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Hamiltonian for a rotators system

H=_(A*+ B +<f(a, )
A= (A,... A,

where f is an even trigonometric polynomial of degree N.

Special unperturbed motions

w = (wi,...,wp) v=v,...v)eZ"

1
A=w, B =0, cv| >
A=w B =0 lw - | ol
a = ay+ wt, =58,

r=mn <— mazximal tori or KAM tori

Are there motions of the “same type” in presence of interaction
7?7 i.e.

a = y+ﬁ(g), é:ﬁo_}_k(g) with
V=9 + wt is a solution?

It must be (necessarily if h —ehW42p @4 k= )
(w0 y)?h(¢)=—€d f(¥ +h(¥), B+ k(D))
(w-0y)k(¥)=—cdsf(¥+h(¥), B,+k(¥))

and f must be an extremum for the average over a: f(B8)=[f(a, ﬁ)(ng)ri

|*@

(w0, )2k ($)= -0 4 f(0.B,) = 0=0,F(8,)




Maximal tori: r=n. Series of Lindstedt, Newcomb, Poincaré:

Let ¥ be a tree with p nodes vy, ...,v,—1 and root r.
We attach to every node v a “momentum” v, € Z" with f, # 0. The
root momentum will be a unit vector n; and we define a current lowing

on a line outgoing the node v

v (v) e Z Vo which we suppose # 0

w<v

Note that 0 < |v ,| < N = |w - v,| > ¢ > 0 (if w is “Diophantine”)
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Fig. 1: A tree ¥ with myg = 2, my; = 2, myy = 3, mys = 2, my, =2 and k = 12, and
a few decorations. Only two momentum labels and one current label are explicitly
written down; the indices enumerating the lines (because they are distinct) are not
marked. Arrows represnt the partial ordering of the nodes defined by the tree.

Define the value of a tree ¥ with distinct (i.e. labeled) branches

1 Vg = Vy
Val(ﬁ)—a( H (g-g(v))2>(Hfz”>

linesA=(v’/v)€Y veY

counting trees up to pivot equivalence. Then

AP n= > Val®)
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root current=v



Siegel-Bryuno—Poschel bound

We say that A = (v'v) has scale n =0,—1,—2,... bf if

Then

v " Vo 2’ S N22—2n if 2n—1 < ‘w .

@ W)

0
1
Val(@)] < =N*F?P ] 272"
p' n=—oo

d .
N, ] umber of lines of scale n

If v(v) # v(w) for all v > w then N, is “small” N, < aN2"/7p for
some a > 0.

We must use 27/7N—! nodes with momentum < N to reach a line v/v
such that w - v (v) ~ 27, i.e. v(v) = O(27™/7). To find another one

of the same scale we need as many new ones: hence N,, = O(p2"/7 N).

0
1 n/T
g [Val(9)| < Z?29!410]\72171710( I I 9—2naN2"/ Py —

¥ con p nodi n=—oo

_ l'p!4pN2PFP(2‘2“N > o2 "y = pr
D

A simple self-energy graph




This is a self-energy subgraph if the entering line and the exiting one
have the same current v, of scale n, and all the internal lines have scale
m > n + 3 and the their number is < a2~™/7, i.e. not too large, and
Y wer Yw = 0 and all subgraph lines have different currents (i.e. no
self-energy sub-subgraph! — “simple”).

Resummations of simple self-energy graphs

The contribution to the value of a tree from a self-energy subgraph R
inserted on the line v'v is
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Let M(v) e S pelBIMR(v). We can insert m = 0,1,2,... self-energy

subgraphs on every line of a tree without any such subgraph

— 1 M(v) \™
> e (Goop) s

m=0

. 1 .
Yo (w e z)? - M(z)

=V

A

v

that is a convergent sum because of the Siegel-Bryuno—Po6schel bound.




Cancellations

This is not enough because (w - v)? — M(v) can vanish!! Nevertheless

one shows that

M(y)=(w-v)*mi(v)

and the propagator becomes (w-v )2 (14+ml(v))~! e (w-v)2v,GV(v)v,,
i.e. we have eliminated the self-energy subgraphs not containing other

self-energy subgraphs.

Elimination of overlapping graphs

2

2(v) in the “same way”: considering all trees with simple of

Define m
self-energy graphs at most and define their value as in the preceding case
making use, however, of the new propagators. Then iterate indefinitely:
one can check that Gék)(g) converges to a limit Ggoo)(g).

The torus invariant equation is therefore obtained by considering all the
graphs without self-energies and computing them by means of the new

propagator

(w- ) 2uy - A+mE() " v, (w- )2, G (),

which, by the Siegel-Bryuno—Poschel bound does not present convergence
problems and in fact this yields an algorithm to evaluate the sum of the
LNP series.




Lower dimensional tori (Resonances)

If fla,B) = Zbg eiz'g‘i'iﬁ'éfbH Feynman’s rules undergo some
minor changes. After resummation of the self-energy subgraphs (defined
in the same way) the propagator is a Hermitian matrix (n x n as before)
which has the form

el 5
a | (rxr) (rx(n—r)) _
BA\(rxr) (n—r)x(n—r))

where the a X a elements account for the cancellations discussed in the
maximal cases. Also the a x 8 terms show cancellations (of lower order:
1 instead of 2 when w - v — 0).

Nevertheless the 8 x 8 elements can vanish on or near the set of infinitely
many points ¢ for which (w - v)? —€d 57(é0) = 0.

Ife >0and 8 o 18 & mazimum there is no 0 eigenvalue and the eigenvalues
are bounded from below by (w - v)2. Hence on falls back in the same
situation met in the maximal tori case. Convergence takes place in the
domain D, (1 > v > 0) of complex € where (w - v)? — 6Qéf(ﬁo) >
v (w - v)?. The domain has the form

A

complex
e—plane

W
=

Fig.3: Analyticity domain D for the lower dimensional invariant tori. The cusp at
the origin is a second order one. The figure refers to the hyperbolic case.



complex
e—plane

v

Fig.4: Can the domain Dy in Fig.3 be extended? the domain might perhaps be (near
the origin) as in the picture. It reaches the real axis in cusps with apex at a set I¢,; in
the complex e—plane they correspond to elliptic tori which would therefore be analytic
continuations of the hyperbolic tori. The analytic continuation could be continuous
across the real axis on I¢, and I¢,/eg—z521 (i-e. Ig, is very large near 0.
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