
Nonequilibrium statistical mechanics
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Equilibrium: Hamiltonian

q̈
i
= −∂ q

i
V ( q ), ( q̇ , q ) ≡ x ∈ phase space

States: µU,V = Liouville (microcan.)

Transformations: quasi static. Thermostats.

Nonequilibrium: Non conservative systems

q̈
i
= −∂ q

i
V ( q ) +E g ( q )− ϑE

i ( q , q̇ )

2



Nonequilibrium: Non conservative systems

q̈
i
= −∂ q

i
V ( q ) +E g ( q )− ϑE

i ( q , q̇ )

Molecular dynamics → mechanical ther-

mostats

(Nosé–Hoover, Gauss, infinite, stoch.)

States: µ = µU,V,E,... = stationary dis-

trib, (which?) s.t. aside from a 0–volume

lim
T→∞

1

T

∫ T

0

F (Stx)dt =

∫

Ω

F (y)µ(dy)
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Mechanical thermostats: heat? entropy?

W = 〈E g ( q ) · q̇ 〉time = 〈ϑE · q̇ 〉time = Q

Q is identified with “heat production rate”

From various examples emerges a defini-

tion of entropy production rate kBσ+

σ+ = 〈divergence〉 = 〈∂ q̇ · ϑE( q , q̇ )〉 ≥ 0

W = Q by stationarity

[ d

dt

( q̇ 2

2
+V ( q )

)

≡ E g ( q ) · q̇ − ϑE · q
]

obviously σ+ > 0 implies that it will not

be possible to define “entropy” of the sys-

tem: if entropy content, i.e. a conserved

quantity identified with entropy, existed

then it should be −∞ if σ+ > 0.
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Temperature: Θ = Q
kBσ+

I take these as definitions of interesting

mechanical quantities

Are names consistent with equilibrium?

Which is µ?

(Ruelle 1970’s, Cohen, G. 1995)
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Which is µ? Chaotic hypothesis:

A chaotic multiparticle system can be re-

garded as a transitive Anosov system.

esoteric? Meaning: “coarse graining pos-

sible on all scales”

P1

P2

P3

Pn

Ω History:

x → (. . . i−1, i0, i1, . . .)

Skx ∈ Pik

S = Timed evolution
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Given a precision γ > 0 ∃P = (P1, P2, . . .)

(1) “cells” Pi−T ,...,iT= set of x with ij

(2) cells 6= ∅ iff ik → ik+1 possible

i.e. SP 0
ik
∩ P 0

ik+1
6= ∅

Microscopic states ←→ states of infnite

spin chains with nearest neighbor hard cores

Key result (Sinai, Ruelle,Bowen)

Liouville volume µ0 is a Gibbs dist. with

short range potential
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Liouville volume µ0 is a Gibbs dist. with

short range potential

Φ− Φ+Φ′

time ev. = left shift ←

Hence

Skµ0−−−→k→∞
µ+= SRB and

Skµ0−−−−−→k→−∞
µ−

Chaot. hyp. extends ergodic hyp.:

gives the statistics of almost all initial data

and implies ergodic hyp. +

exponential fast approach to stationarity
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Chaot. hyp. extends ergodic hyp.:

gives the statistics of almost all initial data

and implies ergodic hyp. +

exponential fast approach to stationarity

Universal properties? example Boltzmann

heat theorem

States: µU,V (microc.) ⇒ def: P (U, V ),Θ(U, V )

change U, V by dU, dV

dU + PdV

Θ
= exact←→ ∂V

1

Θ
= ∂U

P

Θ
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Reversible systems: isometry I and

S2 = 1, IS = S−1I

I = time reversal (e.g. T, PT, PCT or more

complicate).

Average entropy production (if σ+ > 0):

pτ (x) =
1

τσ+

τ/2
∑

k=−τ/2

σ(Skx)
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Results (Sinai) p is multifractal:

Πτ (p ∈ ∆) = eτ maxp∈∆ ζ(p)+O(1)

for |p| < cσ+ and ζ(p) is analytic in p.

because SRB is a Gibbs state of 1–dim Ising

system with short range potential.

. Fluctuation theorem for reversible maps

ζ(−p) = ζ(p)− pσ+, |p| < p∗

parameterless and universal

11



(discovered in molecular dynamics, 1993

Evans-Cohen-Morriss, theory Cohen-G., 1995)

More general: F1, . . . , Fn odd time rev.

let t → ϕ1(t), . . . , ϕn(t) be n “patterns”

t ∈ [− τ
2 ,

τ
2 ] and let Iϕj(t)

def
= ϕj(−t)

Πτ (F1 ≃ ϕ1, . . . , Fn ≃ ϕn, p)

Πτ (F1 ≃ Iϕ1, . . . , IFn ≃ ϕn,−p)
= eτpσ+

∀F1, . . . , Fn.⇒Onsager reciprocity and Green–

Kubo for σ+ → 0
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Example Drude’s conduction theory

L

v i
R2

R1

q̈
i
= Eu − ϑ i + coll

speed renorm to
√
3kBΘ

or keep constant speed

ϑ i = α( q̇ ) q̇
i

α( q̇ ) =
E
∑

u · q
i

∑

q̇ 2

i

and
∑

q̇ 2
i
= 3NkBΘ

so that
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W = 〈ϑ · q̇ 〉 = E〈J〉 = Q

σ+ = 〈div〉 = (3N − 1)
E〈J〉

3NkBΘ
∼ Q

kBΘ

ζ(p) describes the current fluctuations

Tests: 1) numerical, 2) in nature

1) global seems ok. Local ? few examples:

lattices of Anosov maps
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Lattice (e.g. 1 dim):

• •
ϕ

ξ

ξ . . . • . . . • • ξ ∈ V ⊂ Zd

(S ϕ )ξ = S0 ϕ ξ
+ ε δ(ϕ

nn(ξ)
)

If reversible def. local phase space contr.

σV0
(ϕ

V
) = − log | det ∂ϕ

V0

S(ϕ )V0
|

pτ,V0
(ϕ )

def
= 1

τ〈σV0
〉

∑τ/2
−τ/2 σV0

(Sk ϕ )
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Then

〈σV0
〉 = V0σ

0
+ +O(∂V0)

τζ(p) = V0τζ
0(p) +O(∂(V0 × [− τ

2 ,
τ
2 ]))

ζ0(−p) = ζ0(p)− pσ0
+

i.e.

entropy production fluctuations behave in

an analogous way as the density fluctua-

tions in equilibrium: they scale with the

space–time volume, (G.).
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2) Tests in natural systems

(I) measurements in a “small region” of Q

= dissipat. per unit time

(II) Check that p
def
= 1

τ

∫ τ
2

− τ
2

Q(t) has a lin-

ear symmetry

ζ(p) = ζ(−p) + cp

One then identifies 〈Q〉kBc

def
= Θ effective tem-

perature of the thermostat

Granular materials (very weak friction: Feitosa–

Menon)

Fluid turbulence (very strong friction: Cilib-

erto)
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Problems

(a) Reversibil.: essential? (Bonetto-G)

(b) Local fluctuation relations in more gen-

eral systems (with boundary only

forcing/dissipation)? (Bonetto-Lebowitz)

(c) strong friction? (G, Rondoni-Segre)

(d) soluble models? (Derrida-Lebowitz-

Speer, Bertini-DeSole-Gabrielli-Jona-Landim)

(e) When are 2 thermostats equivalent?

(She-Jackson, Evans-Sarman, G)
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Example: Drude’s conduction models

q̈
i
= E u −ν q̇

i
, q̈

i
= E u −α( q̇ ) q̇

i
,

Look in a volume V0 ⊂ V and consider an

observable FV0
then if energy is tuned so

that ν = 〈α〉
〈FV0
〉µν

〈FV0
〉µα

−−−−→
V→∞

1

(f) Stochastic thermostats (Kurchan, Lebowitz-

Spohn)
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(g) Infinite (Hamiltonian classical or quan-

tum) thermostats (Eckmann-Pillet-ReyBellet,

Ruelle).
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(h) Boundary only dissipation: is σV0
= 0

if V0 ⊂ V ? Two definitions

(I) (G)

σV0
(xV0

) = − 1
τ0

log det ∂xV0
Sτ0(xV0

, xV c
0
)

with τ0 large enough so that a disturbance

at the boundary of V0 travels to the center

(∼ L0/(speed of sound))
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(II) (Ruelle)

σV0
(xV0

) = − 1
τ0

log〈det ∂xV0
Sτ0(xV0

, xV c
0
)〉
∣

∣

∣

τ0=0

with the average computed with the SRB

distribution conditioned to xV0
in V0.
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