Chaotic motions and developed turbulence

Non equilibrium: Chaotic hypothesis

The attractor of a chaotic evolution can be regarded as an Anosov system $\mathcal{F} = \text{phase space}$

 $\Rightarrow \exists$ SRB distribution, *i.e.* the "statistics"

$$\frac{1}{T} \int_0^T F(S_t x) dt \xrightarrow[T \to \infty]{} \langle F \rangle \equiv \int \mu(dy) F(y) \qquad a.e$$

 μ is singular (in general): $\dot{x} = f_E(x), \quad x \in \mathcal{F}$

$$\sigma(x) \stackrel{def}{=} - \operatorname{divergence} f_E(x), \qquad \sigma_+ \stackrel{def}{=} \langle \sigma \rangle_\mu \ (\geq 0 \ \operatorname{Ruelle})$$

Idea: Chaotic hypothesis + symmetries \rightarrow "predictions"

Symmetries: time reversal, symplectic, ... <u>Time rev.</u> = isometry, $I^2 = 1$ and anticommuting: $IS_t = S_{-t}I$ or $IS = S^{-1}I$

For time reversible Anosov maps or flows: Fluctuation theorem (Cohen,G, Gentile) if $\sigma_+ > 0$

$$p \stackrel{def}{=} \frac{1}{\tau} \int_0^\tau \frac{\sigma(S_t x)}{\sigma_+} dt, \quad \text{probab.} (p \in \Delta) = c e^{\tau \max_\Delta \zeta(p) + O(1)} \text{ and}$$
$$\zeta(-p) = \zeta(p) - p\sigma_+, \quad \text{for all } |p| < p^*, \quad p^* \ge 1$$

with no free parameters (symmetry relation). Symplectic symmetry \Rightarrow pairing rule (Dettman, Morriss).

30/agosto/2016; 17:32

Applications

- (1) Not transitive, (attractor not dense)
- (2) Not reversible, (viscosity models)
- (3) No pairing, (lack of symplectic structure)

Not transitive: Chaotic hypothesis \rightarrow attracting set is a manifold.

Unstable manifold of a point on A is in A

Stable mnf "sticks out" reaching repeller ${\cal R}$

If transversal: line from R to A is defines λ defines ix = x' commuting with S and $I^* \stackrel{def}{=} Ii$ is local time reversal on A (Bonetto, G.).

FT holds for the *phase space contraction on the attractor* (quite useless but ...)

Pairing symmetry: (if holding) implies

$$\zeta(-p) = \zeta(p) - \sigma_+ \frac{M}{N}$$

2M = dimension of attractor, 2N dimension of phase space.

Lack of reversibility?

Idea: an irreversible dynamics can be equivalent to a reversible one: same statistics (G.)

30/agosto/2016; 17:32

$\mathbf{2}$

Example (Drude's theory of conductivity)

 $\ddot{\mathbf{q}}_i = E\mathbf{u} + collisions - \boldsymbol{\vartheta}_i$: and speed renormalized to $\sqrt{3k_B\Theta}$ or keep constant speed: $\boldsymbol{\vartheta}_i = \alpha(\dot{\mathbf{q}})\dot{\mathbf{q}}_i, \ \alpha \equiv \frac{\mathbf{E}\cdot\sum\dot{\mathbf{x}}_i}{\sum\dot{\mathbf{x}}_i^2}$ or use viscosity: $\boldsymbol{\vartheta}_i = -\nu \dot{\mathbf{q}}_i$

If $F(\mathbf{p}, \mathbf{q}) > 0$ is a local observable: $\frac{\mu_{\nu}(F)}{\mu_{\mathcal{E}}(F)} \xrightarrow[\mathcal{E}=\frac{3}{2}NkT]{} 1$ **provided** ν is tuned so that $\langle \mathcal{E} \rangle_{\mu_{\nu}} = \mathcal{E}_0$. This is "equivalence of ensembles": analogy ν = canonical temperature and \mathcal{E} = microcanonical energy.

Application to **NS** (incompressible $\partial \cdot \mathbf{u} = 0$)

$$\dot{\mathbf{u}} + \mathbf{u} \cdot \partial_{\widetilde{\mathbf{u}}} \mathbf{u} = \nu \Delta \mathbf{u} - \partial p + f \mathbf{g}, \qquad R = \frac{\sqrt{fL}}{\nu}$$

Actually think of: cut off at $|\mathbf{k}| \leq K_k = L^1 R^{\frac{3}{4}}$, $N \simeq R^{\frac{9}{4}}$, *i.e.* OK41 is assumed. To apply the chaotic hyp. need

- (1) chaos (yes, if R large).
- (2) reversibility

(3) *pairing* (because the attractor is very small)

(1) Equivalence with reversible equations "Gaussian NS eq."

$$\dot{\mathbf{u}} + \underline{\mathbf{u}} \cdot \partial_{\widetilde{\mathbf{u}}} \mathbf{u} = \alpha(\mathbf{u}) \Delta \mathbf{u} - \partial p + f \mathbf{g}, \qquad \alpha = \frac{\int \mathbf{u} \cdot f \mathbf{g}}{\int (\partial \mathbf{u})^2} \Rightarrow \int \mathbf{u}^2 = \mathcal{E} = const$$

Same statistics for "local observables": F local \Rightarrow F depends on finitely many Fourier components of **u**. Same statistics as $R \to \infty$ if \mathcal{E} is chosen = $\langle \int \mathbf{u}^2 \rangle_{\mu_{\mu}}$ (equivalence)

Consequence $\langle \alpha \rangle / \nu \to 1$: only numerical tests in strongly cut off equations and d = 2 (Rondoni, Segre).

Earlier She, Jackson: large numerical simulations (different reversible equation)

30/agosto/2016; 17:32

3

Other tests: are Lyapunov spectra also identical? (Rondoni, Segre, G.). Here are a few graphs in highly truncated equations (d = 2)

Also the linear FR relation comes out within the precision: the approximate pairing that can be observed leads to test the slope $(1 - \frac{2M}{2N})\sigma_+$ in the GNS equations: from the theory it is expected a slope $< \sigma_+$ by the ratio of the number of negative pairs to the nuber of total pairs.

Barometric formula:

Consider the equations (incompressible NS and ED)

$$\dot{\mathbf{u}} + \mathbf{u} \cdot \partial \mathbf{u} = \nu \Delta \mathbf{u} - \partial p + f \mathbf{g}, \qquad \dot{\mathbf{u}} + \mathbf{u} \cdot \partial \mathbf{u} = -\chi \mathbf{u} - \partial p + f \mathbf{g},$$

here $\mathbf{u} = \sum_{\mathbf{k}} \gamma_{\mathbf{k}} e^{i\mathbf{k}\cdot\mathbf{x}}, \ \mathcal{E} = L^3 \sum_{\mathbf{k}} |\gamma_{\mathbf{k}}|^2.$

The equivalence idea leads to think that although the statistics of the two equations are certainly different *nevertheless they might coincide on an appropriate scale*. The friction in NS varies with the scale \mathbf{k} and at some scale it might match that of ED.

By OK41 $v_k^3 k = constant = \eta \nu$ in NS: OK41 does not hold for ED: to fix ideas asume that at fixed cut off k_{χ} there is *equipartition* between the modes. Then $\langle |\boldsymbol{\gamma}_{\mathbf{k}}|^2 \rangle \equiv \gamma^2$

$$\frac{4\pi}{3}\gamma^2 (k_{\chi}\frac{L}{2\pi})^3 = \varepsilon, \qquad energy \ density \ at \ equipartition$$

$$K_E(k) = \frac{3\varepsilon}{4\pi}\frac{k^2}{k_{\chi}^3}, \qquad energy \ density \ between \ k \ and \ k + dk$$

$$v_k^3 k = \left((kL)^3\gamma^2\right)^{\frac{3}{2}}k = \varepsilon^{\frac{3}{2}}k_{\chi}\left(\frac{k}{k_{\chi}}\right)^{\frac{11}{2}}, \qquad dimensionless \ dissipation \ on \ scale \ k$$

If $\varepsilon^{\frac{3}{2}} k_{\chi} \left(\frac{k}{k_{\chi}}\right)^{\frac{11}{2}} = \eta \nu$ then NS equation and ED equations have the same statistics on scale k: doubling the dissipation in NS the statistics of the two equations agree on scale 1.3 higher.

The k, or better $\log \frac{k}{k_{\chi}}$, is the analog of the height and the dim.less dissipation is type analogue of the pressure.

30/agosto/2016; 17:32

30/agosto/2016; 17:32

5

R^2	$\delta Q_0 / \langle Q_0 \rangle_{NS}$	$\triangle \alpha$	$\triangle Q_1$	o(M)/M
800	0.005	0.030	0.053	0.068
1250	0.020	0.018	0.062	0.057
2222	0.002	0.039	0.058	0.077
4444	0.050	0.021	0.093	0.059
5000	0.010	0.008	0.058	0.033

Equivalence NS-GNS dynamics at different Reynolds numbers, column $\Delta \alpha$ to be compared with 1, cfr. [RS99]).

Evolution towards limiting slope as τ increases