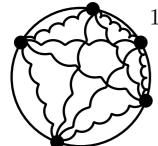
ℓ points on a circle



 $1, \ldots, r$ rotate, $r+1, \ldots, \ell$ are fixed

$$\left\{ egin{array}{l} \dot{m{lpha}} = m{\omega} \ \dot{m{eta}} = m{0} \end{array}
ight. \Rightarrow \ |m{\omega} \cdot m{
u}| > rac{1}{C|m{
u}|^ au}, \ m{
u} \in \mathbb{Z}^r
ight.$$

Then $\left\{egin{array}{l} oldsymbol{lpha}=oldsymbol{\psi} \ oldsymbol{eta}=oldsymbol{eta}_0 \end{array}
ight.$ are data on torus \mathbb{T}^ℓ

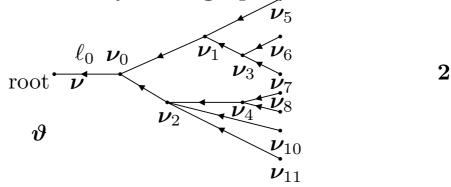
Motion $\psi \rightarrow \psi + \omega t$.

$$\partial_{\beta}\overline{f}(\beta_0) = \mathbf{0} \text{ expected. } \varepsilon \neq 0 ?$$

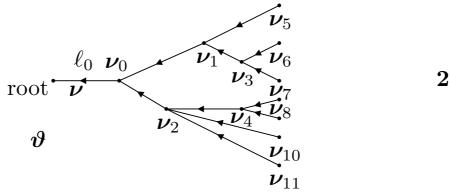
$$\left\{egin{aligned} oldsymbol{lpha} &= oldsymbol{\psi} + \mathbf{h}(oldsymbol{\psi}) \ oldsymbol{eta} &= oldsymbol{eta}_0 + \mathbf{k}(oldsymbol{\psi}) \end{aligned}
ight. ext{ such that } \left. oldsymbol{\psi}
ightarrow oldsymbol{\psi} + oldsymbol{\omega} t
ight. ??$$

Th.: h, k admit formal power series: "Lindstedt"

Represent h via "Feynman graph": \Rightarrow trees

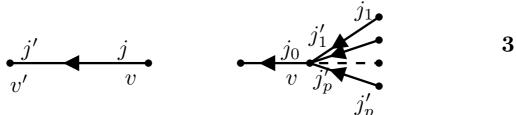


A tree graph θ with 12 nodes and their hamonics ν_j .



A tree graph θ with 12 nodes and their hamonics ν_j .

- (1) To node v attach a $harmonic \ \boldsymbol{\nu} \in \mathbb{Z}^{\rho}$
- (2) To line $\lambda \equiv v'v$ attach current $\nu(\lambda) = \sum_{w < (v)} \nu_w$
- (3) and two component labels $j'_{\lambda}, j_{\lambda}$



 $v o J^v=(j_0,\ldots,j_p)$ and $\partial_{J^v}f_{m{
u}_v}(m{eta}_0)$ are defined.

(4) Value: Val
$$(\theta) = \frac{1}{k!} \left(\prod_{v} \varepsilon \partial^{J_v} f_{\nu_v}(\beta_0) \right) \left(\prod_{lines\lambda} g_{l_{\lambda}j_{\lambda}} \right)$$

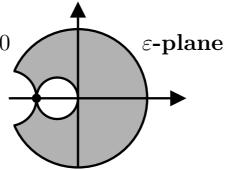
$$g_{ij} \stackrel{def}{=} \frac{\delta_{ij}}{(\boldsymbol{\omega} \cdot \boldsymbol{\nu}(\lambda))^2}, \qquad g_{ij} = \begin{pmatrix} \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \varepsilon \partial_{\beta\beta}^2 f(\beta_0) \end{pmatrix}$$

 $\mathbf{h}_{\nu} \equiv \sum_{\theta}^{*} \mathrm{Val}(\theta)$:

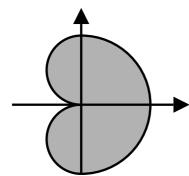
 $* \rightarrow \overline{\text{no}}$ trivial node with 0 harmonic

Estimate: $|h_{\nu}^{(k)}| \leq bB^k \varepsilon^k k!^{2\tau} \rightarrow !!$ Results:

 $\varepsilon \in \mathcal{E}$; \mathcal{E} dense at 0 elliptic: $\varepsilon < 0$, $\partial_{\beta\beta}^2 \overline{f}(\beta_0) < 0$



4



 $\varepsilon > 0$, hyperbolic case $(\partial_{\beta\beta}^2 \overline{f}(\beta_0) < 0)$ analyticity region

5

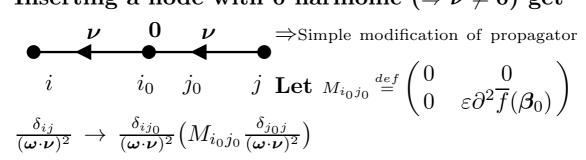
common to all $\varepsilon > 0$

BUT estimate $k!^{3\tau}$

Need $k!^2$ for Borel summability (but $3\tau \geq 3$).

Question: is there uniqueness? Are others' results the same? (Delshams, LLave, Zhou $\ell = 3, r = 2$, Treshev $\varepsilon > 0$ only)

Inserting a node with 0 harmonic $(\Rightarrow \nu \neq 0)$ get



Can form chains

 $\frac{\delta_{ij}}{(\boldsymbol{\omega}\cdot\boldsymbol{\nu})^2} \to \frac{1}{(\boldsymbol{\omega}\cdot\boldsymbol{\nu})^2} \left(M\frac{1}{(\boldsymbol{\omega}\cdot\boldsymbol{\nu})^2}\right)^k$ and can sum over k.

"Simplify" trees by excluding trivial nodes: price

$$\frac{1}{(\boldsymbol{\omega}\cdot\boldsymbol{\nu})^2} \Rightarrow \frac{1}{(\boldsymbol{\omega}\cdot\boldsymbol{\nu})^2} \sum_{k=0}^{\infty} \left(M \frac{1}{(\boldsymbol{\omega}\cdot\boldsymbol{\nu})^2}\right)^k \equiv \frac{1}{(\boldsymbol{\omega}\cdot\boldsymbol{\nu})^2 - \varepsilon M}$$

BUT $z = M \frac{1}{(\boldsymbol{\omega} \cdot \boldsymbol{\nu})^2} < 1$? NO so we are using

$$\sum 2^k = 1 + 2 + 4 + 8 + 16 + \dots = -1$$

If accepted
$$\frac{1}{(\boldsymbol{\omega} \cdot \boldsymbol{\nu})^2} \Rightarrow \frac{1}{(\boldsymbol{\omega} \cdot \boldsymbol{\nu})^2} \sum_{k=0}^{\infty} \left(M \frac{1}{(\boldsymbol{\omega} \cdot \boldsymbol{\nu})^2} \right)^k \equiv \frac{1}{(\boldsymbol{\omega} \cdot \boldsymbol{\nu})^2 - \varepsilon M}$$
 gives $\varepsilon > 0$ "easier" than $\varepsilon < 0$. For $\varepsilon < 0$ expect to exclude ε s.t $|\boldsymbol{\omega} \cdot \boldsymbol{\nu}| = \pm \sqrt{-\varepsilon \mu_i}$.

Key: Siegel theorem

Given a tree θ let \mathcal{N}_n be the number of lines of scale n: i.e. $2^{-n} < C|\omega \cdot \nu| \le 2^{-n+1}$, n = 0, 1, ... IF no pair lines $\lambda' < \lambda$ with $\nu(\lambda') = \nu(\lambda)$ with only lower scale intermediates THEN

$$\mathcal{N}_n \le 4N2^{-n/\tau} \, k$$

Trivial bound ($\varepsilon > 0$):

$$\prod_{v} |\partial^{J^{v}} f_{\boldsymbol{\nu}_{v}} f(\boldsymbol{\beta}_{0})| \leq \prod_{v} N^{|J^{v}|} F^{k} \leq N^{2k}$$

$$\prod_{\lambda} |\text{propagators}| \le C^{2k} \left(\prod_{n=0}^{\infty} 2^{2nn2^{-n/\tau}}\right)^k$$

number of harmonics $\leq (2N+1)^k$

number of trees $\leq 4^k k!$

Convergence for
$$|\varepsilon| < (N^2(2N+1)^{\ell}F32^{-8N\sum_n n2^{-n/\tau}})^{-1}$$

PROBLEM: there are LOTS of other chains!