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Abstract: Statistical mechanics concerns the probabilistic

study of deterministic or random systems with a great num-

ber of particles. A deterministic many particles system sub-

ject to external non conservative forces is out of equilibrium.

However, it may evolve towards a stationary state, when sub-

ject also to the action of “thermostatting” forces (forces that

keep the total mechanical energy from indefinitely increasing).

This stationary state corresponds to a probability distribution

and attempts to describeit can be viewed as a nonequilibrium

extension of the Boltzmann-Maxwell-Gibbs theory in equilib-

rium statistical mechanics. Ruelle proposed (1973) a solution

to a similar problem in the theory of turbulence. His proposal

applies equally well to nonequilibrium statistical mechanics,

as suggested in recent papers where it is described under the

name of “chaotic hypothesis”. It is argued that the latter is

a a generalization of the ergodic hypothesis and that it leads

to a concrete representation of the stationary distributions.

We suggest that the interest of the hypothesis lies in its fun-

damental nature (i.e. it should hold “essentially without re-

strictions”) and in being, at the same time, compatible with

the ergodic hypothesis. We review how in certain special sys-

tems it can be used to derive concrete results (the “fluctuation

theorem”) which have been tested numerically.
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Dynamical Systems
Continuous time (ODE)

(M,St), M = phase space manifold

ẋ = f(x), St = time evolution x(t)
def
= Stx

Discrete time (Map)

x→ Sx, x ∈M, x(n) = Snx

Phase space volume contraction

σ(x) = −div f(x) = −
∑

i

∂xi
fi(x), (cont. time)

σ(x) = − log | det ∂xS(x)|, (discr. time)

Motions can be regular or chaotic

Regular: ∃ coordinates x = (A,α) ∈ U × T
ℓ s.t.

ẋ = f(x) ←→ Ȧ = 0, α̇ = ω(A)

Sx ←→ A′ ≡ A, α′ = α+ ω

All motions are quasi periodic
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Paradigms of regular motions: Harmonic oscil-
lators, Rotators, Rotations

ṗi = −ω2
i qi Ȧi = 0, α→ α+ ω,

q̇i = pi α̇i = Ai

Chaotic: ∃ natural digital coordinates x←→ε(x)
coding points into sequences ε = (. . . , ε−2, ε−1, ε0, ε1, . . .)
of digits εj = 1, 2, . . . , k so that

(1) ε(Sx) = transl. of ε by 1 unit : εi(Sx) ≡ εi+1(x)

(2) ∃ compatibility matrix Tεε′ = 0, 1 s. t.
sequences ε with Tεiεi+1

≡ 1, ∀i are in
correspondence with points x

(3) map ε→ x is continuous
(and 1− 1.5 for x outside a set of zero volume)

Paradigms of Chaotic motions Geodesic flow on
constant negative curvature surfaces, Toral maps

α
′ = (α′

1, α
′

2) =

(

1 1
1 0

)(

α1

α2

)

=

(

α1 + α2

α1

)
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In all cases “time averages exist” for all smooth ob-
servable F

1

T

T−1
∑

j=0

F (Sjx) dt−−−−→
T→∞

〈F 〉(x)

Regular ⇒ averages exist ∀x but in general there is
memory of the past. Finite time averages → limit
“slowly” (O(t−1) in general).

Chaotic ⇒ exist ∀x but a set N of zero volume. Fi-
nite time averages → limit “quickly” (paradigmati-
cally exponentially); are x=independent. Define the
statistics SRB, µsrb: for x outside N

lim
T→∞

1

T

T−1
∑

j=0

F (Sjx) =

∫

M

F (y)µsrb(dy)
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Conservative chaotic systems: Hamiltonian flow
on surface, their Poincaré sections maps, volume pre-
serving maps of Anosov type.

In such cases there is an invariant prob. distr. µ0

which is abs. cont. w.r.t. volume measure

µ(dpdq) = δ(H(p,q)− E)
dp dq

normal.
, (Hamilton.)

µ(dα) =
dα

(2π)ℓ
, (toral maps)

In such cases the statistics µsrb ≡ µ0.

In equilibrium statistical mechanics the problem is to
study the statistics and the ergodic hypothesis saying
that

“for practical purposes”, and in general “physical
systems”, motions on energy surfaces ME are so ir-
regular that they can be considered ergodic.

⇒ Boltzmann–Gibbs prescription for statistical me-
chanics as it prescribes rules to evaluate averages via
the (only) abs. cont. inv. distr. µ0.
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Dissipative chaotic systems:

However the SRB distribution µ may not be abs.
cont. w.r.t. volume µ0 (even in the paradigmatic
Anosov cases). Dissipative if

σ+ = 〈σ〉srb = lim
T→∞

1

T

T−1
∑

j=0

σ(Sjx) 6= 0 (hence > 0 (R.))

The µsrb cannot be abs. cont. w.r.t. volume.

Surprising: a general theory of dissipative motions
does not exist; at best is just beginning.

Cannot dismiss: many physical problems deal with
dissipative systems. Viscous fluids, systems of parti-
cles subject to non conservative forces, glassy mate-
rials ... (all eventually reducible to particles subject
to non conservative forces).
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A recent proposal is Chaotic hypothesis:

“for practical purposes” in general “physical systems”
motions on energy surfaces ME are so irregular that
they can be considered Anosov systems.

This implies that the statistics of motions of all sys-
tems exists and it is their SRB distribution.

An example

N particles in a periodic box

L

vi
R2

R1

q̈i = Eu− θi + collision
1) speed renorm to

√
3kBΘ

2) or keep constant speed

3) or θi = α(q̇)q̇i

Problem: what to do with the Ch. Hyp.?.

SRB distributions can be parameterized (particle sys-
tems, for instance) V = volume, E = strength of
driving forces, thermostat parameter (e.g. E = en-
ergy if it fixes energy).

Collection of the SRB distr. ⇒ ensemble of “sta-
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tionary states”; averages depend on V, E , E.

There is a possibility of formulating a statistical the-
ory of nonequilinrium stationary states.

Chaotic Hyp. extends the Ergodic Hyp., providing
ground for theory of noneq. stationary states.

Ergodic Hyp. does not solve any concrete problem:
but gives a frame to formulate problems: it took a
very long time to reach the present developments of
Statistical Mechanics.

On the basis of the only ergodic hypothesis one can
only hope to find general relations between averages
of observables as parameters defining their equilibria
vary.

However such relations are of great importance in
Physics and in the equilibrium cases they are the
object of Thermodynamics.
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First example was the heat theorem:

if equilibrium states of N particles with “arbitrary”
interactions are parameterized by V = volume, U =
energy and if p(U, V ) = (SRB)-average force per unit
surface exerted by particles on walls and T (U, V ) =
average kinetic energy and the averages are evaluated
by the Boltzmann distr., (Ergodic Hyp.) then chang-
ing U, V by du, dV generates variations such that

dU + p dV

T
= exact

which is a mechanical version of the second law of
thermodynamics.

Likewise from Chaotic Hyp. alone we cannot hope
for more than a description of relation between aver-
ages of observables as the parameters of the station-
ary states change. Yet this is an extremely ambitious
task: → extending Thermodynamics to nonequilib-
rium stationary states.

Mathematically this means considering families of
Anosov systems with elements continuously depend-
ing on a few parameters and identify general relations
between the average values of few observables.
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The Fluctuation Theorem

It is the first of a few general results valid for Anosov
systems. Combined with the chaotic hypothesis it
becomes a “prediction” of the outcome of certain ex-
periments (several of which have been performed).

Let (M,S) be an Anosov map; suppose that it is
dissipative (σ+ > 0) and reversible (i.e. there is an
isometry of phase space I such that IS = S−1I). Let
dimensionless average phase space contr. p over τ be

p(x, τ ) =
1

τ

τ−1
∑

j=0

σ(Sjx)

σ+

This random variable with the distribution inherited
from the SRB verifies a large deviations property

probab
(

p(x, τ
)

∈ ∆) = eτ maxp∈∆ ζ(p)+O(1)

where ζ(p) analytic in (−p∗, p∗) with p∗ ≥ 1. Then

ζ(−p) = ζ(p)− p σ+, |p| < p∗ (FR)

Without free parameters and independent of system
considered (in class of reversible Anosov).
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