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Hamiltonian rotators system

α̈ = −ε∂α f(α , β ), β̈ = −ε∂β f(α , β )

α = (α1, . . . , αr), β = (β1, . . . , βn−r), f :

even trigonometric polynomial of deg. N ,

f =
∑

ν f ν ( β )e
i ν ·α , ν ∈ Zr. Let

f 0 ( β ) =
1

(2π)r

∫

f(α , β ) dα
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Special unperturbed motions

ω = (ω1, . . . , ωr), |ω · ν | >
1

C| ν |τ

α = α 0 + ω t, β = β
0

r = n ←→ maximal tori or KAM tori.

Are there motions of the “same type”

in presence of interaction ?? i.e.
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Meaning of “same type”

α = ψ + h (ψ ), β = β
0
+ k (ψ )

ψ⇒ψ + ω t α (t), β (t) is a solution?

Equations

(ω · ∂
ψ

)2 h (ψ )=−ε ∂
α
f(ψ+ h (ψ ), β

0
+ k (ψ ))

(ω · ∂
ψ

)2 k (ψ )=−ε ∂
β
f(ψ+h (ψ ), β

0
+ k (ψ ))

h , k power series ε⇒ ∂β f 0 ( β 0
) = 0

(ω · ∂ ψ )
2 k 1(ψ ) = − ∂ β f(ψ , β 0

)⇒

⇒ 0 = ∂ β f 0 ( β 0
)
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Nonlinear wave equ. (“Klein–Gordon”)

utt − uxx + µu = f(u), f(u) = u3

u(0, t) = u(π, t) = 0, µ > 0

if ωm =
√

µ+m2, do f = 0 periodic solu-

tions like ε cosω1t sinx, extend to f 6= 0?

u(x, t) =
∞
∑

m,n∈Z

ûn,me
inΩt+imx,

with ûn,m = −ûn,−m = û−n,m.
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ûn,m[−Ω2n2+ω2
m]=f̂n,m(u)

ûn,m[−ω̃2
1
n2+ω̃2

m]=−νm(ε)ûn,m+f̂n,m(u),

(1 ?) analytic (in ε) exponentially decay-

ing (in m,n) solution given ω̃m verifying

|ω̃1n± ω̃m| ≥ C0|n|
−τ , n 6= 0;m,m′ 6= 0,±1

|ω̃1n± (ω̃m′ ± ω̃m)| ≥ C0|n|
−τ ,

(2 ?) for a solution of ω̃2
m + νm(ε) = ω2

m

so that Ω2 = ω̃2
1 .
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Problem: construct a series representa-

tion of the solutions
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Tori: r ≤ n. Lindstedt’s series.

Let ϑ be a tree with

(1) p “nodes” v0, . . . , vp−1,

(2) one “root” r

(3) possibly “leaves” with “veinage”.

(4) γ′

v′ v
γ

Tree lines ℓ = ℓv ≡ (v′, v) joining nearest

nodes (v′, v) are oriented towards the root.
Total number of nodes k ≥ p

7



η0

η3

η2

r v0

ν 0

ν 1

ν 2

ν 4

ν ′
1

ν ′
2v′ v

γ′ γ
η
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(a) Node v carries “harmonic” ν v ∈ Z
r.

(b) Line ℓ = (v′, v) carries current

ν (ℓ)
def
=

∑

w≤v ν w 6= 0

(c) Current out of a leaf is 0 .

(d) Line ℓ = (v′, v) carries pair ηℓ = (γv′ , γv),

γ = 1, . . . , n (components).

γ′

v′
γ
v
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Line ℓ has a “propagator” matrix

Gℓ = δγ,γ′(ω · ν (ℓ))−2

for leaf lines Gℓ = δγ,γ′ .

γ
γ1

γp

Node v tensor

Fv =
1
pv!
∂pv+1
γv ,γv,1,...,γv,pv

f ν
v
( β

0
)

where ∂γ = iνγ if γ ≤ r and ∂
∂βγ

if γ > r.
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Value, Reduced value, Leaf value

Val(ϑ)γ =
∏

v∈nodes(ϑ)

Fv
∏

v∈leaves(ϑ)

Lv
∏

ℓ∈lines(ϑ)

Gℓ,

Val′(ϑ)γ =
∏

v∈nodes(ϑ)

Fv
∏

v∈leaves(ϑ)

Lv
∏

ℓ6=ℓ0

Gℓ

Lv,γ = −∂2β f 0 ( β 0
)−1Val′(ϑL), γ > r

Only the root label is not contracted: i.e. the

value Val(ϑ) is a n–vector
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Example: no leaves and r = n

Val(ϑ)γ =
∏

ℓ=(v′v)∈ϑ

ν v′ · ν v
(ω · ν (ℓ))2

∏

v∈ϑ

f ν
v

pv!

The contractions of components labels gen-

erate the scalar products ν v′ · ν v at each

line and ν r has to be interpreted as the

unit vector in the direction γ.
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Lindstedt series

The tori parametric equ. q (ψ )=( h (ψ ), k (ψ )), ψ ∈T r

q(k)ν ,γ =
∑

ϑ∈Θk, ν ,γ

εk Val(ϑ)γ

Θk, ν ,γ =

(1) total number of nodes k

(2) with root label γ

(3) root line current ν

(4) no line with 0 current (ext. Poincaré’s

th. on Lindstedt–Newcomb series)
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If r = n (maximal tori): no leaves; by

KAM theorems series is convergent and

indeed one can check that k–th order

BCke−κ| ν |
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Siegel–Bryuno–Pöschel bound

ℓv = (v′v) has scale n = 0,−1,−2, . . . if

2n−1 < |ω · ν (ℓv)| ≤ 2n ⇒

⇒
∣

∣

ν v′ · ν v
(ω · ν (ℓv))2

∣

∣ ≤ 4N22−2n

|Val(ϑ)| ≤
1

p!
(2N)2pF p

0
∏

n=−∞

2−2nNn

Nn
def
= number of lines of scalen

Recall

Val(ϑ)γ =
∏

ℓv=(v′v)∈ϑ

ν v′ · ν v
(ω · ν (ℓv))2

∏

v∈ϑ

f ν
v

pv!
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|Val(ϑ)| ≤
1

p!
(2N)2pF p

0
∏

n=−∞

2−2nNn

If ν (ℓv) 6= ν (ℓw) for all v > w ⇒

Nn ≤ aN2n/τp ⇒

⇒
1

p!
p!4p(2N)2pF p(

0
∏

n=−∞

2−2naN2n/τ p) =

=
1

p!
p!4p(2N)2pF p(2

−2aN
∑

0

−∞
n2n/τ

)p = Bp
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Simple self-energy graph (S.E., mass)

ν v′

ν out

R

ν in

ν v

∑

w∈R ν w = 0
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This is a self-energy subgraph if

(1) the entering line and the exiting one

have the same current ν , of scale n, and

(2) all internal lines scale m > n + 1 and

their number is < a2−n/τ and

(3)
∑

w∈R ν w = 0

Def: no S.E. sub-subgraph ⇒ “simple”.

Def: “SE subgr.” synonymous “mass subgr.”
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Resummations of simple s.e. graphs

Contribution to a tree value from a mass

subgraph R inserted on line v′v is

ν
v′

· ν
out

(ω · ν )2

(

∏

w

f ν w
pw !

∏

ℓ

ν
w′ · ν w

(ω · ν (ℓ))2

)

ν in· ν v
(ω · ν )2

≡

≡ 1
(ω · ν )2

ν
v′

·
MR( ν )

(ω · ν )2
ν
v

∏

w ≡
∏

w∈R and
∏

ℓ ≡
∏

ℓ∈R.
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Let M1( ν )
def
=

∑

R ε
|R|MR( ν ),

convergent sum because of the Siegel–

Bryuno–Pöschel bound.

Can insert m = 0, 1, 2, . . . mass subgr. on

every line of a tree without SE

∞
∑

m=0

1

(ω · ν )2
ν v′ ·

( M1( ν )

(ω · ν )2

)m

· ν v =

= ν v′ ·
1

(ω · ν )2 −M1( ν )
· ν v
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Cancellations

BUT (ω · ν )2−M1( ν ) = 0?? needM1( ν ) =

(ω · ν )2m1
ε( ν ). Up to (1 +O(ε2))

ω · ν 2−M1=

(

(r×r) (r×(n−r))

((n−r)×r) ((n−r)×(n−r))

)

=

=

(

(ω · ν )2 i(ω · ν )bε

−i(ω · ν )bε (ω · ν )2−ε ∂ 2
β
f 0 ( β

0
)

)−1

the r × r → “KAM cancellations”

BUT (n−r)× (n−r) elements can vanish

on or near the set of infinitely many points

ε for which (ω · ν )2 − ε∂2β f 0 ( β 0
) = 0.

21



eliminated simple SE subgraphs IF

−ε∂2β f 0 ( β 0
) > 0.

Elimination of overlapping graphs

DefineM2( ν ) in the “same way”: consid-

ering trees with simple SE graphs at most

and define value as in the preceding case

making use, however, of the new propa-

gators x2 − M( ν ). Iterate indefinitely:

G
(k)
ε ( ν )−−−→

k→∞
G

(∞)
ε ( ν ).
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Invariant torus equ.: just consider all

graphs without SE and new propagator

((ω · ν )2 −M∞( ν ))−1 def= G(∞)( ν )

by Siegel–Bryuno–Pöschel no converg.

prob.: hence algorithm for LNP series.
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If ε > 0 and β
0
is a maximum the popa-

gator matrix has no 0 eigenvalue. Hence

“no difference from maximal case”. Con-

vergence in complex ε domain D where

(ω · ν )2 − ε∂2β f 0 ( β 0
) ≥ γ (ω · ν )2.

complex
ε−plane

O

Fig.3: Lower dimensional tori analyt. domain
D0 tori. Cusp at the origin is of ond order .
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complex
ε−plane

Fig.4: Can D0 in Fig.3 be extended? Perhaps
be (near the origin) as in the picture? Real axis
reached in cusps with apex at a set I; for ε ∈ I the
parametric eq. correspond to elliptic tori which
would be analytic continuations of the hyperbolic
tori.
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