
RU/2-03g

A conference on nonequilibrium thermodynamics.

G. Gallavotti

Rutgers Hill Center, I.N.F.N. Roma1, Fisica Roma1

(Dated: August 18, 2013)

Abstract

In transformations involving stationary nonequilibria entropy might be a not well defined con-

cept. It might be analogous to the heat content (once called “caloric”) in transformations that

are not isochoric (i.e. which involve mechanical work): it could be just a quantity that can be

transferred or created, like heat in equilibrium. The text summarizes the philosophy behind a

recently proposed definition of entropy creation in nonequilibrium stationary systems.
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I. Thermostats and chaotic hypothesis.

In studying equilibrium and nonequilibrium thermodynamics the notion of thermostat

plays an important role: it is usually defined empirically [1] as a physical system capable

only of exchanging heat without changing temperature or performing work (hence it is

ideally an infinite system). One can also envisage concrete mechanisms to keep a system in

a stationary state, realized by a mechanical force of nonconservative nature.

Here I want to consider mechanical systems which, in spite of being acted upon by

nonconservative forces, are kept in a stationary state by other mechanical forces, and to

study which relations, if any, can be established between the various stationary states, [2].

The transformations between the stationary states will be “quasi static” trasformations

through intermediate stationary states.

I shall consider only systems consisting of many particles and I shall not consider systems

that are modeled by continua (the latter can be regarded as an idealization in which several

many particles systems are put together, one per “volume element”, and studied on time and

space scales vastly different from the ones we consider for the evolution of the simple systems

which we imagine to constitute the volume elements of the continuum, [3]). Continua can

be considered but one first must understand the thermodynamics of a simple system, [3].

The particle motions occurring in a simple system are assumed to be chaotic: the chaotic

hypothesis, [4], essentially states that an isolated system of particles has chaotic evolution

on the microscopic time scales, i.e. on the time scale of mean free flight.

A simple system will be described by a differential equation in its phase space: we write

it as ẋ = XE(x) where x = ( q̇ , q ) ∈ R6N ≡ Ω (phase space), N=number of particles, m=

mass of the particles, with

m q̈ = f( q ) + E · g ( q )− ϑE ( q̇ , q ) ≡ XE(x)

where f( q ) describes the internal (conservative) forces (e.g. hard cores), E · g ( q ) represents

the “external forces” (nonconservative) acting on the system: for definiteness we suppose

that they are locally conservative (like an electromotive force) but not globally such, and

ϑ E is the force law which models the action exerted by the thermostat on the system to keep

it from indefinitely acquiring energy: this is why we shall call it a mechanical thermostat.

Linearity of the dependence on the “fields” E is only for convenience: we are not assuming
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them to be small (the theory of linear nonequilibrium is amply discussed in the literature,

[5]); at any rate we know, since Onsager, that what is really relevant is an intrinsic duality

between forces and fluxes and the parameterization of the forces induces a corresponding

definition of the fluxes, see below. More generally the external forces could be velocity

dependent and even time dependent (periodically) and we restrict to positional forces for

simplicity.

Assumption (chaotic hypothesis, [4]): The system evolution is assumed as chaotic as

possible, i.e. the it is assumed to be hyperbolic (one also says, technically, that the system is

“an Anosov system”).

Models of thermostats in the above sense can be very different even for the same macro-

scopic system; for instance (a list far from exhaustive)

(1) assuming the system to have hard cores one can suppose that the collisions are

inelastic: the head-on component of the energy is decreased by a scale factor η < 1 upon

each collision or, alterntively, the total energy of the two colliding particles is rescaled and

assigned a given value 3kBT (“Drude’s condution model”), [6], or

(2) assuming that there is a background friction ϑi = −νq̇i, ν > 0, for all components of

ẍj or

(3) assuming minimum effort to keep, say, the total kinetic energy or the total energy

constant, (“Gaussian thermostat”, [7]).

Stochastic thermostats could also be allowed (they just add degrees of freedom to the

equations) but we do not consider them here.

II. SRB statistics and nonequilibrium ensembles

Any initial state x, randomly chosen in phase space with a probability distribution which

has a density in phase space (in jargon “absolutely continuous distribution with respect to

Liouville measure”), will admit a statistics (under the above chaotic assumption): i.e. for

all (smooth) observables F

lim
T→∞

1

T

∫ T

0

F (Stx)dt =
∫
Ω

µE(dy)F (y)

where µE is a stationary probability distribution on phase space, called the SRB distribution

or SRB statistics,[3,8–10] .
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Definition: A system in a microscopic state x which has SRB statistics µE is said to

be in the stationary state µE . The collection of all stationary states of a system that are

constructed by varying the parameters (typically the volume V of the container, the particles

number N , the external forces E , etc) will be called a “nonequilibrium ensemble”.

Hence here an ensemble is a collection of probability distributions but, often, terminology

indicates an ensemble to be a single element of the collection: with such an understanding

what would be here called simply the “microcanonical ensemble” would become “the collec-

tion of the microcanonical ensembles”: this being in my view too awkward I have adopted

calling an ensemble already the whole collection of distributions (as the french word ensemble

literally suggests).

The notion of nonequilibrium ensemble is wider than in equilibrium as it depends also

on the equations of motion, hence on the thermostat model. Therefore one expects that,

as it happens in equilibrium statistical mechanics, there should be “equivalent ensembles”

corresponding to classes of different possible models for thermostats acting on a system,

[3,9].

Equilibrium is a special case of nonequilibrium: in such case E = 0 and ϑ E = 0 and

the chaotic hypothesis implies the validity of the ergodic hypothesis and the family of SRB

distributions can be parameterized by total energy U and volume V and coincides with the

microcanonical ensemble, [9].

We now want to consider which relations can be established in general between the

properties of stationary states that can be transformed into one another by changing the

external parameters.

If we limit ourselves to equilibrium states then it is well known since Boltzmann (in

his papers in the period 1866–1884, see [11]) that if a transformation generates an energy

variation dU and a volume variation dV when the pressure (defined microscopically) is p

and the average kinetic energy is 3

2
NkBT then, [9],

dU + p dV

T
= exact

while dU + p dV is not exact, except in the isochoric case (i.e. when dV = 0) and it is called

the heat transferred from the reservoirs to the system. It makes no sense to talk of amount

of heat contained in the system unless one limits oneself to isochoric transformations: there
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is no caloric (i.e. no heat content) unless one allows only the latter type of transformations

in which the system performs no work (and in that case it is just another name for internal

energy).

Defining entropy as a primitive of the exact differential (dU + p dV )/T , the immediate

question is whether one can extend the notion of entropy content to non equilibrium states.

III. Entropy creation rate and temperature.

The proposal that emerges from certain theoretical considerations and a number of nu-

merical experiments (I share here the view of a few people who put it forward), [7,9,12,13],

is to define, if kB is Boltzmann’s constant,

Definition: The entropy creation rate s in a stationary state µE is s = kBσ with

σ =
∫
Ω

µE (dx)σ(x)

where σ(x) = − divergence of X E (x) and µE is the SRB statistics.

An important general theorem,[14], guarantees that σ ≥ 0, and σ = 0 corresponds to the

case in which the SRB distribution µE admits a density on phase space, a case that one

naturally identifies with an equilibrium state and which essentially happens only if E = 0 .

The above definition leads to a natural definition of temperature of the thermostatting

forces: note that there is no universally accepted definition of temperature in systems out

of equilibrium, even if stationary, [2,15]. Namely one sets

Definition: the temperature T of the thermostats for a stationary nonequilibrium state is

T =
W

s

where W is the work per unit time done on the system by the external forces and s is the

entropy creation rate.

The idea of relating the notion of temperature to the entropy creation rate stems from

a connection between temperature and the fluctuation theorem (see below) pointed out by

F. Bonetto inspired by the connection between the definition of temperature, the failure of

the fluctuation dissipation relation at non zero forcing, [16], and the fluctuation theorem.

5



The above definition does not make sense as such in equilibrium because it becomes

0/0: however one can imagine introducing a small forcing and a corresponding thermostat.

Then in the limit of vanishing forcing this yields a definition of T which by the “fluctuation

dissipation theorem” would be correct, [16–18].

Adopting the above concepts leads naturally to giving up the possibility of defining

entropy content of a system: in nonequilibrium thermodynamics entropy ends up to be

undefined and one can speak only of “entropy creation” or “transfer”: much as “caloric” or

“heat content” is undefined in equilibrium thermodynamics. Should one insist in defining the

entropy content of a dissipating (i.e. with σ > 0) stationary state one would be compelled

to assign to it a value −∞, because the system creates entropy at a constant rate.

IV. Cycles.

A few tests can be performed on the above notions, [2]. For instance imagine that a system

performs a cycle from stationary state 1 to stationary state 2 identical to 1 except for the

time of its realization through intermediate stationary states, for instance by switching on

and off an external field E, see figure 1.

1

E(t)

2

Fig.1

In this case we expect that an observer who knows nothing about the microscopic features

of the thermostats will see work performed by the system in a cycle and he would expect

a corresponding release of heat, by energy considerations: and the heat emitted has to be

related to the temperature in such a way that the entropy increase of the thermostats is

≥ 0: this is the case if entropy creation is defined as above because
∮
2

1
στdτ ≥ 0.

One can also imagine mixed situations in which heat is partially (i.e. during part of

the transformation) absorbed by one or more phenomenological heat reservoirs and partly

(i.e. in the complementary part of the transformation) by a detailed, mechanically modeled,

action on the system.

In this situation (not envisaged in equilibrium thermodynamics where only phenomeno-

logical thermostats are considered), see figure 2,
E(t)

E0

t

Fig.2

6



the second law would be consistently extended to say that

kB

∮
2

1

στdτ +
∮

2

1

dQ

T
≥ 0

if dQ is the amount of heat ceded to the reservoir at temperature T . This implies that even

by using mechanical thermostats one cannot produce work in cycles by only interacting with

reservoirs at the same temperature, [2].

V. H-functions.

The above is not in contradiction with the possibility of existence of a function which,

given an initial state x, will evolve monotonically until reaching a maximum value, the

same for almost all x in phase space, [19,20]: and this is not in contrast with microscopic

reversibility. For instance in the case of the evolution of a rarefied gas we can imagine to

divide the one particle phase space into cells C, “of appropriately chosen size |C|”, [19], and

call fC(x) the occupation number of each cell by the particles in x. Then, if t → Stx denotes

the time evolution of the initial data x at time t,

−kB
1

t

∫ t

0

∑
C

fC(Sτx) log fC(Sτx) dt

will converge, and for practical purposes monotonically after a short transient, as t → ∞

to a limit which, if the Boltzmann equation holds within a good approximation, maximizes

−kB
∑

C pC log pC , pC ≥ 0, (subject to the conservation constraints like
∑

C pC = N , e.t.c.,

[19]) and the limit value is given by the entropy S of the equilibrium state associated

with x. If Boltzmann’s equation is (unreasonably) dismissed then still the above quantity

will converge to essentially the same limit but the time average will be important as the

integrand will not “practically converge” to S but it will show very rare large fluctuations

which, however, are doomed to occur at time intervals larger than the age of the Universe,

i.e. do not occur at all for “all” purposes (I suppose that the number of particles of the

system is large, say > 103): neglecting such impossible events would in fact dispense from

considering the time average in the above limit relation. However it is not clear that there

should be a universal definition of such “Lyapunov functions” or “H–functions. I think

that they can certainly be defined on a case by case basis but not necessarily in a general

universal way: for instance in fluids of higher density in the last formula one should use
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the Resibois H–function, [21]; and this is so, I think, essentially because it is not possible

to define an entropy content for non equilibrium states: which is the quantity that would

naturally play the role of a universal H–function.

Note however that other views are possible if entropy and heat are conceptually separated:

and recently a quite general and universal definition has been proposed identifying the H–

function with the logarithm of the volume occupied in phase space by the phase space points

which are macroscopically indistinguishable (“defining the same macrostate”): this applies

when the notion of macrostate is free of ambiguities (or is at least possible), and it is certainly

an interesting proposal which has already received support from numerical experiments, [20].

The value S of this quantity could be a possible definition of entropy of the stationary state

that is eventually achieved by the evolution of all phase space points that correspond to the

same macrostate. Although S would possibly be unrelated to the amounts of heat that are

transferred in the transformations between stationary states, calling it “entropy” would be

justified on the basis of its coincidence with entropy in the case of equilibrium states and of

its nature as a Lyapunov function for the approach to stationarity.

VI. Remarks.

(1) The above analysis, if accepted, allows us to define entropy as a notion related to heat

axchanges only for the stationary states which are in the very special class of equilibrium

states. It is important to mention one more study that has been made in the attempt of

defining entropy as a function of nonequilibrium stationary states.

One can consider an evolution of a phase point under forces which up to time t1 are

constant and admit a stationary SRB distribution µ1, then the forces vary between t1 and

t2 and become again constant after time t2. If one fixed the forces E (t) at their value at any

t ∈ [t1, t2] then the dynamics would admit a SRB distribution. Therefore we can define for

each t the stationary SRB distribution µt corresponding to the “frozen” forces E (t) and, at

the same time, the (different) probability distribution µt into which µ1 evolves in the time

interval [t1, t], and we can also define σ(τ) =
∫
στ (x)µτ (dx) and στ =

∫
στ (x)µτ (dx).

Then a quantity which is possibly of interest is

I = kB

∫ t2

t1

(σ(t)− σt) dt

This is a quantity that does not really depend on how long a time the system dwells on a
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special value of the parameters since the integrand will go to zero fast if the interval is too

long (because µt will approach µt).

Does I depend on the intermediate stationary states of the transformation? Some aspects

of the question have been partially studied, [22], and I interpret them as suggesting that to

first order in the variation of the force parameters (during the intermediate times) indepen-

dence might hold (I stress that this is a conjecture). More precisely: if the variation of the

forces vanishes rapidly at t2 = +∞, hence the evolving distribution µt returns to µ1 and

the system performs a cycle then the value of I does not depend on the actual intermediate

pattern of the variation of the forces, to first order in the variations. However the same work

suggests that very likely this is no longer true already to second order: going in the direction

of making difficult attempts at defining entropy variations in stationary nonequilibria on the

basis of the quantity I..

(2) Having defined the notion of entropy creation rate one can define a “duality” between

fluxes Jj and forces Ej using σ(x) as a “generating function”:

Jj(E ) = kB
∂σ

∂Ej

which, at E = 0 , leads to Onsager’s reciprocity and to Green–Kubo’s formulae for trans-

port, [17,18].

(3) We have proposed a definition of entropy creation rate and of temperature for a class

of stationary states. But a new definition is really useful if it is associated with new results:

I think that such new results may already be around and cluster around the fluctuation

theorem, but for this I refer to the literature, [2,4,15,23–26].

The above comments have been stimulated by discussions held mostly at Rutgers University

in the course of the last few years: involving among many others F.Bonetto, E.G.D. Cohen,

S.Goldstein, J.Lebowitz, O. Costin, D. Ruelle.

e-mail gallavotti@roma1.infn.it

Piscataway, NJ, November 2003
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