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Universitá di Roma 3 and Roma 1

30/agosto/2016; 13:50 1



Hamiltonian : H =
1

2
I2 + εf(ϕ) with (I,ϕ) ∈ R

ℓ × T
ℓ

. . . . . . 1

Representation of phase space in terms of ℓ rotators.

Resonance : The first r angles α rotate while the remaining s angles

β do not move (r + s = ℓ).

Let ε = 0 and I = (A,B), ϕ = (α,β)

A = ω, B = 0, α = α0 + ω t, β = β0

If the ω are rationally independent, e.g. id there are C0, τ > 0

|ω · ν| ≥
1

C0 |ν|τ
for all ν ∈ Z

r
,ν 6= 0

Question: For ε 6= 0 are there quasi periodic motions which con-
tinue the unperturbed motions?

For instance if r = 1 are there periodic orbits? (Yes! in general but
not too many). The “same” for tori.
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Consider tori with frequencies (ω,0). We prove that in general

Theorem: If β0 ∈ T
s is a stationarity point for the average

(over α) f(β) of f(ϕ) ≡ f(α,β) and if the s × s matrix of its

derivatives ∂ 2
β βf(β0) is not degenerate and its eigenvalues

are distinct and positive, then there is an invariant torus

with parametric equations

α = ψ + a(ψ), β = β0 + b(ψ)

provided ε is small enough and it is outside a set Ec which
is small near the origin, actually it has zero density there.

Motion on such tori is “free”: this means

ψ → ψ + ωt.

complex
ε−plane

2

a,b analytic in ψ and differentiable of arbitrarily high order in ε

analytic also in ε for ε < 0 if the matrix ∂ 2
ββf(β0) is positive
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Existence of a formal solution as a power series in ε:
Description of the Lindstedt series.

(a,b) = h =
∞
∑

k=1

εkh(k)

No convergence in general: however

Idea: “There are no divergent series”

Hence we look for sum rules

Split h(k) as a sum of many terms and recombine them to obtain an
absolutely convergent series.

In doing this we shall be forced to sum divergent series by giving
their sum by a prescription. A typical exemple

∞
∑

k=0

zk =
1

1− z
, z 6= 1

even when |z| > 1 !.

Not “harmless”: for instance it means that we are going to use:

∞
∑

k=0

2k = 1 + 2 + 4 + 8 + 16 + . . . = −1 !!
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Classical Lindstedt series for H = 1
2A

2 + εf(α)

A =A0, ω
def
= A0

α =ψ, ψ ∈ T
ℓ
, ψ → ψ + ω t

A =A0 + k(ψ), ω
def
= A0

α =ψ + h(ψ), ψ ∈ T
ℓ
, ψ → ψ + ω t

h(ψ) =εh(1)(ψ) + ε2h(2)(ψ) + . . .

Then α̈ = −ε∂ αf(α) means

(ω · ∂ ψ)
2h(ψ) = −ε ∂ αf(ψ + h(ψ))

root ν

ℓ0 ν0
ν1

ν5

ν2

ν3

ν6

ν7

ν11

ν10

ν4
ν8

F

A tree graph θ with 12 nodes and their hamonics νj .
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The Lindstedt series

root ν

ℓ0 ν0
ν1

ν5

ν2

ν3

ν6

ν7

ν11

ν10

ν4
ν8

F

A tree graph θ with 12 nodes and their hamonics νj .

νv ∈ Z
r = node harmonic. The current on line vv′ is

∑

w≤v νw.

Given a graph θ we define its value

Val(θ) =
εk

k!

(

∏

v∈V (θ)

Fv

)(

∏

ℓ∈Λ(θ)

Gℓ

)

,

Values are products of factors associated with nodes and with lines.

Fv = ∂p+1
ϕγ0

...ϕγp
fν(β0) =

γ0

γ1

γ2

γp

Gγγ′ = δγγ′
1

(ω·ν)2
=

γ γ′
ν 6= 0

Gγγ′ =
(

1
ε ∂ 2

ββ
f0(β0)

)

γ,γ′

=
γ γ′[∞]

ν = 0 and γ, γ′ > r

Gγγ′ = 0 if ν = 0 and γ or γ′ ≤ r

∂ϕν

def
= iνj if j ≤ r.
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Given θ with k lines (and without nodes with 0 harmonic and just
one entering line carrying a 0 current) we define its value

Val(θ) =
εk

k!

(

∏

v∈V (θ)

Fv

)(

∏

ℓ∈Λ(θ)

Gℓ

)

,

with

Fv =
∏

j

∂γj
fνv(β0),

Gℓ ≡ δγℓ,γ
′

ℓ

1

(ω · νℓ)2
, if νℓ 6= 0,

Gℓ ≡ −ε−1 (∂2βf0(β0))
−1
γℓ,γ

′

ℓ
, if νℓ = 0, and γℓ, γ

′
ℓ > r

Gℓ ≡ 0, if νℓ = 0, and γℓ with γ′ℓ ≤ r

hence division by 0 is forbidden: (Poincaré). Value of θ is a mono-
mial of degree q.

If Θo
q,ν,γ = set of graphs θ with degree q the Lindstedt series

εqh(q)ν,γ =
∑

θ∈Θo
q,ν,γ

Val(θ)
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First resummation

We eliminate the “trivial nodes”

ν ν

0
ν 6= 0

3

(node factor M0
def
= ε∂ 2

ββf0(β0)) bacause chains of k such nodes

ν 6= 0

0 0 0

4

generate factors 1
(ω·ν)2

(

M0

(ω·ν)2

)

in the tree value

∞
∑

k=0

1

(ω · ν)2

( M0

(ω · ν)2

)k

≡
1

x2

∑

k

zk
def
=

1

x2(1− z)

where x
def
= ω · ν, whose sum (provided det(x2 −M0) 6= 0), is

g(x) =
1

x2 −M0

Hence no trivial nodes BUT new propagator (x2 −M0)
−1!

Hyperbolic case: β0 =is a maximum for f(β) and x2−M0 6= 0 always

Elliptic case: β0 = is a minimum or a stationarity point for f(β)
and x2 −M0 can vanish
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g(x)
def
=

1

x2 −M0

Hence no trivial nodes BUT new propagator g(x)
def
= (x2−M0)

−1.

The new series is simpler but now its terms are not even always well

defined (in the elliptic or mixed cases at least)

because the divisors can vanish, a case corresponding to z = 1

or det(x2−M0) = 0: if a1, . . . as are eigenvalues of M0 and x2 = εai.

One therefore discards the values of ε for which:

min
j

∣

∣

∣
|x| −

√

λ
[0]
j (ε)

∣

∣

∣
≥ 2−(n0−1)/2 C0

|ν|τ1

here n0 is a quantity that measures the size of ε: C2
02

−n0−1 < εas ≤
C2

02
−n0 . We shall take n0 a little larger.

We look at the series as to a sum of singular functions in ε: the
singularities being given by the zeros of x2 −M0.

Then we proceed to “slice” the propagators g = (x2−M0)
−1 as sums

of quantities which are regular but become larger and larger.

g(x, ε) = g[0] + g[1] + . . .+ g[n−1] + g[≥n]
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g(x, ε) = g[0] + g[1] + . . .+ g[n−1] + g[≥n]

n neing an integer. The splitting is made by defining essentially,

g[k] as equal to 0 or to g if

2−2kC0 < x2 ≤ C02
−2k

The propagators g[k] not only are no longer singular but they have

a size which does not vary too much between max and min.

with the exception of g[≥n].

root ν

ℓ0

ν0

[p]

[≥ n]
[∞]

[q][k]
γγ′

νν′

5

A tree graph with some propagators scales marked.

Essentially?: indeed there is an ambiguity in defining g[k].

Can define exactly as just said: we would obtain a representation

formally giving same result for h provided the lines carry a “scale

index” [0], [1], . . . , [n − 1], [≥ n] and values are evaluated with the

corresponding propagators.

The index [∞] is reserved to lines with x = 0 (i.e. ν = 0).
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This would not be useful. We instead determine g[k] so that
graphs become simpler: and such that if we only consider graphs
in which only scales [0], . . . , [n − 1] ou [∞] appear their values sum
is convergent.

Hence we modify (“a little”) propagators while eliminating graphs
containing self–energy clusters.

r v0

ν0

ν1

ν2

ν4

ν′
1

ν′
2

6

Illustration of the clusters

v1

v2

v3

v5

v6

v4
ℓ1Tgiant

tree

T

T ′

T ′′

v7
ℓ2T

giant
trees

7

Illustrations of clusters and of self–energy clusters.

“Responsible for the small divisors problems”
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Multiscale analysis of singularities

ψ0

C2
0/4 C2

0
D C2

0/4 C2
0

χ0

D

χ0

C2
0/4

2 C2
0/4 C2

0
D

8

“cut–offs”: ψn(D) = ψ0(22nD), χn(D) = χ0(22nD)

χn(D) + ψn(D) ≡ 1

Fixed the size of ε by:

ε ∈ I
def
= (2−2(n0+1)C2

0 , 2
−2n0C2

0 ]

Define the distance to a singularity

D(x) = min
ε∈I

min
j

∣

∣

∣
x2 − λ

[0]
j (ε)

∣

∣

∣

Then we write g(x) ≡ g≥0](x) and

g[≥0](x; ε) =ψ0(D(x)) g[≥0](x; ε) + χ0(D(x)) g[≥0](x; ε) =

def
= g[0](x; ε) + g

{

≥1
}

(x; ε)

and we can represent the Lindstedt series simply by adding ascale

label [0] or {≥ 1} on each line.
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Consider a self-energy of scale [0]”

lines [0]
(tree)

{

≥ 1
} {

≥ 1
}

ν ν
9

Val(θ) = external factors·

· g

{

≥1
}

·
(

∑

possible internal values
)

g

{

≥1
}

and we can form chains

giant
tree

giant
treeν ν ν ν

10

and since g

{

≥1
}

= χ0(x)
x2−M0

, their values can be summed up to give

g

{

≥1
}

·

(

(
∑

possible self energies) g

{

≥1
}

)k

= g

{

≥1
}

·
1

1−
∑

(s.e.)g

{

≥1
}

=
χ0(x)

x2 −M0 −
∑

(s.e.)χ0

def
= g[≥1]

Self-energies are eliminated at the price of trees with scale labels

[∞], [0], and [≥ 1] on the lines.
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Still singular because the propagator

g[≥1] def=
χ0(x)

x2 −M[≤1]

with M[≤1] ≡ χ0M0+
∑

(s.e.) can have a denominator close to zero

(and even equal to 0 ! ).

We now iterate

g[≥1] ≡ g[≥1]ψ1(D(x)) + g[≥1]χ1(D(x))
def
= g[1] + g

{

≥2
}

Again we generate graphs with lines with scale labels
[∞], [0], [1],

{

≥ 2
}

. which can have self energy clusters

lines

[0], [1]

{

≥ 2
} {

≥ 2
}

ν ν
11

and we proceed as before to eliminate them via resummation.

We thus obtain tree graphs whose lines have scales
[∞], [0], [1], . . . , [n− 1], [≥ n] without self energies

BUT still singular on the lines with scale [≥ n].

Idea: iterate indefinitely: eliminate singular lines with label [≥ n].
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If εas ∼ C2
02

−2n0 (definition of n0) as soon as we consider propaga-
tors g[n]

0
εas x2

x2

with n ∼ n0 we shall no longer be able to bound x2 −M
[≤n]
0 by x2

Difficulty: once reached scale n0r divisors are no longer bounded
below by const · x2: because distance to singularities can become
much smaller than x2.

Furthermore singularities move ! little but of O(ε2): hence risk that
cut–off based on distance to initial singularities is no longer good

to avoid singularities, even those of the propagators g[n] if n ≫ n0,
phenomenon of resonances of the proper frequencies with the

eigenvalues of M0.

Problem is present only in the elliptic case!
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Therefore change strategy: we mesure distance to singularities by

∆[n](x; ε)
def
= min

∣

∣

∣
x2 − λ

[n]
j (ε)

∣

∣

∣
,

with a reference point which is adapted to the scale [n] and follows
the varying resonances of the propagator: defined by

λ
[n]
j (ε)

def
= λ

[n]
j

(

√

λ
[n−1]
j (ε), ε

)

, λ
[n0−1]
j (ε)

def
= λ

[0]
j ,

and we prove that the variations of the matrices M[≤n] are ex-
tremely small; i.e. they decrease faster than any power in ε−1.

In this way even at small scales ∆[n](x; ε) is a good estimate of the
strength of the singularity.
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The sum of the diagrams without self-energies converges: the argu-
ment is classic (Eliasson) provided one can bound from below the
propagators divisors by x2.

However that is not always true in the elliptic case: as x2 can be
close rather than to 0 to an eigenvalue of M[≤n].

Nevertheless in the cases the scale is very small because x2 is close to
0 we still can apply the classical method by Siegel, Bryuno, Pöschel
because we can check that, because of the cancellation whose

existence is known already in the case of the combinatorial
proof of the KAM theorem it is λj(ε) ≡ 0 if j ≤ r and λj(x, ε) =

O(ε x2) instead of the easy but naive O(ε2).
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If however j > r no cancellations help. But when the singularities
are due to such resonances the values of the graphs are so small that
cancellations are not even necessary, provided we discard a setof ε’s

which do not verify a Diophantine property on ω, i.e. do not verify

min
{
∣

∣

∣
x±

√

λ
[m]
j (ε)

∣

∣

∣
,
∣

∣

∣
x±

√

λ
[m]
j (ε)±

√

λ
[m]
i (ε)

∣

∣

∣

}

≥ 2−
1
2
m C0

|ν|τ1 ,

→ further restrictions on ε (infinitely many on each scale) since ω is
fixed. The importance of such a Diophantine property was elucidated
by Melnikov.

Hence the key is that if x = ω · ν is large compared to εas we do

not see the difference between the much easier ε < 0 case and ε > 0
because the divisors are bounded by a constant times x2, as in the
KAM case or as in the hyperbolic case.

For the other (infinitely many) scales we can proceed again as in the
KAM case for the terms in which the singularity is due to x2 being

close to 0: otherwise one proves that the contribution to the value of
the tree is so small that no cancellations are necessary.
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(S’Agaró, 1995), 151–167, NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci.,
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