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Resonances, Divergent series and R.G.: (G. Gentile, G.G.)

Eq. Motion: α̈ = −ε∂ αf(α)

. . . . . .
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Representation of phase space in terms of ℓ rotators: α = (α1, . . . , αℓ) ∈ T
ℓ

Potential: f(α) =
∑

ν∈Zℓ fν e
iν·α, fν ≡ 0 if |ν| > N

Motions: α
def
= (γ,β) ∈ T

r × T
s
, t→ (γ + ω0t,β)

γ= “fast angles”, β=”slow angles” ⇒ Resonance of order s

Independence: |ω0 · ν| > 1
C|ν|τ , ∀ 0 6= ν ∈ Z

r
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“Find a resonance copy”, i.e. h ≡ (g(ψ),k(ψ)) ∈ R
r ×R

s
s.t.

α ≡ (γ,β), and

γ = ψ + g(ψ), β = β0 + k(ψ), ψ → ψ + ω0t

solves α̈ = −ε∂ αf(α), i.e.

(ω0 · ∂ ψ)2
(

g(ψ)

k(ψ)

)

= −ε ∂ αf
(

ψ + g(ψ),β0 + k(ψ)
)

If f(β)
def
=

∫

dγ
(2π)r f(γ,β) ⇒ ∂βf(β0) = 0 (0 average force)

There is a power series solution
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Representation of phase space in terms of ℓ rotators: α = (α1, . . . , αℓ) ∈ T
ℓ

Notation: f(γ,β)
def
=

∑

ν∈Zr

fν(β) e
iγ·ν . Rules:

(1) To node v attach a harmonic νv ∈ Z
r

(2) To line λ ≡ v′v attach current ν(λ) =
∑

w≤v νw
(3) and two component labels j′λ, jλ

j′ j

v′ v

j0
j1

j2

jp

v

Component labels around v

v → Jv = (j0, . . . , jp) and ∂Jv
fνv(β0) are defined.
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(1) To node v attach a harmonic νv ∈ Z
r

(2) To line λ ≡ v′v attach current ν(λ) =
∑

w≤v νw
(3) and two component labels j′λ, jλ

j′ j

v′ v

j0
j1

j2

jp

v

Component labels around v

(4) Value : Val(θ) = 1
k!

(

∏

v
ε∂ Jv

fνv(β0)
)(

∏

linesλ

gjλj′λ

)

gij
def
=

δij
(ω·ν(λ))2 , or gij =

(

0 0

0 (ε∂ 2
βf(β0))

−1

)

if ν(λ) = 0

hν ≡
∑∗

θ Val(θ) : ∗←→ no trivial node with 0 incoming current

Estimate: |h(k)
ν | ≤ bBkεkk!2τ → !! Results:
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If det ∂2
βf(β0) 6= 0 The tree series can be rearranged to yield

a convergent series representation of h = (g(ψ),k(ψ), hence
its existence, in

j′ j

v′ v

j0
j1

j2

jp

v

Component labels around v

3

E ⊂ (−ε0, 0] with open dense complement; 0 is a density point.

ε-plane
Fig.4: ε ∈ E; E dense at 0. The

figure illustrates the analyticity

domain D(ε) associated with ε ∈

E, for ε < 0 (elliptic case), as-

suming ∂ 2
ββ

f(β0) < 0

4

Need k!2 for Borel sum: at 0 derivatives grow as k!2τ .
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The k! arise because of “chains in graphs” (self-energy insertions):

i i0 j0 i1 j1 j
6

Inserting a single “trivial” node with 0 harmonic (⇒ ν 6= 0):

i i0 j0 j

0ν ν
Let M0;i0j0

def
=

(

0 0
0 ε∂2f(β0)

)

5

graph value modified “trivially”: propagator modification ⇒
δij

(ω·ν)2 → 1
(ω·ν)2

(

M0
1

(ω·ν)2

)k
“Simplify”: NO trivial nodes if

1

(ω · ν)2 ⇒
1

(ω · ν)2
∞
∑

k=0

(

M0
1

(ω · ν)2
)k ≡ 1

(ω · ν)2 −M0

BUT z = M0
1

(ω·ν)2 < 1 ? NO !
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using
∑∞

k=0 z
k = 1

1−z , z 6= 1, e.g.
∑∞

k=0 2
k = 1 + 2 + . . .= −1

If accepted 1
(ω·ν)2 ⇒ 1

(ω·ν)2
∑∞

k=0

(

M0
1

(ω·ν)2

)k ≡ 1
(ω·ν)2−M0

⇒ M0 ≥ 0 (β0=maximum) gives ε > 0 “easier” than ε < 0.

For ε < 0 expect to exclude ε s.t |ω · ν| = ±√−εµj .

PROBLEM: LOTS of other chains ! They cause values k!η, η > 0

IDEA: eliminate them all “by resummation” (RG needed).

KEY: Siegel’s theorem

Given a tree θ let Nn be the number of lines of scale n: i.e. s.t.

2−n < C|ω · ν| ≤ 2−n+1

n = 0, 1, . . .. IF no pair lines λ′ < λ with ν(λ′) = ν(λ) with only
lower scale intermediates THEN

Nn ≤ 4N2−n/τ k
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If there were no chains : Nn ≤ 4N2−n/τ k ⇒

∏

v

1

(ω0 · ν)2
≤ C2k

∞
∏

n=0

22nNn ≤ C2k
(

∞
∏

n=0

22n(4N2−n/τ )
)k

Product of couplings:
∏

v |∂Jvfνv(β0)| ≤
∏

v N
|Jv|F k ≤ N2kF k,

number of harmonics ν: ≤ (2N + 1)k, n. of trees ≤ kk−1

Convergence: |ε| <
(

N2 · C2 · (2N + 1)ℓ · 3 · F · 28N
∑

n
n2−n/τ )−1

Multiscale analysis (RG): Organize the lines of θ into clusters
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Definition: A cluster of scale n is a maximal connected set of lines
of θ with scales p ≤ n and with one line at least of scale n.

i i0 j0 j

0ν ν
7

Self energy clusters : 1 line in and 1 line out with νin = νout

νout
νin

8
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Eliminate self energy clusters by resummations

Necessary multiscale to avoid “overlapping divergences”

First identify the self energy clusters of scale [0]

i.e. with x
def
= Cω · ν with 1 ≤ x2 and resum all chains

giant
tree giant

tree

ν ν ν ν
9

Key remark: each s.e. cluster does not contain s.e. clusters

Summing over the contents of each s.e. cluster ⇒ convergent sum
by Siegel’s lemma.



B 11

Summing over s.e. clusters of scale [0] leads to

modify propagators of lines on scale [≥ 1]

giant
tree giant

tree

ν ν ν ν
9

g[≥1](x) = 1
x2−M0

→ 1
x2−M0

∑∞
n=0(M1

1
x2−M0

)n → 1
x2−M0−M1

⇒ eliminated also s.e. subgraphs of scale [0].

Iterate! at every step only graphs with no s.e. subgraphs have to be

considered; ⇒ convergent additions made on propagators.

Full resummation of self energy in the hyperbolic case.

In the elliptic the situation is very different.
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As the scale decreases the scale 2−n ≃ ε is reached and
x2 −M0 −M1 − . . .−Mn−1 can vanish ⇒
(a) More values of ε excluded

(b)The successive scales must be measured by the size of x2 −M0 −
M1 − . . .; analysis becomes delicate:

DIFFICULTY: even in the hyperbolic case it is necessary to check

that the renormalized propagators have the same size as the bare
ones

Siegel’s lemma applies only to graphs in which the propagators size
is of the order of x2 ≡ (ω · ν)−2.

Not automatic but checked via the cancellation mechanism of the

KAM theory: this time the cancellations are only partial but still
enough.
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Case det ∂2
βf(β0) = 0? If s = 1 and c = ∂k0+1f(β0) 6= 0

“same but analyticity in η = ε
1
k0 ” (+ A. Giuliani)

Borel Summability? yes if r = 2 (perhaps: w. progress +O.Costin,A.Giuliani)

OPEN PROBLEM:

uniqueness (and relation with alternative existence results)

complex
ε−plane

10


