Nonequilibrium statistical mechanics



Equilibrium: Hamiltonian

q,= _8@‘/(2)» (Q,g) = x € phase space

(

States: uyy = Liouville (microcan.)
Transformations: quasi static. Thermostats.

Nonequilibrium: Non conservative systems

g,=-9 V(g)+Eg(q)—9:(q,q)
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Nonequilibrium: Non conservative systems
g,=—0q V(a)+Eg(q)—27(q,q)
Molecular dynamics — mechanical ther-
mostats

(Nosé—Hoover, Gauss, infinite, stoch.)
States: p = pyv.g,... = stationary dis-
trib, (which?) s.t. aside from a 0-volume

lim % /O F(Six)dt = /Q E'(y)pu(dy)
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Mechanical thermostats: heat? entropy?

W = <Eg(g) Q>time: <QE Q>time:Q

() is identified with “heat production rate”
From various examples emerges a defini-

tion of entropy production rate kpo

o4 = {(divergence) = (04 - 9" (q, q)) >0

|-

W = (@) by stationarity

{%(%JFV(Q)) =Fg(q)-¢g—9" ¢

obviously o, > 0 implies that it will not
be possible to define “entropy” of the sys-
tem: if entropy content, i.e. a conserved
quantity identified with entropy, existed
then it should be —oc if 04 > 0.
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I take these as definitions of interesting

Temperature: © =

mechanical quantities

Are names consistent with equilibrium?

Which is p?
(Ruelle 1970’s, Cohen, G. 1995)



Which is p? Chaotic hypothesis:

A chaotic multiparticle system can be re-

garded as a transitive Anosov system.

esoteric?’ Meaning: “coarse graining pos-
sible on all scales”

(. iqiorin,.. )
r € P

Timed evolution




Given a precision v > 0 3P = (P, P, . . .)
(1) “cells” P;_,.... i,.= set of x with i,
(2) cells #£ 0 iff 45 — ix11 possible

i.e. SP) N PS{H #+ ()
Microscopic states <— states of infnite
spin chains with nearest neighbor hard cores
Key result (Sinai, Ruelle,Bowen)
Liouville volume g is a Gibbs dist. with

short range potential



Liouville volume g is a Gibbs dist. with

short range potential

L R

time ev. = left shift <«
Hence
k _
S Momﬂ+— SRB and

S* 10 i

Chaot. hyp. extends ergodic hyp.:

gives the statistics of almost all initial data
and implies ergodic hyp. +

exponential fast approach to stationarity



Chaot. hyp. extends ergodic hyp.:
gives the statistics of almost all initial data
and tmplies ergodic hyp. +

exponential fast approach to stationarity

Universal properties? example Boltzmann
heat theorem
States: py v (microc.) = def: P(U,V),0(U,V)
change U,V by dU, dV
dU + PdV 1

P
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Reversible systems: isometry I and
S? =1, IS =811

I =timereversal (e.g. T, PT, PCT or more

complicate).

Average entropy production (if o > 0):

T/2
1 k
pr(z) = E k_Z/ZU(S z)
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Results (Sinai) p is multifractal:

HT(p c A) — 67— maXpe A C(p)+o(1)

for |p| < coy and ((p) is analytic in p.
because SRB is a Gibbs state of 1-dim Ising
system with short range potential.

Fluctuation theorem for reversible maps

((—p) = C(p) — po, p| <p°

parameterless and universal
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(discovered in molecular dynamics, 1993
Evans-Cohen-Morriss, theory Cohen-G., 1995)

More general: Fi, ..., F, odd time rev.

let t — @1(t),...,0n(t) be n “patterns”
T T def

t € [—3, 3] and let Tp;(t) = ¢;(—1)

HT(Flﬁﬁ,Ola---aFn:SOnap) — TP+
HT(Fl ~ [p1,...,1F, ~ SOna_p)

VFy,..., F,.= Onsager reciprocity and Green—
Kubo for o, — 0
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Example Drude’s conduction theory

=FEu — ¥, + coll

—1

Speed renorm to /3kp0®
\ or keep constant speed
Ui =a(q)4q,

— 1

>
- E),
a(q) = Z
so that

—’L and ) q = 3Nkp®

I»Q I@
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W=(9-4)=E(J)=Q

BU)  Q
3NkEg® kO
((p) describes the current fluctuations

oy = (div) = (3N — 1)

Tests: 1) numerical, 2) in nature
1) global seems ok. Local ? few examples:
lattices of Anosov maps
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Lattice (e.g. 1 dim):
e o ‘... e ..o o fcVcCz

(Sf)ﬁ — SOfg +€5(£nn(§))

If reversible def. local phase space contr.
ovo(p ) = —log|detd, S(¢)v

de f T/2
prve(9) = 2 ST, 0w (SF )

15



Then

<O'VO> — V()O'?_ + O(@VQ)

7¢(p) = Vo (" (p) + O(0(Vo x [-3, 3]))
¢°(—p) = ¢"(p) — pol

1. €.

entropy production fluctuations behave in
an analogous way as the density fluctua-
tions in equilibrium: they scale with the
space—time volume, (G.).
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2) Tests in natural systems

(I) measurements in a “small region” of )
= dissipat. per unit time

(IT) Check that pdéf x f_%l Q)(t) has a lin-
ear symmetry 2

C(p) = ((=p) +cp

: : d :
One then identifies 9 “J effective tem-

BC

perature of the thermostat
Granular materials (very weak friction: Feitosa—
Menon)
Fluid turbulence (very strong friction: Cilib-
erto)
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Problems

(a) Reversibil.: essential? (Bonetto-G)

(b) Local fluctuation relations in more gen-
eral systems (with boundary only
forcing/dissipation)? (Bonetto-Lebowitz)

(¢) strong friction? (G, Rondoni-Segre)

(d) soluble models? (Derrida-Lebowitz-
Speer, Bertini-DeSole-Gabrielli-Jona-Landim)
(e) When are 2 thermostats equivalent?
(She-Jackson, Evans-Sarman, G)
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Example: Drude’s conduction models
. =Fu-vq, § =Fu-a(q)q.,
Look in a volume Vi C V' and consider an

observable Fy, then if energy is tuned so
that v = {(«)

<FVO>,UV .
<FVO >,ua Voo

(f) Stochastic thermostats (Kurchan, Lebowitz-
Spohn)
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(g) Infinite (Hamiltonian classical or quan-
tum) thermostats (Eckmann-Pillet-ReyBellet,
Ruelle).
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(h) Boundary only dissipation: is oy, = 0
if Vo C V? Two definitions

(1) (G)

oy, (Ty,) = — T—]LO log det Oy Sr, (Tvy, Tve)
with 79 large enough so that a disturbance
at the boundary of Vj travels to the center

(~ Lo/(speed of sound))
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(IT) (Ruelle)
O-Vo(xvo) — _T_lolog<det aCUVOSTo(mexVOC» 0

with the average computed with the SRB

distribution conditioned to zy, in Vj.
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