·

·
( s∏

j=1

(vαj
· ∂ϕ)

)
fα(Sp0ψ)

( s∏

j=1

h(kj )
αj

(Sp0ψ)
)
,

α

v
(k) =

∑

s>0
k1+...+ks=k−1

1

s! r

α, p

v

α1

αs
(ks)

(ks−1)

(k2)

(k1)

where the l.h.s. represents h
(k)
α (ψ). Representing again the graph elements that appear on

the r.h.s. one obtains an expression for h
(k)
α (ψ) in terms of trees, oriented toward the root.

r

j

p=pℓ0

α0, ℓ0

v0

pv0
v1

pv1

v2

v3

v5

v6

v7

v11

v12 v10

v4

v8

v9

Fig. 3: A tree ϑ with k = 13, and some decorations. The arrows represent the partial ordering on the tree.

A tree ϑ with k nodes carries on the branches ℓ a pair of labels αℓ, pℓ, with pℓ ∈ Z and
αℓ ∈ {−,+}, and on the nodes v a pair of labels αv, pv, with αv = αℓv and pv ∈ Zαv

with

p(v) ≡ pℓv =
∑

w�v

pv,

where the sum is over the nodes following v (i.e. over the nodes along the path connecting v
to the root), ℓv denotes the branch v′v exiting from the node v.
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h(k)
α (ψ) =

∞∑

s=0

1

s!

∑

k1+···+ks=k−1, ki≥0
α1,...,αs=±

∑

p∈Zα

αλ−|p+1|α
α ·

·
( s∏

j=1

(vαj
· ∂ϕ)

)
fα(Sp0ψ)

( s∏

j=1

h(kj )
αj

(Sp0ψ)
)
,

hence to each tree we shall assign a value given by

Val(ϑ) =
∏

v∈V (ϑ)

αv
sv!

λ−|pv+1|αv
αv

( sv∏

j=1

∂αvj

)
fαv

(S
p(v)
0 ψ),

If Θk,α denotes the set of all trees with k nodes and with label α associated to the root line,
then one has

hα(ψ) =

∞∑

k=1

εk
∑

ϑ∈Θk,α

Val(ϑ),

and the “only” problem left is to estimate the radius of convergence of the above formal
power series.
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For this purpose it is convenient to study the Fourier transform of the function hα(ψ). This

is easily done graphically because it is enough to attach a label νv ∈ Z
2 to each node and

define the momentum that flows on the tree branch v′v, i.e. νℓv
def
=

∑
w�v νw. Then

hα(ψ) =

∞∑

k=1

εk
∑

ν∈Z
2

eiν·ψ h(k)
α,ν ,

with
h(k)
α,ν =

∑

ϑ∈Θk,ν,α

∑

pv∈Zαv

( ∏

v∈V (ϑ)

αv
sv!

λ−|pv+1|αv
αv

f
αv,S

−p(v)
0 ν

v

)
·

·
∏

v∈V (ϑ)

v′ 6=v0

(
− S−p(v′)

0 νv′ · vαv

)
,

where Θk,ν,α denotes the set of all trees with k nodes and with labels ν and α associated
with the root line.
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Calling F = maxν |fν | we can estimate
∑
ν |ν|β |h

(k)
α,ν |. Consider first the case β = 0: there

are only (2N + 1)2 possible choices for each νv, given pv, such that |S−pv

0 νv| ≤ N . Hence
fixed ϑ, {αv}v∈V (ϑ) and {pv}v∈V (ϑ) the remaining sum of products in is bounded by

(3N)2kNkF k
∏

v∈V (ϑ)

λ|pv|

sv!
.

The sum over the pv is a geometric series bounded by (2/(1− λ))k.
The combinatorial problem is well known: the factor

∏
v(1/sv!) becomes, after summing

over all the trees, simply bounded by 23k, (22k due to the number of trees for fixed labels and
2k due to the sum of labels αv).
Therefore for β = 0 we have that the conjugating function H exists and that inside the

complex domain |ε| < ε0(0)
def
= (3N)−3F−12−4(1−λ) it is uniformly continuous and uniformly

bounded with a uniformly summable Fourier transform.
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Taking β > 0 requires estimating |ν|β : we bound it by
∑
v |νv|β. Then we can make use

of the fact that |S−p(v)
0 νv| ≤ N to infer that |νv| ≤ λ−|p(v)|BN , where B ≥ 1 is a suitable

constant (because the eigenvectors of S0 have components with ratio a quadratic irrational,
hence Diophantine).
The sum

∑
v |νv|β is over k terms which can be estimated separately so that we can write∑

v |νv|β ≤ k|ν v|β where |ν v| = maxv |νv|. This can be taken into account by an extra factor

(BN)βλ−β|p( v)| ≤ BNλ−β
∑

v
|pv|.

Therefore if β < 1 the bound that we found for β = 0 is modified into

ε0(β) = (3N)−3F−1(1− λ1−β)2−5.

This shows that H(ψ) analytic in ε in the disk with radius ε0(β). Note that ε0(β) → 0 for
β → 1.
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