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Nonequilibrium Stationary States

System subject to nonconservative forces: hence to thermostats. Ex-
ample

m ẍ i = F i + E − ϑ i

E

E external non conservative force

ϑ thermostat force

ϑ thermostat models

(1) ϑ i = −ν p
i

(viscous thermostat)

(2) ϑ i = −α p
i

α =

∑

ẋ
i
·E

∑

p 2

i
/m

(Gaussian thermostat)

(3) anelastic
√

η = restitution coefficient ( v · n → −√η v · n

(4) renormalize | v i| after each collision to | v ′
i| =

√

d
2

kBT
m

(5) stochastic thermostat and infinite reservoir thermostat (Rey Bel-
let)

Thermostats ←→ phase space contraction σ = −div ϑ = −
∑

∂ p
i
ϑ i(x, p)

(1) σ = ν N d

(2) σ = N

∑

E · ẋ
i

kBT = N L
kBTϑ

if N d
2kBT

def
=

∑ p 2

i

2m

(3) σ = N
√

ηνcollision
def
= N L

kBTϑ
. . ..

In general σ = N
∑

p
i
· ∂ p

i
F i

def
=

∑

F
i
· ẋ

i

kBTϑ

Thermostats (1), (3) are irreversible while (2) is reversible i.e. it gen-

erates a dynamics Stx such that ISt = S−tI wih I(p, x)
def
= (−p, x).
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One says that motion has a well defined statistics µ if for all F smooth

1
T

∑T−1
n=0 F (Snx)−−−−→

T→∞

∫

µ(dy)F (y) for (a.s.) all x

Assumption: (Chaotic hypothesis (M,S) is such that

(1) covariant: S∂W i
x = ∂W i

Sx, i = u, s; continuous: ∂W i
x depends

continuously on x
(2) hyperbolic:
(3) transitivity: there is a point with a dense orbit in phase space M
under S

x

W u
γ (x)

W s
γ (x)

(Ruelle 73, Cohen, G, 95)

Consequence: a.a. initial data x have statistics µ independent on x:
SRB–statistics

In equilibrium: ⇒ ergodicity ⇒ statistical mechanics

For instance: in the conservative case the stationary states are char-
acterized by two parameters U, V : µ = µU,V . And Boltzmann’s heat
theorem follows

Let p(U, V ) be the µU,V average momentum transfer to walls

Let T (U, V ) be the µU,V average kinetic energy
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Then dU+p(U,V )dV
T = exact (hence = dS): a parameterless uni-

versal relation

Are there such consequences in nonequlibrium? when the chaotic
hypothesis becomes the chaotic hypothesis?

A “nonequilibrium ensemble” is a collection of probability distribu-
tions on phase space which are stationary and are parameterized
by macroscopic parameters like U, V,E in the example and by the
thermostat force.

Experimentally discovered property (Evans,Cohen,Morriss, 93) in
nunerical study of a reversible system of 54 particles. Define the
observable

1

τ

∫ τ/2

−τ/2

σ(Stx)

σ+

def
= p(x)

has probability of being between p and p+dp proportional to e−τζ(p)+...

and ζ(p) verifies the “Fluctuation Relation”

ζ(−p) = ζ(p)− pσ+ (“FR”)

This is a theorem in systems verifying the chaotic hypothesis (Co-
hen,G, 95).

Several experimental (numerical) checks

Nonnumerical tests attempted but, so far, not successfully (difficulty
of observing such large fluctuations)
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Lyapunov spectra and nonequilibrium
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NS and GNS equations (d = 2 Geometry):

2D (or 3D) NS equations (dimensionless): periodic geometry, con-
tainer side L = 2π, viscosity ν = 1, Reynolds # R (large)

u̇ + R2(u · ∂)u = ∆u + f − ∂p , ∂ · u = 0, f = cos kf · x

when R → ∞ motion becomes chaotic (2D a value of R2 > 100 is
already sufficient).

Motions have a statistics µ1,R (the SRB statistics, a probability dis-
tribution)

1

T

∫ T

0

F (Stu)dt→ µ1,R(F ) =

∫

µ(du)F (u)

Alternative equation: Euler + constraint that
∫

u2 = const + effort

function G1
def
=

(

∆−1(a− f − ∂p), (a − f − ∂p)
)

.

(GNS): u̇ + R2(u · ∂)u = α(u)∆u + f − ∂p , ∂ · u = 0

α(u) =

∫

f · u
∫

u2

The SRB statistics of GNS is mU,R.

NS does not conserve (kinetic) energy U . GNS does

NS is “irreversible”, GNS is “reversible” (time reversal: Iu = −u ⇒
ISt = S−tI)

Suppose that

NS–average of energy = U , GNS–energy = U

NS-statistics is µ1,R, GNS–statistics is mU,R

Is there a relation between µ1,R and mU,R?
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If F (u) > 0 is “local”: F (u) = ϕ({uk}|k|<n) (locality in Fourier
space) then

lim
R→∞

〈F 〉µ1,R

〈F 〉mU,R

= 1, if µ1,R(
1

2

∫

u2) = U

R ∼ volume
ν ∼ temperature
U ∼ energy
R→∞ ∼ thermodynamic limit

Analogy with equivalence of ensembles: can be tested numerically?

Tests are difficult (severe truncations)

Rondoni–Segre (Nonlinearity 1999) perform various tests.

We attempted to study

1) whether the equivalence extends beyond the original formulation
and one can identify even the Lyapunov spectrum of the two equa-
tions

2) given the equivalence we study the NS equation and try to see
whether a part of the fluid behaves like the entire sample and we
look at the fluctuation relation in a smaller portion of the fluid.
This is necessary in order to compare with certain experiments that
are being attempted or planned ([CL][G]). In macroscopic systems
one can only hope to see important fluctuations if one examines
small portions of the systems (analogy with density fluctuations in
equilibrium)

Results on the Lyapunov exponents
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Lyapunov spectra for NS with normal viscosity (N = 5 truncation)
at R2 = 2222 (left) and R2 = 5000 (right), and corresponding GNS
runs with constrained energy Q0. The 2K − 2 nontrivial exponents
are drawn by associating each value of the abscissa k = 1, 2, . . . ,K−1
with the k–th largest exponent λk and the k–th smallest exponent
λ′

k = λ2K−k−1. Symbols
“+” → NS spectra,
“∗” → GNS spectra,
“×” to the sums (λk + λ′

k)/2 (NS case).
No “pairing” of exponents to a common average value, unlike the
cases of isokinetic Gaussian systems [DM96].
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An attempt to check equivalence on systems with many more modes
yields the following result

.
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Lyapunov exponents [N = 7, R2 = 106, and forcing modes (4,−3), (3,−4)].
All 2K − 2 = 164 nontrivial exponents are drawn as in Fig.1.
(+) NS exponents
(×) → graph of (λk + λ′

k)/2 (NS only)
(∗)→ corresponding GNS runs with fixed energy (∗) i.e. m = 0, ℓ =
1
Error bars identified with the size of the symbols.
units of 1/λmax, λmax being the largest Lyapunov exponent; runs of
length T ∈ [125, 250].
Overlap reflects the possible validity of the extension of the EC to
the whole spectrum and to different members of the hierarchy of
equations.

R2 δQ0/〈Q0〉NS △α △Q1 o(M)/M
800 0.005 0.030 0.053 0.068
1250 0.020 0.018 0.062 0.057
2222 0.002 0.039 0.058 0.077
4444 0.050 0.021 0.093 0.059
5000 0.010 0.008 0.058 0.033

4 : 0



Equivalence of NS and GNS dynamics, i.e. with ℓ = 1 and m = 0,
for different Reynolds numbers. The last column gives the relative
difference of the computed sums of the NS and GNS Lyapunov ex-
ponents, cfr. [GNStoNS]).
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