Divergent series summation in Hamilton Jacobi equation

G. Gentile, G.G.

Eq. Motion: a=—-clnf(a)

B 1



2B

a=(ay,...,a;) e T

f(er) analytic or

fla)=>Y" foe™ f,=0if y|>N

vert

Equations of motions & = —€0qf(a)



Resonance of order s with frequencies wy € R" (unperturbed)
= motions with rotation w = (wp,0) € R" xR, l=r+s

1
: > =, Y 0 S 7"
|wo - V| ol +v

™ (v,B) €T" x T, t— (v +wot,B)

y= “fast angles”, B="slow angles”

B3



/B

Hamilton-Jacobi: Find h(t) def (igzg), PYeT", BoeT® with

g(¥),k(¢) € R" xR

so that & = —ed o f (), @ = (7, B), is solved by

’7:¢+g(¢)7 B:/B0+k(¢)a P = P+ wot

This means

(w009 (E)) = =200 (4 + &(®),Bo + K(¥)

Resonance = dimensionality drop from { tor = 0 gf(Bo) = 0,
7 de ops -
Let (8) € [ 42 f(v,8). Condition det83,7(Bo) # 0
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Proposition: 3 power series solution (elementary)

Notation: f(v,3) def Z fo(B) e,
VEZT

0ifo(Bo) ™ i f.(Bo), ;. (Bo) ™ 95, £.(Bo),
3qu(ﬁ0)déf3j07...7jpfu(50), J = (jo,---,Jp)
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(1) To node v attach a harmonic v, € Z"
(2) To line A =v'v attach current v(X) =3, .,
(8) and two cognponent labels ]if\,jA

® « °

v’ v

Vy

Component labels around v

v—=Jy, = (jO; s 7jp) and aJvav (180) are deﬁned'
(4) Value : Val(f) = (Han,,fuv (Bo))( II gju'g)

linesA
def 61‘]‘ 0 0 .
Jii = oz 794 = <0 (58%7(130))—1> if v(\)=0

h, =Y Val(d) : x<— no trivial node with O incoming current
FEstimate: |h,(,k)| < bBFeFE2T — Il Results:
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Theorem: The tree series can be rearranged to yield a convergent series
representation of h, hence its existence, in

e €E&; & dense at 0 e-plane
elliptic: € <0, 3

d%5f(Bo) <0

The set £ C (—eo,0] has open dense complement but 0 is a (Lebesgue) density point
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e > 0, hyperbolic case

(@45 f(Bo) <0)

analyticity region 4
common to all € >0

BUT estimate k!®7

Need k!> for Borel summability (but 37 > 3).

Question: is there uniqueness ¢ Are others’ results the same ¢ (Delshams, Llave,
Zhou ¢ = 3,r = 2, Treshev € > 0 only)
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Inserting a “trivial” node with 0 harmonic (= v #0)

v 0 v
— <<« et (Y 0 5
i io Jo J o (0 £0? f(Bo)
get (‘j—’i)g — (‘ff%)g(Mo;iojo(g—%Q) = propagator modification

MO;iojo = (g 56220]_0(}0([80)> ) fO(IBO) = ?(IBO)



10 B

Can form chains of trivial nodes (large values k!*7)

<40 <¢—0----0----0-"<—9°
v 0 Jo (AR J
6@']’ 1 1 k
_>
w0 woop M)
“Simplify”: NO trivial nodes; price :

1 - 1 (&
(w-v)? = (w-u)2];(MO(w-l/)2) (w-v)? — My

BUT 2= Moggpyz <1 2 NO!
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so we are using Y, zF =1, 2 £ 1, eq.

S 2 =14+24+4484+16+---=—1

00 k _
If accepted ﬁ = ﬁ Yo (Mo (w_lu)Z) = (w_u)é_MO

My = <8 E@%?(ﬂo)) gives € > 0 “easier” than € < 0.

For e <0 expect to exclude € s.t |w - v| = £ /—¢p;.
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PROBLEM: there are LOTS of other chains ! They cause values k!", n > 0
IDEA: eliminate them “by resummation”: left with convergent series

KFEY: Siegel’s theorem
Given a tree 6 let N,, be the number of lines of scale n: i.e. s.t.

27" < Olw-v| <2 "t

n = 0,1,.... IF no pair lines X' < X with v(N) = v(\) with only lower scale
intermediates THEN

N, <4AN2 /7L
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N, <AN2 7| =

oo o0

1 -~ Nk
o Tl gty < T2 < ([ 27

n=0 n=0

Trivial bound (€ > 0):
[T 105+ £, (Bo)| < [[ NV IF* < N**F

number of harmonics v: < (2N + 1)*, number of trees < kF~!
Convergence:

—1

el < (N?-C%- (2N +1)¢ - 3. F - 28N 22, m2 ")
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Multiscale analysis: Organize the lines of 8 into clusters

Definition: A cluster of scale n is a mazimal connected set of lines of 0 with scales

p <n and with one line at least of scale n.

Self energy clusters Vi, = Voyt

vV,
out 8



Eliminate self energy clusters by resummations

Necessary multiscale analysis to avoid “overlapping divergences”

First identify the self energy clusters of scale [0]

def

i.e. withx = Cw-v with 1 2 and res all chains

giant
tree

v V giant

tree

Key remark: each s.e. cluster does not contain s.e. clusters
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Summing over the contents of each s.e. cluster = convergent sum by Siegel’s lemma.
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Summing over s.e. clusters of scale [0] leads to
modify propagators of lines on_scale [> 1]

giant
tree

P2 = o Sy
2 — M() 2 — MO 0 2 — M()
which becomes 1
2 — M() — M1

and graphs simplify with no s.e. subgraphs of scale [0].

Tterate! at every step only graphs with no s.e. subgraphs have to be considered; =
convergent additions made on propagators
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In the hyperbolic case no real new problems arise.

In the elliptic the situation is very different.
As the scale decreases the scale 2™ ~ ¢ is reached and
22— My — M, —...— M,_y can vanish =

(a) More values of € excluded

(b) The successive scales must be measured by the size of x> — My — My — .. .; analysis
becomes delicate:
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DIFFICULTY: even in the hyperbolic case it is necessary to check that the renormal-
ized propagators have the same size as the bare ones

Siegel’s lemma applies only to graphs in which the propagators size is of the order of
2 — -2
= (w-v) 2

Not automatic but checked via the cancellation mechanism of the KAM theory: this
time the cancellations are only partial but still enough.
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OPEN PROBLEM:
uniqueness (and relation with alternative existence results)

10
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Precise formulation in HJ (fired w (C,T)-Diophant.)
1
F(A, @)Y 2 (A +0a8(A, )" +<f(@)

I AL s AL and pp, € such that in S,, (A) x (T);
0 a®, == H(a), 0 AP, == h(a)
(Pn AI, n— oo Y ) n— oo e
(A ) = {ai%mH’(a), 0% p By s (@)
LA +H(a))? +¢ f(a) = E = a — indep.
oaF(AL, 0) 550w
P =a+ h(a)s«—a=1+h(y)
P(t) =¥ + wt is solution



