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Hamiltonian for a rotator system

:(Alv---aAr>7 E:(Bla---an_r>
a = (a1,...,a), B =B\ Bnr)

with f an even trigonometric polynomial of degree N.

Unperturbed motions

S
I
&
[ss
I
LO
&
Ii
V
Q
<
<y

I

=
I
s

a = O+£t7

I

0

r=mn <— mazximal tori or KAM tori

Are there motions of the “same type” in the perturbed system

7?7 q.e.
A=w+ H(Y), B =K (%)
a =1+ h(y), B=pB,+k(¥) with
V=9 + wt is a solution?

It must be (iff):
(w8 y)?h(¥)=—c8 o (¥ + B(¥), B+ E(¥))
(w8 y)k(¥)=-€dsf(¥ + h(v), B, + k()

and S must be an extremum for the o -average f(B8)=[fla, B) Gy

of f: -




Case of maximal tori: r=n

Given a tree ¥ with p nodes vy, ...,v,—1 and a root r
Associate with each node v a “node momentum” v, € Z" for f, # 0.
The root momentum will be a unit vector n; and define a line current

v (v) = Z Vo and assume # 0

w<v

Note that 0 < |v ,| < N = |w - v,| > ¢ > 0 (Diophantine w)

(%
Flg 1: A tree ¥ with Mmyg = 2, My; = 2, Myy = 3, my; = 2, my, = 21Eind k=12, and
some decorations. Only two mode label and one momentum are explicitly written;
the number labels, distinguishing the branches, are not shown. The arrows represent
the partial ordering on the tree.

Define the value of a tree ¥ with distinguishable branches by

1 Vo= Vy
Val(é’):ﬁ( H -g(v))Z)(Hfzv)

(w
linesA=(v/v)ed ~ — ved

counting tree up to pivoting equivalence. Linstedt, Newcomb, Poincaré:

AP n= > Val®)
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root current=v
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Siegel-Bryuno—Poschel bound

Define scale of A = (v'v) toben =0,—1,—-2,...if2" 1 < |w v (v)| < 2"

Su Z | < NZ272 if 2"l < |w -
w )?

‘( - v (v)

1
\Val(ﬁ)|§HN2pr IT 22

n=—oo

N, def nombre des lignes d’échelle n

Si v(v) # v(w) pour tout v > w alors N, est “petit” N, < aN2"p
for some a > 0.

Il faut consommer 2~"/TN~! noeuds avec moment < N pour atteindre
une ligne v'v telle que w - v (v) ~ 27", ie. v(v) = O(27™/7). Pour
en trouver une autre de la meme echelle il en faut encore autant: donc
N, = O(p2"/™N).
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Simple self energy graphs




This is a self-energy subgraph if the entering line and the exiting line have
the same current v with scale n and all internal lines have scale m > n+3

wER Vw = Q
and all lines in the subgraph have different currents (i.e. no self energy

and their number is < a2~™/7, i.e. not too large, and

sub-sub graphs! — “simple”).

Resummation of simple self energy subgraphs

The contribution to the value of a self-energy subgraph R inserted in the

line v’v on which is

c\'\

I
1€
I [IR
~—|Q
|
-
—~
—~
SIS
I
—~
=
o

Il
N

We define M(v) =3 peBIMp(v). One can insert m = 0,1,2,... self-
energy subgraphs inside each line of a tree which has no such subgraphs

Zﬁzvf-((f.(—%mﬂf

m=0 Z)
1 .
(w-v)?=M(v)

=V

A

v’ v

convergent by the Siegel-Bryuno—Po6schel boun..




Cancellations

Not useful because (w - v)? — M (v ) may vanish!! However (theorem)

M(v)=(w- v)*mi(v)

and the propagatoris (w-v )~ 2 (1+ml(v))™! W wv) 2y, 6D (v,

i.e. we have eliminated the self-energy subgraphs without inner self en-
ergy subgraphs.

Elimination of overlapping self energy graphs

2
€

self energy graphs and define their values as in the previous case but

Define mZ(v) in the “same way”: consider all trees with at most simple
using the new propagators. Iterate: one checks that ng)( V) converges
to a limit Gé“)(g).

The equation of the invariant torus is then obtained by considering all
tree graphs without self energies and evaluating them with the propagator

(w-2) vy - Q+mE(e) " v, = (w-2) e, (),

v =

which by the Siegel-Bryuno—Poschel bound has no convergence problems
and in fact it yields an effective computational algorithm to evaluate the
LNP-—series.

Low dimensional tori

If fla,B) =2, ., eiﬂ'gﬂﬁ'ﬁfz,ﬁ the Feynman rules change in a
minor way. Namely after resummation of the self energy graphs (defined
in the same way) the propagator is the a matrix (n x n as before) which
has the form



where the o X «a elements take into account the cancellations.

However the § x [ elements can vanish on or close to the infinite set
(w-v)’—edsf(B,) =0.

Ife >0and g o 18 a mazimum there is no 0 eigenvalue and in fact the

eigenvalues are bounded below by (w - v)?. Hence we are back to the
maximal case. The convergence occurs in the domain D, (y > 0) of
complex ¢ where (w - )2 —¢0 5T(§O) >~y w - v2. This has the form:

A

complex
e—plane

W
=

Analyticity domain D for the lower dimension invariant
torus. The cusp at the origin is a second order cusp. The
figure corresponds to the hyperbolic case.



complex
e—plane

v

The domain Dg of Figure 1 can be further extended? the
conjecture above asks whether the extended analyticity do-
main could possibly be represented (close to the origin) as
here: the domain reaches the real axis at cusp points which
are in I¢, and correspond, in the complex e-plane, to the
elliptic tori which are the analytic continuations of the hy-
perbolic tori. The analytic continuation would be continu-
ous thorough the real axis at the points of Ir,. The cusps
would be at least quadratic.
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