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Recently the “fluctuation theorem” has been criticized on the basis of contents incorrectly at-
tributed to it. Here I reestablish, once more, the original so that its substantial difference from
other statements that have been given, subsequently, the same name can be better appreciated.
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Fluctuations

The fluctuation theorem is a property of the phase
space contraction of an Anosov map S, called time evo-
lution, which is time reversible. The connection between
the fluctuation theorem and Physics is a different matter
that I will not discuss here: there are many places where
this is done as full detail as possible with the present
state of knowledge, [1], [2], [3].

Denote phase space by Ω (a smooth finite boundaryless
manifold), by S the time evolution map and by σ(x) the
phase space contraction

σ(x) = − log |det ∂xS(x)|

Time reversal is an isometry I of phase space such that

IS = S−1I, σ(Ix) = −σ(x)

It has been shown that there exists a unique probabil-
ity distribution, called the statistics of the motion or the
SRB distribution, µ such that for all points x ∈ Ω, ex-
cepted those in a set of 0 volume, it is

lim
τ→∞

1

τ

τ−1∑
t=0

F (Stx)
def
= 〈F 〉 =

∫
Ω

F (y)µ(dy)

for all smooth observables F defined on phase space.
It is intuitive that “phase space cannot expand”: this

is expressed by the following result of Ruelle, [4],

Proposition: If σ+
def
= 〈σ〉 it is σ+ ≥ 0

Clearly if S is volume preserving it is σ+ = 0. This
motivates calling systems for which 〈σ〉 > 0 “dissipative”
and calling volume preserving systems “conservative”. If
σ+ > 0 the system does not admit any stationary distri-
bution with density with respect to the volume.

For Anosov systems which are “transitive” (i.e. with a
dense orbit), reversible and dissipative one can define the
dimensionless phase space contraction, a quantity related
to entropy production rate (see [5, 6]) averaged over a
time interval of size τ . This is

p =
1

σ+τ

τ/2−1∑
−τ/2

σ(Skx)

provided of course σ+ > 0.
Then for such systems the probability with respect to

the stationary state, i.e. with respect to the SRB distri-
bution µ, that the variable p takes values in ∆ = [p, p+δp]
can be written as Πτ (∆) = eτ maxp∈∆ ζ(p)+O(1) where ζ(p)
is a suitable function andO(1) refers to the τ–dependence
at fixed p for all intervals ∆ of given size δp contained in
an open interval (p∗1, p

∗
2) (this is often expressed less rig-

orously as limτ→∞
1
τ log Πτ (p) = ζ(p) for p∗1 < p < p∗2).

The function ζ(p) is analytic in p in the interval of
definition (p∗1, p

∗
2) and convex. In fact more is true and

one can prove the following fluctuation theorem:

Proposition: In transitive time reversible Anosov sys-
tems the rate function ζ(p) for the phase space contrac-
tion σ(x) is analytic and strictly convex in an interval
(−p∗, p∗) with +∞ > p∗ ≥ 1 and ζ(p) = −∞ for |p| > p∗.
Furthermore

ζ(−p) = ζ(p)− pσ+, for |p| < p∗

which is called the “fluctuation relation”.

Existence of ζ(p) is a theorem by Sinai who proves
analyticity and convexity, [7, 8]. Strict convexity fol-
lows from a theorem of Griffiths and Ruelle, [9], which
shows that the only way strict convexity could fail is if
σ(x) = ϕ(Sx) − ϕ(x) + c where ϕ(x) is a smooth func-
tion (typically a Lipschitz continuous function) and c is a
constant, see Ch. 6 in [8]. The constant vanishes if time
reversal holds and σ(x) = ϕ(Sx) − ϕ(x) contradicts the

assumption that σ+ > 0 (because | 1τ
∑τ/2−1
−τ/2 σ(Skx)| ≤

τ−1 maxy |ϕ(y)|). The value of p∗ must be p∗ ≥ 1 oth-
erwise p∗ < 1 and the average of p could not be 1 (as it
is by its very definition). The proposition is proved in
[10? ], see also [? ], and called the fluctuation theorem a
name later used by others attributing it to quite different
relations ! [11].

Remark: For finite τ the function ζ(p) and ζ(−p) are
replaced by ζτ (p), ζτ (−p) which differ from their limits as
τ →∞ by a quantity bounded by a constant uniforlmly
in any closed interval of (−p∗, p∗)

Rather than the above p one may considers the quan-

tity a = τ−1
∑τ/2−1
j=−τ/2 σ(Sjx), and the result becomes

ζ̃(−a) = ζ̃(a)− a, for |a| < p∗σ+
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where ζ̃(a), the large deviations rate function for a, is
trivially related to ζ(p). Note that p∗ is certainly < +∞
because the variable σ(x) is bounded (being continuous
on phase space, i.e. on the bounded manifold on which
the Anosov map is defined).

The latter form of the fluctuation theorem can be mis-
understood to suggest that in the case of systems with
σ+ = 0 the distribution of the variable a is asymmetric
(because the extra condition |a| < p∗σ+ might be forgot-
ten). In fact errors appeared in the literature because of
this misunderstanding; see [? ] which is part of several
attempts to claim that the above fluctuation theorem is
either wrong or a consequence of earlier (and later) state-
ments. The supposedly equivalent statements were given
same name by their authors, after the above fluctuation
theorem was published, thus creating a remarkable con-
fusion, see [11].

Considering more closely the cases σ+ = 0 it follows
that σ(x) = ϕ(Sx)−ϕ(x)+c again by a result of Griffiths
and Ruelle (essentially the same mentioned above) and
c = 0 by time reversal. Hence the variable

a =
1

τ

τ/2−1∑
j=−τ/2

σ(Sjx)

is bounded and tends uniformly to 0. One could repeat
the theory developed for p when σ+ > 0 but one would

reach the conclusion that ζ̃(a) = −∞ for |a| > 0 and the
result would be trivial. In fact in this case it follows that
that the system admits an SRB distribution with density
on Ω, [1, 4]. The distribution of a is symmetric (trivially

by time reversal symmetry) and becomes a delta function
around 0 as t→∞ (i.e. “no large deviations” in the usual
sense are possible).

Nevertheless the fluctuation relation is non trivial in
cases in which the map S depends on parameters E =
(E1, . . . , En) and becomes volume preserving (“conserva-
tive”) as E → 0: in this case σ+ → 0 as E → 0 and one
has to rewrite the fluctuation relation in an appropriate
way to take a meaningful limit.

The result is that the limit as E → 0 of the fluc-
tuation relation in which both sides are divided by E 2

makes sense and yields (in transitive Anosov dynamical
systems) relations which are non trivial and that can be
interpreted as giving Green–Kubo formulae and Onsager
reciprocity for transport coefficients associated with the
thermodynamic fluxes J conjugated with the thermody-
namic forces E , [12, 13].

In fact the very definition of the duality between cur-
rents and fluxes so familiar in nonequilibrium thermody-
namics since Onsager can be set up in such systems by
using σ+, regarded as a function of E , as a generating
function: Ji = ∂Ei

σ+|E= 0 , [12–14]. Note that the fluxes
are usually “currents” divided by temperature: therefore
via the above interpretation one can try to define the
temperature even in nonequilibrium situations, [5].
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