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Hamiltonian for a rotators system

H =
1

2
(A 2 + B 2) + εf(α , β )

A = (A1, . . . , Ar), B = (B1, . . . , Bn−r)

α = (a1, . . . , ar), β = (β1, . . . , βn−r)

where f is an even trigonometric polynomial of degree N .

Special unperturbed motions

ω = (ω1, . . . , ωr) ν = (ν1, . . . , νr) ∈ Z
r

A = ω , B = 0 , |ω · ν | >
1

C| ν |τ

α = α 0 + ω t, β = β
0

r = n ←→ maximal tori or KAM tori

Are there motions of the “same type” in presence of interaction

?? i.e.

A = ω + H (ψ ), B = K (ψ )

α = ψ + h (ψ ), β = β
0
+ k (ψ ) with

ψ⇒ψ + ω t is a solution?

It must be (necessarily if h = ε h (1) + ε2 h (2) + . . . , k = . . .):

(ω · ∂ ψ )
2 h (ψ ) = −ε ∂ α f(ψ + h (ψ ), β

0
+ k (ψ ))

(ω · ∂ ψ )
2 k (ψ ) = −ε ∂ β f(ψ + h (ψ ), β

0
+ k (ψ ))

and β
0
must be an extremum for the average over α : f(β ) =

∫

f(α , β )
dα

(2π)r
:

(ω · ∂ ψ )
2 k 1(ψ ) = − ∂ β f(ψ , β 0

) ⇒ 0 = ∂ β f(β 0
)
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Maximal tori: r=n. Series of Lindstedt, Newcomb, Poincaré:

Let ϑ be a tree with p nodes v0, . . . , vp−1 and root r.

We attach to every node v a “momentum” ν v ∈ Z
n with f ν

v
6= 0. The

root momentum will be a unit vector n ; and we define a current flowing

on a line outgoing the node v

ν (v)
def
=

∑

w<v

ν w which we suppose 6= 0

Note that 0 < | ν v| ≤ N ⇒ |ω · ν v| > c > 0 (if ω is “Diophantine”)

r
n

ν = ν λ0

λ0

v0

ν v0

v1

ν v1

v2

v3

v5

v6

v7

v11

v10

v4

v8

v9

Fig. 1: A tree ϑ with mv0 = 2,mv1 = 2,mv2 = 3,mv3 = 2,mv4 = 2 and k = 12, and
a few decorations. Only two momentum labels and one current label are explicitly
written down; the indices enumerating the lines (because they are distinct) are not
marked. Arrows represnt the partial ordering of the nodes defined by the tree.

Define the value of a tree ϑ with distinct (i.e. labeled) branches

Val(ϑ) =
1

p!

(

∏

linesλ=(v′v)∈ϑ

ν v′ · ν v
(ω · ν (v))2

) (

∏

v∈ϑ

f ν
v

)

counting trees up to pivot equivalence. Then

h (p)
ν · n =

∑

ϑ
root current= ν

Val(ϑ)
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Siegel–Bryuno–Pöschel bound

We say that λ = (v′v) has scale n = 0,−1,−2, . . . bf if

2n−1 < |ω · ν (v)| ≤ 2n

Then

∣

∣

ν v′ · ν v
(ω · ν (v))2

∣

∣ ≤ N22−2n if 2n−1 < |ω · ν (v)| ≤ 2n

|Val(ϑ)| ≤
1

p!
N2pF p

0
∏

n=−∞

2−2nNn

Nn
def
= number of lines of scalen

If ν (v) 6= ν (w) for all v > w then Nn is “small” Nn ≤ aN2n/τp for

some a > 0.

We must use 2−n/τN−1 nodes with momentum ≤ N to reach a line v′v

such that ω · ν (v) ∼ 2−n, i.e. ν (v) = O(2−n/τ ). To find another one

of the same scale we need as many new ones: hence Nn = O(p2n/τN).

∑

ϑ con p nodi

|Val(ϑ)| ≤
1

p!
p!4pN2pF p(

0
∏

n=−∞

2−2naN2n/τ p) =

=
1

p!
p!4pN2pF p(2

−2aN
∑

0

n=−∞

n2n/τ

)p = Bp

A simple self-energy graph

ν v′

ν out

R

ν in

ν v
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ν v′

ν out

R

ν in

ν v

This is a self-energy subgraph if the entering line and the exiting one

have the same current ν , of scale n, and all the internal lines have scale

m ≥ n + 3 and the their number is < a2−n/τ , i.e. not too large, and
∑

w∈R ν w = 0 and all subgraph lines have different currents (i.e. no

self-energy sub-subgraph! → “simple”).

Resummations of simple self-energy graphs

The contribution to the value of a tree from a self-energy subgraph R

inserted on the line v′v is

ν v′ · ν out
(ω · ν )2

(

∏

λ=(w′w)∈R

ν w′ · ν w
(ω · ν (λ))2

) ν in · ν v
(ω · ν )2

≡

≡
1

(ω · ν )2
ν v′ ·

MR( ν )

(ω · ν )2
ν v

Let M( ν )
def
=

∑

R ε
|R|MR( ν ). We can insert m = 0, 1, 2, . . . self-energy

subgraphs on every line of a tree without any such subgraph

∞
∑

m=0

1

(ω · ν )2
ν v′ ·

( M( ν )

(ω · ν )2

)m

· ν v =

= ν v′ ·
1

(ω · ν )2 −M( ν )
· ν v

that is a convergent sum because of the Siegel–Bryuno–Pöschel bound.
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Cancellations

This is not enough because (ω · ν )2 −M( ν ) can vanish!! Nevertheless

one shows that

M( ν ) = (ω · ν )2m1
ε( ν )

and the propagator becomes (ω · ν )−2 (1+m1
ε( ν ))

−1 def= (ω · ν )−2 ν v′G
(1)( ν ) ν v,

i.e. we have eliminated the self-energy subgraphs not containing other

self-energy subgraphs.

Elimination of overlapping graphs

Define m2
ε( ν ) in the “same way”: considering all trees with simple of

self-energy graphs at most and define their value as in the preceding case

making use, however, of the new propagators. Then iterate indefinitely:

one can check that G
(k)
ε ( ν ) converges to a limit G

(∞)
ε ( ν ).

The torus invariant equation is therefore obtained by considering all the

graphs without self-energies and computing them by means of the new

propagator

(ω · ν )−2 ν v′ · (1 +m∞
ε ( ν ))−1 · ν v

def
= (ω · ν )−2 ν v′G

(∞)( ν ) ν v

which, by the Siegel–Bryuno–Pöschel bound does not present convergence

problems and in fact this yields an algorithm to evaluate the sum of the

LNP series.
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Lower dimensional tori (Resonances)

If f(α , β ) =
∑

ν , µ e
i ν ·α+i µ · β f ν , µ Feynman’s rules undergo some

minor changes. After resummation of the self-energy subgraphs (defined

in the same way) the propagator is a Hermitian matrix (n× n as before)

which has the form





α β

α (r × r) (r × (n− r))

β (r × r) ((n − r)× (n− r))



 =

=
(

(

(ω · ν )2(1 +O(ε2)) i(ω · ν )bε+O(ε2)
−i(ω · ν )bε+O(ε2) (ω · ν )2 − ε ∂ β f(β 0

) +O(ε2)

)

)−1

where the α × α elements account for the cancellations discussed in the

maximal cases. Also the α× β terms show cancellations (of lower order:

1 instead of 2 when ω · ν → 0).

Nevertheless the β×β elements can vanish on or near the set of infinitely

many points ε for which (ω · ν )2 − ε ∂ β f(β 0
) = 0.

If ε > 0 and β
0
is amaximum there is no 0 eigenvalue and the eigenvalues

are bounded from below by (ω · ν )2. Hence on falls back in the same

situation met in the maximal tori case. Convergence takes place in the

domain Dγ (1 > γ > 0) of complex ε where (ω · ν )2 − ε ∂ β f(β 0
) ≥

γ (ω · ν )2. The domain has the form

complex
ε−plane

O

Fig.3: Analyticity domain D0 for the lower dimensional invariant tori. The cusp at
the origin is a second order one. The figure refers to the hyperbolic case.
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complex
ε−plane

Fig.4: Can the domain D0 in Fig.3 be extended? the domain might perhaps be (near
the origin) as in the picture. It reaches the real axis in cusps with apex at a set Iε0 ; in
the complex ε–plane they correspond to elliptic tori which would therefore be analytic
continuations of the hyperbolic tori. The analytic continuation could be continuous
across the real axis on Iε0 and Iε0/ε0−−→ε0 1 (i.e. Iε0 is very large near 0.
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