
Reviews of Modern Physics, 57, 471–562, 1985

Renormalization theory and ultraviolet stability for scalar fields via
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A self-contained analysis is given of the simplest quantum fields from the renormalization group
point of view: multiscale decomposition, general renormalization theory, resummations of renor-
malized series via equations of the Callan–Symanzik type, asymptotic freedom, and proof of
ultraviolet stability for sin–Gordon fields in two dimensions and for other super–renormalizable
scalar fields. Renormalization in four dimensions (Hepp’s theorem and De Calan–Rivasseau n!
bound) is presented and applications are made to the Coulomb gases in two dimensions and tot he
convergence of the planar graph expansion in four dimensional field theories (t’Hooft–Rivasseau
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i. Introduction

The aim of this work is to provide a self–contained
introduction to field theory illustrating, at the same time,
most of the known properties of the simplest fields.

I shall develop some of the ideas and methods of con-
structive field theory whenever they exist, providing the
construction (nonperturbative) of various field with one
of the few methods available (which I consider conceptu-
ally the simplest).

While I have no pretension of saying something new,
particularly to the theoretical physicists, I hope that this
review might be useful, as many mathematical physicists
have never worked on field theory and are not familiar
with its remarkable problems, and as many physicists
never had any wish or need to look at the rigorous version
of statements that they consider obvious.

In this section I review some of the philosophy behind
the setting of quantum field theory, mostly for complete-
ness and with the hope that this might help some begin-
ners.

The special theory of relativity, in spite of its elegance
and simplicity, raises a large number of problems by im-
posing the rejection of the notion of action at distance to
describe interacting mechanical systems.

In fact, the electromagnetic field in the vacuum or
the free particles provide simple examples of relativis-
tic systems, but it is difficult to describe relativistically
invariant interactions between fields; however, in classi-
cal mechanics there is only one field, the electromagnetic
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field (gravitation is not considered here), and a variety
of particles which seem to interact only through it, be-
ing charged entities. Their interaction with the electro-
magnetic field is hard to describe in a fundamental way
because of the infinite self energy that it implies.

There has been, and still there is, great hope that the
electromagnetic field quantization, or more generally the
quantization of systems of fields, would lead to the unifi-
cation of the field–particle dualism and to the possibility
of a description of relativistic quantum interactions be-
tween particles and fields. In the remaining part of this
section I summarize the heuristic reasoning behind this
hope.

Classically a field describes the configurational state
of an elastic body. As a primitive example, consider the
case of a one–dimensional vibrating string: describe it
through the value ϕ(x) of the transversal deformation in
the point of abscissa x; see Fig. 1,

ϕ(x)

x

1

The string parameters will be the density µ, its ten-
sion µ c2 (with c the wave propagation speed), and the
restoring constant µω2’: i.e. the string Lagrangian is

L =
µ

2

∫ β

α

(
ϕ̇(x)2 − c2

(dϕ
dx

(x)
)2 − ω2ϕ(x)2

)
dx (1.1)

where α, β are the points where the string endpoints are
attached (α = −∞, β = +∞) if one wishes relativistic
covariance.

The equation of motion is therefore

ϕ̈(x)− c2 ∂
2ϕ

∂x2
(x) + ω2ϕ(x) = 0 (1.2)

which describes a relativistically invariant field (if α =
−∞, β = +∞), because if (x, t) → ϕ(x, t) solves (1.2),
so does (x, t) → ϕ(R(x, t)) for any Lorentz transforma-
tion R:

R =

(
cosh y sinh y
sinh y cosh y

)
, y ≥ 0, c ≡ 1

The solutions of (1.2), with α = −∞, β = +∞, can be
developed in plane waves:

ei (kx−ε(k)t), k ∈ R, (1.3)

where

ε(k) = ±
(
ω2 + c2k2

)1/2
(1.4)

Via the correspondenceprinciple and Bohr’s relations

p = h̄ k, E = h̄ε (1.5)

with h̄ = 1
2π× (Planck’sconstant), one sees that the quan-

tized vibrationg string should describe particles for which
the relationship between momentum p and velocity v is

v =
dε

dk
=

c2k√
ω2 + c2k2

=
c2

h̄

p√
ω2 + (c p/h̄)2

p = v
ωh̄c−2

√
1− v2/c2

(1.6)

i.e. the quantized string describes relativistic particles
with restmass

m0 = ω h̄/c2 (1.7)

It would be easy to convince oneself that such particles
do not interact mutually.

However, it is easy to introduce an interaction bew-
teen them which is relativistically invariant. The sim-
plest way is to modify the classical Lagrangian (1.1) by
nonquadratic terms and then quantize it. Consider

L =
µ

2

∫ β

α

(
ϕ̇(x)2 − c2

(dϕ
dx

(x)
)2

+

−
(m0c

2

h̄

)2
ϕ(x)2 − I(ϕ(x))

)
dx

(1.8)

where I(ϕ) is some function of ϕ.
The nonlinearity of the resulting wave equation pro-

duces the result that when two or more wave packets
collide they emerge out of the collision quite modifies
and do not just go through each other as in the case of
the linear string, so that their interaction is nontrivial.

It is important to stress one feature of (1.1): in order
to describe a particle of mass m0 it is necessary to con-
sider a string with restoring force constant ω2 = m0c

2/h̄.
It is this dependence of ω on h̄ which provides that, in
the classical limit h̄→ 0, a particle ith rest mass m0 is no
longer described by a classical solution of the wave equa-
tion. The limit h̄→ 0 has to be discussed with more care
because of its very singular nature. The actual discus-
sion leads to the natural picture that the classical waves
obtaines as limits of quantum states describing a set of
freely traveling quantum particles of momenta p1, p@, . . .
(“coherent states”) are a δ–function wave:

n∏

i=1

δ(xi − v(pi)t) (1.9)

with v(p) given by (1.6) (“point particles”).
There is, however, an obvious exception: the case

m0 = 0. This time the limit as h̄→ 0 does not have the
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same singular character as before and the classical limits
of quantum states are generally correctly described by
classical fields verifying the wave equation.

The above discussion, which cannot be developed in
more detail here, is the basis for the solution of the
“wave–particle dualism” : the calssical waves and parti-
cles being in a natural sense the classical limits of quan-
tum fields (respectively massless or massive).

But one should not think that the quantization of the
string or of a more general D–dimensional elastic body
(D = 1, 2, 3; see Fig. 2 for the case D = 2, with the body
being a discrete set of springs oscillating over the region

Λ0 ⊂ R
D),

2

with Hamiltonian

H =

∫

Λ0

((π(x)2

2µ
+
µ

2

(
c2(

∂ϕ

∂x
(x))2

)2

+

+
(m0c

2

h̄

)2
ϕ(x)2 + I(ϕ(x)

))
dDx

(1.10)

is an easy matter; it is in fact the scope of this paper to
review the related problems.

I start with the “naive” quantization: the quantum
states will be, by the “nmatural extension of the usual
quantization rules”, functions of the function ϕ describ-
ing the configurational shape of the elastic deformations;
and π(x) will have to be thought of as the operator
ih̄ δ
δϕ(x) . So the Hamiltonian operator acts on the wave

function F as

(HH)(ϕ) =

∫

Λ0

(
− h̄

2

2µ

δ2F

δ ϕ(x)2
(ϕ) +

µ

2

(
c2

(∂ϕ
x

(x)
)2

+

+
(m0c

2

h̄

)2
ϕ(x)2 + I(ϕ(x))

)
F (ϕ)

)
dDx

(1.11)
and it should be defined in the space L2(“dϕ

′′), where
the scalar product ought to be

(F,G) =

∫
F (ϕ)G(ϕ) ′′dϕ′′ (1.12)

and ′′dϕ′′ =
∏

x∈Λ0
dϕ(x).

Even though by now the mathematical meaning that
one should try to attach to expressions like (1.11) and
(1.12) as “infinite dimensional elliptic operators” and
“functional integrals” is quite well understood, partic-
ularly when I ≡ 0, formulae like the above are still quite
shocking for conservative mathematicians, even more so
because they turn out to be very useful.

One possible way to give meaning to (1.11) is to go
back to first principles and recall the classical interpre-
tation of the vibrating string or of the elastic body as
a system of finitely many oscillators, following the bril-
liant theory of the discretized wave equation and of the
related Fourier series due to Lagrange (see for instance
(Gallavotti, 1983b), p. 252–283); see Fig. 2.

SUppose that the region is a parallelepiped of side size
L and, for the sake of simplicity, with periodic boundary
conditions; replace it with a square lattice Za with bonds
of size a and such that L/a is an integer . In every point
na of Za put an oscillator with mass µaD, described by a
coordinate ϕna giving the elongation of the oscillatorover
its equilibrium position, and subject to a restoring force

with potential energy 1
2µa

D (m0c
2

h̄ )2ϕ2
na, to a nonlinear

restoring force with potential energy 1
2µa

DI(ϕna). and
finally to a linear elastic tension coupling between nearest
neighbors na,ma with potential energy 1

2µc
2aD−2(ϕna−

ϕma)
2.

Therefore the Lagrangian of the system is

L =
µ

2
aD

∑

na∈Λ0

(
ϕ̇2

na − c2
D∑

j=1

(ϕna+eja − ϕna)
2+

−
(m0c

2

h̄

)2
ϕ2

na − I(ϕna)
)

(1.13)
where ej are D unit vctors oriented as the directions of
the lattice.; if na+ eja is not in Λ0 but na is in Λ0 then
the i-th coordinate, for some i, equals L and na + eja
has to be interpreted as the point whose i-th coordinate
is replaced by i; i.e. (1.13) is interpreted with periodic
boundary conditions with coordinates identified modulo
L.

Of course there is no conceptual problem in quantizing
the system described by (1.13); it is described by the
operator on L2(

∏
na dϕna):

Hquantum = − h̄2

2µaD

∑

na∈Λo

∂2

∂ϕ2
na

+
µaD

2

∑

na∈Λo

(1.14)

(
c2

D∑

j=1

(ϕna+eja − ϕna)
2

a2
+

(m0c
2

h̄

)2
ϕ2

na + I(ϕna)
)

with C∞
0 (

∏
na∈Λ0

R) as domain (of essential self-adjoint-
ness) provided I(ϕ) is assumed bounded below, as it
should always be.

The properties of the quantum vibrating string, or elas-
tic bosy if D is larger than 1, which will be usually inter-
esting here will be properties of the Hamiltonian (1.14)
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holding uniformly in the “ultraviolet cut–off a”. In fact,
in most applications one is actually interested also in
properties holding uniformly in the “infrared cut–off L”
as well, with L the size of the box Λ0.

It will become clear that in studying such “ultraviolet
stable properties” it will be necessary to put upon the
“interaction” I(ϕ) very stringent requirements to avoid
that the system becomes trivial in the limit a → 0, the
“ultraviolet limit”.

Also, last but not least, it should be clear that the
objective of field theory is to formulate a relativistically
invariant quantum theory of interacting particles, and it
might conceivably happen that the above way of trying
to give a meaning to (1.11) and (1.12) based on (1.14)
may fail: i.e. in the limit a→ 0 one is left with a theory
describing only free particles. Such a failure, in princi-
ple, would not prove the impossibility of giving a non-
trivial meaning to (1.11) but only that the way proposed
through (1.14) is not appropriate.

In the next section I shall proceed to give a more com-
plete formulation of the ultraviolet problem in connection
with (1.14) (“lattice regularization”). Later, in Sec. 3, a
different approach naturally emerges: it will be the one
which will be really investigated in this work (“Feynman
regularization”); in the few cases in which the theory can
be really pushed beyond formal perturbation theory the
two approaches turn out to be equivalent.

This does not mean that in the case of questions that
that are still open the two approaches should be thought
as equivalent; however there is no reasonwhy one should
be preferred to the other or to any one among many
others that one can a priori conceive, (Gallavotti and
Rivasseau, 1985): therefore, I shall avoid entering nto
regularization-dependent questions, and I shall use one
well defined rgularization only for definiteness. This will
preclude the discussion of some recent deep results based
on special regularization assumptions, but the reader is
referred to the literature on such questions, (Aizenman,
1982; Frölich, 1982).

ii. Functional integral representation
of the Hamiltonian of a quantum field

A very convenient representation of the Hamiltonian
and a tool for the analysis of the ultraviolet limit is
the functional integral representation (this seems to be
a rather old representation; here I follow (Nelson, 1966,
1973c); see also (Glimm and Jaffe, 1981; Guerra et al.,
1975; Wilson, 1971, 1972)).

Instead of studying the operator Hquantum, (1.14), in-
troduce the operator on L2(

∏
na dϕna):

Tt = e−(Hquantum−E)t/h̄, t ≥ 0 (2.1)

where E is the ground–state energy of Hquantum.

Denoting ϕ = (ϕna)na∈Λ0 and

e(ϕ) = ground state wave function
for Hquantum,

e0(ϕ) = ground state wave function
for (Hquantum)I=0

E0 =ground state energy for H0

Tt(ϕ,ϕ
′) =kernel of Tt on L2(

∏

na

dϕna)

T 0
t (ϕ,ϕ′) =kernel of e−t(H0−E0)

on L2(
∏

na

dϕna)

(2.2)

it is possible to introduce a probability measure on the
space of continuous functions (t,na)→ ϕna(t) such that
the sets

E(A; t1, . . . , tn) =
{
(ϕ(t1), . . . ,ϕ(tn)) ∈ A

}
, (2.3)

with A ∈ (RΛ0)n will have the measure

P (E(A; t1, . . . , tn)) =

∫

A

n∏

j=1

dϕ(tj) · e(ϕ(t1))·

·
( n−1∏

j=1

Ttj+1−tj (ϕ(tj),ϕ(tj+1))
)
· e(ϕ(tn))

(2.4)

where dϕ(tj) =
∏

na∈Λ0
dϕna(tj) and t1, . . . , tn play the

role of indices.
One readily checks that (2.4) does verify the compati-

bility conditions necessary to interpret it as a measure
on the algebra of sets generated by the sets (2.3) on

the space of the continuous functions t → ϕ(t) ∈ R
Λ0 ,

ϕ(t) ≡ [ϕna(t)]na∈Λ0 , i.e.

(1) P (E(·)) ≥ 0,

(2) P (E((RΛ0)n; t1, . . . , tn)) = 1,

and if for A,A0 it is

E(A; t1, . . . , tn) = E(A0; t1, . . . , tj−1, tj+1, . . . , tn),

in other words if the value of ϕ(tj) is irrelevant to decide
whether (ϕ(t1), . . . ,ϕ(tn)) is in A, then

(3) P (E(A; t1, . . . , tn)) = P (E(A0; t1, . . . , tj−1, tj+1, . . . , tn)).

If F,G ∈ L2(e(ϕ)2dϕ) and if U is the multiplication
operator mapping L2(e(ϕ)2dϕ)←→L2(dϕ) defined by

(UF )(ϕ) = e(ϕ)F (ϕ) (2.5)

and if H̃ = U−1HquantumU it is, by (2.4) and (2.5):

(F, e−t(H̃−E)/h̄G)L2(e(ϕ)2dϕ) =

= (UF, e−tHquantum/h̄UG)L2(dϕ) =

=

∫
e(ϕ)F (ϕ)Tt(ϕ,ϕ

′)e(ϕ′)G(ϕ′) dϕ dϕ′ =

=

∫
F (ϕ(0))G(ϕ(t))P (dϕ)

(2.6)
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which shows that the measure P contains all the informa-
tion needed to study the operator Hquantum or its equiv-

alent U–image H̃ , (Nelson, 1973a,b,c).
In the above formulae the notation ϕ has been used to

denote an element of the space of continuous functions

t→ ϕ(t) with values in R
Λ0 (while ϕ denotes an element

of R
Λ0); this notation will be consistently kept.

The object P is of course quite complex and needs,
in any event, the theory of Hquantum to be really con-
structed.

It is easy to relate P to the measure P0, defined as P
but with I(ϕ) = 0, and to find “explicit” expressions for
P0 itself, citeNe73a,Ne73b,Ne73c.

The measure P0 is a Gaussian measure because the
Green’s function T 0

t (ϕ,ϕ′), being the heat kernel for

the Laplace operator on L2(R
Λ0) plus a quadratic po-

tential, is a Gaussian kernel (in fact the heat kernel
for the Laplace operator A is Gaussian, as it is well
known, and the addition to A of a quadratic poten-
tial B does not change this because of Trotter’s formula
eA+B = limn→∞(eA/neB/n)n, and because the composi-
tion of several Gaussian kernels is still a Gaussian kernel).

herefore P0 can be completely described in terms of its
“covariance” or “propagator”; if ξ = (na, t) ∈ Λ0R and

ϕξ
def
= ϕna(t) and η = (ma, t′) the covariance is defined

as

Cξη
def
=

∫

C(Λ0×R)

ϕξϕη dP0, (2.7)

where C(Λ0×R) is the set of the continuous functions ϕ
on Λ0 ×R.

A well known elementary calculation allows us to find
an explicit formula for C; let ξ = (x, t) and η = (y, t′) ,
then

Cξη =
∑

n∈Z
D

C(x+nL),(y,t′), with (2.8)

Cξ,η =
h̄

(2π)D+1µ

∫ π/a

−π/a

∫ ∞

−∞

dDp dp0·

· eip
2
00(t−t′)eip·(x−y)

(m0c2

h̄ )2 + p2
0 + 2c2

∑D
j=1

1−cos pja
a2

(2.9)

see Appendix A1 for a sketchy proof.
Then the measure P is related to P0 by

P (dϕ) = lim
T→∞

e
−µaD

2h̄

∫ t/2

−t/2
I(ϕ(τ))dτ

P0(dϕ)

Z(L, T )

Z(L, T )
def
=

∫
e
−µaD

2h̄

∫
t/2

−t/2
I(ϕ(τ))

(2.10)

This is the “Feynman–Kac formula “, (Nelson, 1966,
1973c): we recall that here L is the infrared cut–off, i.e.

the side size of the cube Λ0 with opposite sides identified
(periodic boundary conditions). The proof of (2.10) is
not hard and the rough sketch can be found in Appendix
A2.

Rather than using (2.10) to deduce the properties of
the measure P when the ultraviolet cut–off a tends to
zero it is convenient to study a more explicit representa-
tion for P . This representation is a corollary of (2.9) and
(2.10) and it is

P (dϕ) = lim
T→∞

lim
b→0

∏
n,m dϕna,mb

Z
· exp

[
− µ b aD

2h̄
·

·
∑

na∈Λ0

∑

m

[ (ϕna,mb − ϕna,mb+b)
2

b2
+

+ c2
D∑

j=1

(ϕna+eja,mb − ϕna,mb)
2

a2
+

+
(m0c

2

h̄

)2
ϕ2

na,mb

]
+ I(ϕna,mb)

]

(2.11)
where m is an integer varying between −T/2b and T/2b
(supposed integer), the points ±T/2b are identified (“pe-
riodic boundary conditions” in the time direction) and
Z is a normalization factor depending on L, T, a, b. The
p0roof of (2.11) is hinted at the end of Appendix A2.

Call Λ the parallelepiped with sides L, T in R
D+1 ≡ R

d

considered with periodic boundary conditions and call
PL,T,a,b the measure under the limit sign in (2.11). The
“ultraviolet problem” on the lattice is the problem of the
theory of the limit:

lim
a→0

lim
b→0

PL,T,a,b = PL,T (2.12)

Here I shall study only questions related to the exis-
tence of this limit, which is a problem typical of field
theory, while no attention will be devoted to the other
fundamental problem of analyzing the limit

lim
L,T→∞

PL,T = P∞ (2.13)

called the “infrared problem”. The latter problem can
be considered a “thermodynamic limit” problem typical
of Statistical Mechanics (which does not mean that it is
easy).

The existence of the limit (2.12) will be attacked by
trying to establish upper and lower bounds (“ultraviolet
stability”) uniform in a, b for quantities like

〈eϕ(f)〉 def=

∫
PL,T,a,b(dϕ) e

aDb
∑

ξ∈Λ
f(ξ)ϕξ , (2.14)

where f is a C∞–smooth function with fixed support in
the interior of Λ. The expression defined in(2.14) is usu-
ally called the “generating function” for the “Schwinger
functions” of the measure PL,T,a,b.
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For simplicity it is convenient to fix the ratio a/b to be
equal to c, the speed of sound in our elastic models; also
I shall choose L = cT so that the measure PL,L/c,a,a/c
can be rewritten

PL,a(dϕ) =
e

µad

2ch̄

∑
ξ∈Λ

I(ϕξ)
P 0
L,a(dϕ)

Z
(2.15)

where, if p · (x− y) def= p · (x−y)+ c(t− t′)pd, P 0
L,a is the

Gaussian measure on the finite space R
Λ with covariance

C

Cξη =
∑

n∈Z
d

Cξ+nL,η

Cξ+nL,η
def
=

h̄

(2π)dµc

∫ π/a

−π/a

eip(ξ−η) ddp

m2 + 2
∑d
j=1

1−cos pja
a2

(2.16)
where m = m0c/h̄ (to understand (2.15) note the sym-
metric role of the d directions in (2.11) once a = bc, L =
cT ), or explicitly

PL,a(dϕ) =

∏
ξ dϕξ

Z
· (2.17)

· exp−µa
d

2h̄c

[ ∑

ξ∈Λ

( d∑

j=1

(ϕξ+aej − ϕξ)2
a2

)
+m2ϕ2

ξ

]

The measure (2.17) is called the “lattice free field” and
if δ2a denotes the finite difference Laplace operator on the

lattice Z
d
a one sees that Cξη in (2.16) is just the kernel

of the operator

C =
1

µch̄−1 (m2 + δ2a)
(2.18)

(by finite difference Laplace operator we mean, here, the
nearest neighbor second difference divided by a2), while
if δ2a,L denotes the finite difference Laplace operator on

the lattice Z
d
a with periodic boundary conditions on the

boundary of the cube Λ, it is

C =
1

µch̄−1 (m2 + δ2a,L)
(2.19)

i.e. C is the same as C apart from the boundary condi-
tions.

The problem of studying the limit as a → 0 of
(2.15) is not exactly the same as that of studying the
lima→0 limb→0 in (2.12). The really difficult problem be-
ing the limit as a → 0, it turns out that setting b = a/c
does not make the problem any easier or any harder. All

the results that follow could also be obtained if one con-
sidered first the limit b→ 0 and then the limit a→ 0 (or
viceversa).

iii. The free field and its multiscale
decompositions

It has become clear that the right way to look at the
measures (2.17) (free field) is to consider them as stochas-
tic processes indexed by the points of Λ; thus the free field
will be thought of as a Gaussian process.

Furthermore, it is convenient to regard the free field
as defined everywhere in Λ and not just on the lattice

points of Z
d
a ∩ Λ; this can be done easily by remarking

that Cξη makes sense, by (2.16), for all ξ, η ∈ R
d and

therefore we may actually imagine that it describes a
family of Gaussian random variables indexed by ξ ∈ Λ,
whose distribution is still denoted P 0

L,a.
Since Cξη is infinitely smooth, it follows from the gen-

eral theory of Gaussian processes that the “sample fields”
ϕξ will be, with probability 1 with respect to P 0

L,a, C
∞–

functions o ξ. However this does not really imply that
they are smooth in a physical sense: in fact, the expected
values of ϕ2

x, (∂ϕξ), . . . all diverge as a→ 0 (if, as will be
always supposed, d ≥ 2).

This means that the fields ϕξ are indeed smooth but
to see that they are such one has to look at them on a
scale as small as s. An easy calculation shows that in
fact

∫
(∂pϕξ)

2 P 0
L,a(dϕ) =

{
O(a−2p−(d−2)) d > 2
O(a−2p log a−1) d=2

(3.1)

where ∂p is any p–th order derivative of ϕξ.
The relation (3.1) tells us that ϕξ has to be regarded

as a smooth function which can be as large as a(d−2)/2,
if d > 2, or as (log a−1)

1
2 if d = 2, and which can have

k–th order derivative larger by a factor a−k, œthe field
looks smooth only on scale a.

In general, in understanding the structure of a stochas-
tic field, two main scales have to be specified: the scale on
which the field is smooth and the scale on which the field
is without correlations, i.e. the scales on which the field
can be regarded as constant and those on which the val-
ues that it takes can e regarded as independent random
variables.

In our case it would be easy to show that

|Cξη| ≤M e−κ|ξ−η|, ∀ξ, η ∈ Z
d
a, κ

−1 ≤ |ξ − η| ≤ 1

2
L

(3.2)
where M,κ > 0 are a–independent; this can be inter-
preted as saying that the field |fξ has an independence
scale of O(κ−1).

If one calls “regular” the random fields with identical
smoothness and independence scales it is clear that the
fields of interest here (free fields) are not regular; and this
is the distinctive feature of field theory with respect to
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statistical mechanics of weakly interacting systems (i.e.
away from the critical point). It introduces the new prob-
lem of ultraviolet stability, characteristic of field theory.

In fact a regular field is hardly different from a lattice
spin system of essentially independent spins located on a
lattice with spacing equal to the unique scale of regularity
and independence.

Since the techniques for studying lattice spin systems
have been well developed in statistical mechanics, at least
in some easy cases, the idea arose, (Wilson, 1971, 1972,
1973, 1983) of trying to represent irregular fields as de-
composed into sums of regular ones. This leads to the
“multiscale decomposition’s” of the free field which are
discussed below and which are small perturbations of the
Gaussian field P 0

L,a.
It is in fact possible to write the field ϕ as

ϕξ =

∞∑

k=0

ϕ
(k)
ξ . (3.3)

where ϕ
(k)
ξ are independently distributed over the index

k and are regular on scale γ−km−1. if γ > 1 is an arbi-
trarily preassigned number (“scale factor”).

The decomposition (3.3) can be done in various ways
and with different requirements on ϕ(k).

In general one desires that if γ−km−1 ≥ a , i.e. if the
length scale of the field ϕ(k) is larger than the ultraviolet
scale a, then the samples of ϕ(k) should be smooth on
scale γ−km−1, with the h–th derivative being of the order
of γk h times the size of the field itself, see (3.1), for h ≤ p.
Such a decomposition will be called a “classCp multiscale
decomposition” of ϕ into regular random fields.

There is a simple algorithm to construct multiscale de-
compositions of the Gaussian random field with covari-
ance operator (2.18). It is based on the following trivial
identities:

1

m2 + ε2
≡

∞∑

k=0

( 1

m2γ2k + ε2
− 1

m2γ2(k+1) + ε2

)
=

=

∞∑

k=0

m2(γ2 − 1)γ2k

m4γ4k+2 +m2(γ2 + 1)γ2kε2 + ε4
≡ (3.4)

≡
∞∑

k=0

∞∑

h=0

( m2(γ2 − 1)γ2k

m4γ4k+2γ4h +m2(γ2 + 1)γ2kε2 + ε4
−

− m2(γ2 − 1)γ2k

m4γ4k+2γ4h+4 +m2(γ2 + 1)γ2kε2 + ε4

)
=

=

∞∑

k=0

k∑

h=0

m2(γ2 − 1)γ2m4(γ4 − 1)γ6kγ−2h

[
m4γ2γ4k +m2(γ2 + 1)ε2γ2k−2h + ε4

] ·

· 1[
m4γ6γ4k +m2(γ2 + 1)ε2γ2k−2h + ε4

] ≡ . . . ,

where in the last equality a change of variables is made,
changing k + h into k.

The way to read (3.4) is the following: (m2 + ε2)−1

can be written as a sum of reciprocals of fourth-order
polynomials in ε, or as a sum of reciprocals of eight order
polynomials, or of sixteenth order, etcby the “telescopic”
algorithm displayed self–explanatorily in (3.4).

Then to each such decomposition one can associate
a decomposition of the random field ϕ like (3.3). For

instance if εa(p)
def
= 2

∑d
k=1(1− cos api)/a

2 let Γka(p) the
expression appearing after the summation symbol in the
second line of (3.4) with ε replaced by εa(p), then setting

C
(k)

ξη =
h̄

(2π)d µ c

∫ π
a

−π
a

d pΓka(p)e
ip(ξ−η) (3.5)

and if C(k) is defined as in (2.16), with C replaced by

C
(k)

, one realizes that by the first identity in (3.4) the
field ϕ has the same distribution as the sum of a sequence
of fields ϕ(k) with covariances given by C(k).

Similarly, using the last identity in (3.4) and calling
Γk,ha (p) the expression appearing after the summations
symbols in (3.4) with εa(p) replacing ε and setting

C
(k)

ξη =
h̄

(2π)d µ c

k∑

h=0

∫ π
a

−π
a

d pΓk,ha (p)eip(ξ−η) (3.6)

then if C(k) is defined as in (2.16), with C replaced by

C
(k)

one again finds that the field ϕ has the same dis-
tribution as the sum of a sequence of fields ϕ(k) with
covariances given by C(k), etc.

The fields ϕ(k) with covariance C(k) related to (3.5) or
(3.6) or to the “higher order generalizations” of them, are
regular fields for all values of k such that γ−km−1 ≥ a
and, when restricted to the lattice points, are basically
independent fields for the larger values of k. Furthermore
if γ−km−1 ≥ a the fields ϕ(k) have essentially the same
distribution up to trivial scalings.

To see the above properties of ϕ(k) for γ−km−1 ≥ a one
can heuristically fix k and let a→ 0 (so that γ−km−1 ≫
a). Then (3.5) becomes

C
(k)

ξ,η ≡ γ(d−2)kC
(0)

γkξ γkη, C
(k)
ξη =

∑

n∈Z
d

C
(k)

ξ+nL,η (3.7)

C
(0)

ξ,η =
h̄

(2π)d µ c

∫ π
a

−π
a

m2(γ2 − 1)eip(ξ−η) ddp

m4γ2 +m2(γ2 + 1)p2 + p4
,

and it is easy to see that C
(0)

ξ,η is well defined and sooth
with its derivatives of order 2(1− ε) if d = 2 and of order
2(1

2−ε) if d = 3 and, furthermore, it decays exponentially

for |ξ− η| large on scale m−1 . This means that the field
ϕ(k), with covariance C(k) in (3.7) is Hölder continuous
on scale γ−km−1 with exponent less than 1 if d = 2 or less
than 1

2 if d = 3 (here ε > 0 is arbitrary); it is, however,
still irregular if d ≥ 4.
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If one uses the second decomposition of ϕ introduced
above, associated with (3.6), one finds

C
(k)

ξ,η ≡ γ(d−2)k
k∑

h=0

γ−2hC
(0,h)

γkξ γkη,

C
(k)
ξη =

∑

n∈Z
d

C
(k)

ξ+nL,η (3.8)

C
(0)

ξ,η =
h̄

(2π)d µ c

∫ π
a

−π
a

Γ0,h(p)eip(ξ−h),

where Γ0,h(p) is defined as the similar quantity Γ0,h
a (p)

appearing in (3.6) with p2 replacing εa(p); and it is easy

to see that C
(k)

ξη has the same qualitative properties of

γk(d−2)C
(0,0)

γkξ,γkη
and C(0,0) is well defined and smooth

together with its derivatives of order 2(2− ε) if d = 4 (ε
being an arbitrary positive number).

This means that the field ϕ(k) has second derivatives
which are Hölder continuous with exponent (1 − ε) for
d = 2, of order 1

2−ε for d = 3, and first derivatives which
are Hölder continuous with exponent 1 − ε if d = 4 (for
d = 5 the first derivatives would be Hölder continuous
with exponent 1

2 − ε while for d = 6, 7 the field itself
would be only Hölder continuous with exponent 1− ε or
1
2 − ε, respectively, and for d ≥ 8 it would be irregular).

The latter statements can be made more quantita-
tive (see below); their proof is essentially a repetition,
adapted tot he circumstances, of the well known proof
of Wiener asserting the Hölder continuity of the sample
paths of the Brownian motion and it will not be repeated
here. One can use the classical method of Wiener as in
(Colella and Lanford, 1973); the cases (3.7), (3.8), as well
as the others arising from the higher order identities ob-
tained by continuing the decomposition process in (3.4)
are specifically treated in (Benfatto et al., 1980b), as a
part of a general theory of a class of Markovian Gaussian
random fields.

The above discussion on the fields ϕ(k) suggests yet
another approach to the ultraviolet stability which will
be the one really followed in the upcoming sections.

Namely, choose ϕ(k) to be the random fields with co-
variance (3.7) (or (3.8) or any other associated with the
higher order identities continuing those in (3.4)) and de-
fine

ϕ
[≤N ]
ξ

def
=

N∑

k=0

ϕ
(k)
ξ (3.9)

Then the measure (2.15) can be regarded as obtained
by integrating over the ϕ(k)’s the measure

1

Z
e
− µad

2 c h̄

∑
ξ∈Λ

I(ϕξ)
∞∏

k=0

P (dϕ(k)) =

= lim
N→∞

1

ZL,a
e
− µad

2 c h̄

∑
ξ∈Λ

I(ϕξ)
N∏

k=0

P (dϕ(k))

(3.10)

under the condition that ϕ =
∑∞

k=0 ϕ
(k) is held fixed;

the Z’z normalize to 1 the measures in (3.10).
At this point there will be a change in point of view

and the fields ϕ(k) will no longer be regarded just as aux-
iliary fields but as objects interesting in their own right:
the stability problem will be extended to the problem of
showing that not only ϕ but also ϕ(k), for each k, have a
well defined limit distribution as a→ 0 if they are given
the distribution (3.10) for a > 0.

The plan is to attack the ultraviolet stability problem
by studying the measure

P (≤N)(dϕ) =
e
− µad

2 c h̄

∑
ξ
I(ϕ

(≤N)

ξ
)

ZN,a

N∏

j=0

P (dϕ(j)) (3.11)

uniformly in a,N allowing I(ϕ) to depend on a,N and
on the derivatives of ϕ if this becomes necessary in order
to ensure the existence of an interesting limit as a → 0
after letting N →∞.

Ultimately “interesting” should mean a field theory
susceptible to a physical interpretation as a theory of
interacting particles: it should verify various properties
among which the possibility of defining an operator for-
mally equal to H in (1.11). For instance one could re-
quire that the field ϕ verifies the Nelson axioms or the
Osterwalder–Schrader axioms or that it should lead in
some way or another to the construction of Wightman
fields (which undoubtedly is the minimal requirement
thought so far) (for a critical discussion and a review
of the axioms of various type and their relations see (Si-
mon, 1974), see also (Nelson, 1973a,b,c; Osterwalder and
Schrader, 1973a; Wightman, 1956)).

In other words one is free to change the rules of the
game provided one eventually succeeds in constructing a
Wightman field theory describing nontrivial interactions;
see also the comments at the end of Sec. 1 and in Sec.
22.

Of course the more one changes the rules of the game
the more one has to work at a later stage. For instance
in passing from the lattice regularized–continuous time
approach of Sec. 2 to the problem of taking the N →∞
limit in (3.11), we lose the “unitary character” of the the-
ory because it is no longer clear (and in fact it is not true)
that the process P (≤N)(dϕ) can be generated by a Hamil-
tonian, as it was instead the case in Sec. 2, i.e. before
starting the chain of “slight” changes leading to (3.11).
So once the limit as N → ∞ will have been taken, we
shall have to worry whether it has the properties which
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would allow us to interpret it as generated by a Hamilto-
nian operator, i.e. whether a formula like (2.6) holds for
some operator Hquantum.

In constructing a field theory it may sometimes be
convenient to give up temporarily some of the proper-
ties of the final theory; note, on the other hand, that the
continuous time lattice regularization although “unitary”
is mot translation invariant (a property holding only if
b = 0 in (2.11)).

At this point in view of the latter remark it is very
tempting to simplify the problem by interchanging the
limits on a and on N and let a → 0 while keeping N
fixed and then let N →∞. This leads to the measures

P (≤N)(dϕ) =
e
− µad

2 c h̄

∫
Λ
I(ϕ

(≤N)

ξ
dξ)

Z

N∏

j=0

P (dϕ(j)) (3.12)

where now P (dϕ(j)) denotes the distribution of the field
ϕ(j) with covariance associated with (3.7) or, alterna-
tively, (3.8) or any higher order regularization of them,
and I(ϕ) depends, possibly, on N .

The advantage of studying (3.12) is that it is obviously
easier in some respects than (3.11) because the fields ϕ(j)

are now related by simple scalings, as the first of (3.7)

or (3.8) show (i.e. ϕ
(j)
ξ has roughly the same distribu-

tion as γj(d−2)ϕ
(0)
γjξ ; note, however, that even in the case

(3.7) there are small corrections because, although in this

simple case C
(j)

scales exactly, the covariance C(j) does
not so because of the imposition of periodic boundary
conditions,

Furthermore, one does not have to distinguish between
the cases γ−jm−1 ≥ a and γ−jm−1 < a. However one
should note that the fields ϕ(j) with γ−jm−1 < a are
somewhat trivial (i.e. they are approximately indepen-
dently distributed on the lattice points) and thus one
heuristically thinks that the limits of (3.12), as N →∞,
should lead to the same measures as the limit of (3.11)
as N →∞ first and a→ 0 second.

This remark could in fact be made more precise to the
extent that it can become “all the results discussed in this
paper and concerning the existence of formal perturba-
tion theory and concerning the existence of non Gaus-
sian limits of (3.12) as N → ∞, or the existence of for-
mal perturbation expansions of various quantities, could
also be obtained considering the limits lima→0 limN→∞ of
(3.11)”; this statement should emerge quite clearly from
what follows but it will not be explicitly proved (to limit
the material presented here).

The theory of the limits as N →∞ of (3.12) is already
complex and interesting enough, and studying (3.11), as
far as the problems discussed here are concerned, does
not lead to any new ideas but only to rather trivial tech-
nical digressions.

Therefore from now on I shall concentrate on the dis-
cussion of (3.12) with ϕ(k) being defined by (3.7) or (3.8)

or by their higher order analogs depending on the mod-
els, the aim being to obtain a limit as N → ∞ in which
the distributions of all the variables ϕ(j) are well defined,
although they are not Gaussian.

One says that the approach to field theory based on
(3.11) is a “nearest neighbor lattice regularization” ap-
proach, while the one adopted here, via (3.12), is a
“Pauli–Villars regularization” approach of some order;
more appropriately it should be called “Feynman regular-
ization”, see (Pauli and Villars, 1949). Both approaches
are widely used in the literature: see for example (Aizen-
man, 1982; Boboliubov and Shirkov, 1959; Brydges et al.,
1983; Callan, 1976; Frölich, 1982; Park, 1977).

Before starting the analysis of (3.12) it is important
to stress once more at the cost of being repetitious and
to avoid hiding important issues, that while the theories
of (3.11) and (3.12) are equivalent up to technicalities as
far as the results presented in this work are concerned,
it is by no means clear that they are equally suitable for
pursuing the quest of other results that we should like to
obtain, first among them that of showing the existence or
nonexistence of a non trivial ϕ4 field in dimension d = 4.
Furthermore there are other possible approaches most of
which give the same results as the one presented here,
if applied to the problems considered here, and which
might be better suited for the study of the hard open
problems, see comments at the end of Sec. 1 and in Sec.
22 (see also (Gallavotti and Rivasseau, 1985)).

The fields ϕ(k) with covariance (3.7) will e called “first
order Pauli–Villars fields” of frequency index k, while
those with covariance (3.8) will be “second order Pauli–
Villars fields” with frequency index k (shortly “with
frequency k”); similarly one can define the n–th order
Pauli–Villars fields via the use of higher order identities
in (3.4) and with ε = p2, see below.

Formula (3.12) will define the m–th order regularized
interacting measure if ϕ(k) has the meaning of an m–th
order Pauli–Villars fie;d (of course we allow only func-
tions I(ϕ) that are such that I(ϕ(≤N)) has a meaning,
at least with probability 1 with respect to the measure∏N
j=0 P (dϕ(j)).
The latter remark is very important: it shows that

I(ϕ) ∝ ϕ4 (3.13)

is not admissible for d ≥ 4 if one uses the Pauli–Villars

first order field (because the expected value of ϕ
(≤N)
ξ is

infinite if d ≥ 4, by the second of (3.7)). However

I(ϕξ) = λϕ2
x + µϕ2

ξ + α (∂ ϕξ)
2 (3.14)

is meaningful if one uses in (3.12) the second order Pauli–
Villars regularization even for d = 4, because the ex-

pected values of (ϕ
(≤N)
ξ )2 and (∂ ϕ

(≤N)
ξ )2 are finite if

computed using (3.8) rather than (3.7).
This section will be concluded by listing a more quan-

titative meaning to be given to the regularity statements
about the fields ϕ(k) made after (3.7) and (3.8).
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Let ϕ(k) be a sample of a Gaussian random field dis-

tributed with covariance C
(k)
ξη in (3.7). Then if Λ is imag-

ined paved by a lattice Qk of square boxes ∆ with side
size γ−km−1, one finds that for d = 2, 3 and for all choices
of B∆ > 0,

|ϕ(k)
ξ | ≤ B∆ γ

1
2 k(d−2), ∀ξ ∈ ∆ ∈ Qk (3.15)

|ϕ(k)
ξ − ϕ(k)

η | ≤B∆ γ
1
2k(d−2)(γk|ξ − η||) 1

2 (4−d)−ε,

∀ξ ∈ ∆, |ξ − η| < γ−km−1
(3.16)

hold with probability bounded below by

∏

∆∈Qk

(1 −Ae−αB2
∆) (3.17)

if A,α > 0 are suitable constants depending on the choice
of the arbitrary parameter ε > 0 but k–independent. Of
course one assumes here that the side of Λ is divisible by
γ−km−1 for all k ≥ 0; this assumption could easily be
released for the study of the problems considered in this
paper, see however the comments in Sec. 22.

More generally the chain (3.4) can be continued to ex-
press (m2 + p2)−1 as a sum of reciprocals of polynomials
of degree 2n+1 in p2, n = 0, 1, 2, . . .. In this way one can
define a field

ϕ(≤N) =

N∑

k=0

ϕ(k) (3.18)

where ϕ(≤N) is a very smooth Gaussian fields which is
decomposed into regular independent fields with covari-

ances C(k) defined by “periodizing” a covariance C
(k)

via

the second relation in (3.7) (or (3.8)) and with C
(k)

ver-
ifying

|∂jC(k)

ξη | ≤ A0γ
kjγk(d−2)e−κ0γ

k|ξ−η|, 0 ≤ j < j0

|∂j0−1C
(k)

ξη − ∂j0−1C
(k)

ξ′η ≤ (3.19)

Aεγ
k(j0−1)(γk|ξ − ξ′|)1−εe−κ0γ

k|ξ−η|,

where A0, Aε, κ0 are suitable constants and ε > 0 is ar-
bitrary, and where j0 = 2n+1 − d. For instance the case
n = 2 is worked out explicitly in (3.8). The n–th order
Pauli–Villars fields defined by C(k) verify, with probabil-
ity bounded below by (3.17),

|∂jϕ(k)
ξ | ≤ B∆γ

jkγ
1
2k(d−2) 2j < j0,

∣∣ϕ(k)
ξ −

∑

2|a|<j0

1

a!

∂aϕ
(k)
ξ

∂ξa
(ξ − η)a

∣∣∣ ≤ (3.20)

≤ B∆γ
1
2k(d−2) (γk|ξ − η|) 1

2 j0−ε

where ∂j denotes any j–th order derivative and

a!
def
=

d∏

i=1

ai!, |a| def=
d∑

i=1

ai,

and ∂a is the derivative of order a1 + . . .+ ad of order ai
with respect to the first component etc, so that the sec-
ond of (3.2) is an estimate for the remainder of a Taylor
series.

For instance if n = 3, d = 4 the field ϕ(k) admits
five derivatives and the fifth id Hölder continuous with
exponent less than 1

2 and C(k) admits 11 derivatives.
Since periodic boundary conditions are being used un-

less explicitly stated otherwise, here as well as in the rest
of the paper, (ξ2 − ξ1) will be a symbolic notation for a
periodic function on Λ × Λ equal to the vector from ξ1
to ξ2 when the distance between ξ1 and ξ2 on Λ is small
and, for larger distances, equal to (ξ2− 1)χ(|ξ2−ξ1|) with
|ξ2 − ξ1| being the distance on the torus and χ ∈ C∞ is
monotonic and χ(r) = 0 if r > 1, χ(r) = 1 if r < 1

2 (i.e.
(ξ2 − ξ1) is really what the notation suggests if x1 and
x2 are close enough and (arbitrarily) 0 otherwise, while
|ξ2 − ξ1| is the distance on the torus Λ).

The inequalities (3.19) are elementary consequences of
the analysis of the asymptotic behavior of the integrals
in (3.7) and (3.8) and of their generalizations to order n.
Whereas the inequalities (3.20) and (3.16) follow from
the fact that the ϕ(k) form a Markov process and from
the regularity properties of C(k) expressed by (3.19) via
the classical idea of Wiener for the Hölder continuity of
the sample paths of the Brownian motion, see (Benfatto
et al., 1980b; Colella and Lanford, 1973).

In the literature other regularizations are also consid-
ered which produce infinitely smooth fields ϕ(k) by using
“nonpolynomial” decompositions like

1

1 + p2
=

χ0(p)

1 + p2
+

∞∑

k=1

χ1(γ
kp)

1 + p2
(3.21)

where

χ0(p) +
∞∑

k=1

χ1(γ
kp) ≡ 1 (3.22)

and χ0, χ1 are C∞ nonnegative functions such that χ1 has
support in 1 ≤ p2 ≤ γ2. Such decompositions produce

C
(k)

’s which verify (3.19) with j0 arbitrarily prefixed but
with the modification that the exponential decay factor
is replaced by (1 + γk|ξ − η|)−w with w arbitrarily pre-
fixed (i.e. the decoupling takes place on the same scale
as in (3.19), namely γ−km−1, but it is slower thane ex-
ponential, although still faster than any prefixed power).
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iv. Perturbation theory and
ultraviolet stability

I shall try to be very general, not for love of general-
ity, but because perturbation theory is conceptually very
simple and if one discusses it in the few examples in which
one is really interested one makes it appear more com-
plex, because all the fine details peculiar to each model
become most inextricably mixed up with its structure.

The first thing to fix is the interaction I(ϕ): choose
I(ϕ) to have the form

V (ϕ(≤N),λ, N) =

=

t∑

α=1

λ(α)

∫

Λ

v
(α)
N (ϕ

(≤N)
ξ , ∂ϕ

(≤N)
ξ ) dξ

def
= I(ϕ)

(4.1)

If ϕ ≡ ϕ(≤N) the function I(ϕ) spans a finite dimen-

sional linear space IN as λ = (λ(α))α=1,...,t spans R
t or

a linear subspace of R
t, fixed a priori ; one can regard

IN as a subspace of L2(
∏N
j=0 P (dϕ(j)).

It is convenient to assume the functions v(α)(ϕ(≤N)),
N = 0, 1, . . ., to be so related that for all N ′ ≤ N it is

∫

Λ

v(α)(ϕ
(≤N ′)
ξ , ∂ϕ

(≤N ′)
ξ ) dξ =

=

∫
P (dϕ(N ′+1)) . . . P (dϕ(N))×

×
∫

Λ

v(α)(ϕ
(≤N)
ξ , ∂ϕ

(≤N)
ξ ) dξ

(4.2)

or, in other words, v
(α)
N ′ ∈ IN ′ is the projection on IN ′

of v
(α)
N ∈ IN performed by using as projection operator

the integration with respect to the field components of
frequency higher than N ′. This property, which is veri-
fied automatically in all models that are considered here
(because every model will be written in “Wick–ordered”
form, see below), is very convenient for the exhibition of
general structural properties of perturbation theory. In
probability the latter property is known as a “martin-

gale” property of the sequence of functions v
(α)
N .

A sequence I = (IN )N=0,...∞ verifying the martingale
relation (4.2) will be called an “interaction”.

Of course the choice of the free fields ϕ(j), i.e. of the
order of regularization, will always have to be such that
the integrals in (4.1) make sense [for instance if v(α) re-

ally depends on ∂ϕ
(≤N)
ξ we shall use at least a second

order regularization for d ≤ 4; if v(α) depends only on

ϕ
(≤N)
ξ then we could also use simply the first order reg-

ularization provided d < 4, see (3.20).
A field theory I can be defined in two, usually

nonequivalent, ways: “nonperturbatively” as a probabil-
ity measure which is the limit as N → ∞ of measures
defined by

PI,N(dϕ(≤N)) =
eV (ϕ(≤N),λN ,N)

Z

N∏

j=0

P (dϕ(j)) (4.3)

where λN is a give sequence of coupling constants

called “bare couplings”, for which eV (ϕ(≤N),λN ,N) ∈
L1(

∏N
j=0 P (dϕ(j)), or “perturbatively”. The latter sense

is based on the following idea, (Dyson, 1949a,b; Feynman,
1948; Schwinger, 1949a,b). Consider the following formal

power series in the parameters λ = (λ(1), . . . , λ(t) ∈ R
t:

λN(λ) =
∑

m1,...,mt

ℓN (m)λ(1)m1 . . . λ(t)mt ≡

≡
∑

m

ℓN(m)λm,
(4.4)

where ℓ(m) ∈ R
t. Then compute

∫
eϕ

(≤N)(f)PI,N(dϕ) = (4.5)

=

∫
eϕ

(≤N)(f)eV (ϕ(≤N)(f),λN (λ),N)
∏N
j=0 P (dϕ(j))

∫
eV (ϕ(≤N)(f),λN (λ),N)

∏N
j=0 P (dϕ(j))

,

formally, by expanding all exponentials in powers and
then using (4.4) to express the results as a power series
in λ by collecting terms with equal powers:

∫
eϕ

(≤N)(f)PI,N(dϕ) ≡ 〈eϕ(≤N)(f)〉 =
∑

m

S(m, N, f)λm

(4.6)
Then the perturbative field theory with interaction I

and bare constants λN (λ) given by (4.4) is well defined
if the limits

S(m, f) = lim
N→∞

S(m, N, f) (4.7)

exist for all smooth test functions f and for all m.
The theory will be called “perturbatively trivial” if the

power series

∑

m

S(m, f)λm (4.8)

formally converges to the exponential of a quadratic form
in f (“Gaussian theory”) for |λ| small.

Similarly if the limits of (4.3) are Gaussian measures
for all possible choices of λN then one says that the the-
ory is “trivial”.

If it is impossible to find a formal power series (4.4)
such that the limits (4.7) exist one says that I is a “non
renormalizable” theory.
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The power series (4.8) is called the “renormalized series
for I”, and the parameters λ in it are called the “renor-
malized couplings”, while the corresponding formal series
(4.4) define the perturbative bare couplings [note that the
formal power series (4.4) do not necessarily converge].

It is perhaps worth stressing again that the real ob-
jects that one is trying to find are more complex than a
probability measure P which is a limit of (4.3) (in a per-
turbative or nonperturbative sense), so after such limits
are constructed one still has to see if they have the right
properties to allow their interpretation as relativistically
invariant quantum field theories.

However, in the few cases in which the measures P
have been constructed as limits for N → ∞ of (4.3) the
understanding of the problems remaining before a full in-
terpretation of the results as relativistic quantum fields,
has been carried out without excessive difficulties [after
the basic techniques to deal with this question were de-
veloped in the basic papers, (Glimm, 1968a,b; Glimm
and Jaffe, 1968, 1970a,b; Glimm et al., 1973; Guerra,
1972; Nelson, 1966, 1973a,b,c; Osterwalder and Schrader,
1973a,b)], so I shall not develop this question further
here, after warning the reader of its paramount impor-
tance, on the grounds that it should not be thought of
as a part of the main subject of this paper, i.e. of the
ultraviolet limit problem.

Perturbation theory plays a major role even in the
so called nonperturbative approach (Balaban, 1982a,b,
1983; Benfatto et al., 1978, 1980a,b; Brydges et al., 1983;
Federbush and Battle, 1982, 1983; Feldman and Oster-
valder, 1976; Gallavotti, 1978, 1979a,b; Gawedski and
Kupiainen, 1980, 1983, 1984; Glimm and Jaffe, 1968,
1970a,b; Glimm et al., 1973; Magnen and Seneor, 1976).

Here perturbation theory will be treated from the point
of view of the renormalization group, expanding the
ideas developed and used in the just quoted (Benfatto
et al., 1978, 1980a). I shall follow the theory presented
in (Gallavotti and Nicolò, 1985a,b), with some modifi-
cations here and there. The first to treat completely,
to all orders, perturbation theory by literally applying
the renormalization group methods has been (Polchin-
skii, 1984), who adopts a method slightly different from
the one presented here obtaining weaker results —e.g.
the n! bounds are not treated in his work, at least not
explicitly.

The renormalization group approach to field theory
grew out of several earlier works [e.g. (DiCastro and
Jona-Lasinio, 1969; Jona-Lasinio, 1975; Kadanoff, 1966;
Ma, 1976; Wilson, 1965, 1971, 1972, 1983; Wilson and
Kogut, 1973)].

Here “applying the renormalization group method”
will mean that one regards the fields ϕ(0), . . . , ϕ(k), . . . as
real entities describing phenomena taking place on their

own length scale γ−k
−1
m : and we shall define the effective

interaction on scale γ−k
−1
m as

eV
(k)(ϕ(k)) def=

∫
eV (ϕ(≤N),λN (λ))· (4.9)

· P (dϕ(N)) . . . P (dϕ(k+1))

In perturbation theory one fixes the formal power se-
ries λN(λ) in such a way that V (k) turns out to be given
by a formal power series in λ which, order by order, has
a limit as N → ∞ if ϕ(0), . . . , ϕ(k) verify (3.20) (n be-
ing the order of the chosen regularization), and the limit
has a short range structure allowing us to interpret V (k)

as a statistical mechanics interaction between spins (the

ϕ(k)’s) located on a lattice of mesh γ−k
−1
m rather than

continuous fields—see Sec. 3).
One might be worried that the fields ϕ(j) do not really

have a physical meaning (yet) and that knowing that they
are well defined objects even in presence of interaction
does not really tell anything about their sum ϕ(≤N) which
is the object with physical meaning (in the limit N →
∞). One could repair this objection by imagining that
the last term (say) in (4.1) has the linear form

λ(t)VN (ϕ(≤N), ∂ϕ(≤N)) ≡ λ(t)f(ξ)ϕ(≤N) (4.10)

and show that the effective potentials are well defined

with a choice of lN (m) leading to λ
(t)
N ≡ λ(t) (i.e. “no

renormalization on the linear part of the interaction”)
and to an expression of the remaining bare couplings

λ
(1)
N , . . . , λ

(t−1)
N involving only λ(1), . . . , λ(t−1) (and not

λ(t)); then the effective potentials and the coefficients
S(m, N, f) would be simply related to the Schwinger
functions of the field ϕ(≤N) and the problem of proving
existence and ultraviolet stability of the effective poten-
tials would be in principle harder than that of proving
that of the limit (4.7) in absence of a linear term in VN
(although it will be in fact an equivalent problem in the
cases studied here).

Alternatively one could decide to worry about this
problem after completing the theory of the effective po-
tentials: in fact the formal connection between the effec-
tive potentials and the Schwinger functions will be briefly
discussed in Sec. 10.

v. Effective potentials: the algorithm
for their construction

Given an interaction I as defined in Sec. 4 (see (4.1)
and (4.2)), let

V (ϕ(≤N)) =

t∑

α=1

λ(α)

∫

Λ

v
(α)
N (ϕ(≤N); ∂ϕ(≤N)) dξ (5.1)

The effective interaction on the length scale γ−km−1 is
defined by
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eV
(k)(ϕ(≤k)) =

∫
eV (ϕ(≤N))· (5.2)

· P (dϕ(N)) . . . P (dϕ(k+1))

To be slightly more concrete it is convenient to list the
cases which will be treated here or which can be treated
easily with the methods reviewed in this paper.

(1) Polynomial fields in two dimensions

v(α)(ϕ(≤N)) = : (ϕ(≤N))α : (5.3)

where the dots denote the Wick ordering of polynomials
and α > 0.

In this case as well as in the cases below the prop-
erty (4.2) is trivially a consequence of the properties of
the Wick polynomials. Such properties are remarkable
and the reader will be supposed familiar with them. For
ease of reference the definitions, their main properties
and the ideas from which they are derived are provided
in Appendix A3.

The notion of Wick monomial will not be needed in
this section nor in the following sections, 6–11, where ev-
erything is worked out without referring to Wick ordering
or Wick monomials.

(2) Sine–Gordon field in two dimensions

V (ϕ(≤N)) =
∑

σ=±1

λ

2

∫

Λ

: eiσ αϕ
(≤N)

ξ dξ + ν

∫

Λ

dξ =

= λ

∫

Λ

: cosϕ
(≤N)
ξ : dξ + ν

∫

Λ

dξ, α > 0 (5.4)

(3) Exponential fields, d ≥ 2

V (ϕ(≤N)) = −λ
∫

Λ

: eαϕ
(≤N)

ξ dξ + ν

∫

Λ

dξ (5.5)

(4) ϕ4 field in three dimensions

V (ϕ(≤N)) = (5.6)

= −
∫

Λ

(
λ : (ϕ(≤N))4 : +µ : (ϕ(≤N))2 : +ν

)
dξ

(6) ϕ4 field with wave function renormalization for d ≤ 4

V (ϕ(≤N)) = −
∫

Λ

(
λ : (ϕ(≤N))4 : + (5.7)

+ µ : (ϕ(≤N))2 : +α : (∂ϕ(≤N))2 : +ν
)
dξ

(7) ϕ6 field with wave function renormalization for d ≤ 3

V (ϕ(≤N)) = −
∫

Λ

(
σ : (ϕ(≤N))6 : +λ : (ϕ(≤N))4 : +

+ µ : (ϕ(≤N))2 : +α : (∂ϕ(≤N))2 : +ν
)
dξ (5.8)

All the above cases are examples of interactions I in
the sense of (4.1) and (4.2) (see Appendix A3 for the
properties of Wick monomials).

In view of the above ambitious models one might thin
that it would be very hard to find reasonable expressions
for V (k); this is not really the case as the algorithm below
proves; the reason being that the construction of V (k)

can be carried out in general, without using the detailed
structures (5.5)–(5.8) or the Wick ordering properties,
starting from (5.1),(4.1) and (4.2).

The mathematical basis for the algorithm is a trivial
Taylor series. To define it introduce the notations

E(·) = expectation value with respect
to a probability measure,

Ek(·) = expectation value with respect

to the Gaussian measure P (dϕ(k)),

(5.9)

and in general, given p random variables x1, . . . , xp and
p positive integers n1, . . . , np one defines the truncated
expectations of x1, . . . , xp as

ET (x1, . . . , xp;n1, . . . , np) = (5.10)

=
∂n1+...+np

∂λn1
1 . . . ∂λ

np
p

log E(eλ1x1+...+λpxp)
∣∣∣
λi=0

The symbol ETk will therefore have a well defined mean-

ing if x1, . . . , xp are p functions depending on ϕ(k). One
checks by induction the Leibnitz rule: ∀ω1, . . . , ωp ∈ R

ET (ω1x1 + . . .+ ωpxp;n) =
∑

n1,...,np
n1+...+np=n

n!ωn1
1 . . . ω

np
p

n1! . . . np!
·

· ET (x1, . . . , xp;n1, . . . , np) (5.11)

and if n = n1 + . . .+ np

ET (x; 1) ≡ E(x), ET (x; 0) ≡ 0

ET (x, x, . . . , x;n1, n2, . . . , np) ≡ ET (x;n)
(5.12)

Therefore the following Taylor expansion, cumulant ex-
pansion, formally holds

E(ex) = e

∑∞

p=1

1
p!E

T (x;p)
(5.13)

and is convergent for any bounded random variable x.
Hence modulo convergence problems
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∫
P (dϕ(N))eV ≡ e

∑∞

n=1

1
n!E

T
N (V ;n) def= eV

(N−1)

(5.14)

and, recursively,
∫
P (dϕ(N))P (dϕ(N−1))eV ≡ e

∑∞

h=1

1
h!E

T
N−1(V

(N−1);h) =

= exp
∞∑

h=1

∑

n1+n2+...=h

1

n1!n2! . . . 1!n12!n23!n3 . . .
· (5.15)

· ETN−1

(
ETN(V ; 1), ETN(V ; 2), ETN(V ; 3), . . . ;n1, n2, n3, . . .

)

once we have applied the Leibnitz rule (5.11).
It is clear that by combining (5.9) and (5.13) one can

find a formal expression for V (k) of the type (5.15): its
structure will be elucidated in Sec. 6 by means of a graph-
ical interpretation of the general term arising in the iter-
ation of the above expansion.

vi. A graphical expression for the
effective interactions

The structure of V (k), as obtained from V by doing
successively integrations over fields of increasing length
scale can be described easily i terms of a certain family
of planar graphs, actually trees.

Draw n points 1, 2, . . . , n (see Fig. 3)

k h

h′ h′′

1
2

n

(3)

and imagine that they are the endpoints of a tree γ whose
vertices v bear an index hv, with k ≤ hv ≤ N and hv <
hv′ if v < v′ in the order of the tree; the lowest vertex r
of γ, called the root bears the index k, denoted k(γ), and
out of it emerges one branch only. All the other vertices
v > r are branching points with at least two branches.
The end points of the tree are not regarded as vertices.
The tree can be thought of as a partially ordered set from
the root up to the end points.

Two trees will be regarded as identical if they can be
superposed, together with the labels appended to their
vertices, up to a permutation of the end point labels
(1, 2, . . . , n) and up to a change in the lengths of the
branches and the location of the vertices which does not
alter the topological structure of the tree. In drawing
trees we shall agree to think that they are drawn in some
standard fashion which always leads to the construction
of a given representative in each class.

The number of end points in γ (n in Fig. 3) will be
called the order of γ. A tree of degree 1 will be called
trivial and it ill contain only one line from the root r to
the end point 1.

The first vertex after r will be called v0; it exists if and
only if the tree γ is not trival.

Given a nontrivial tree γ, let γ1, γ2, . . . , γs be the trees
which bifurcate in |g from v0, i.e. from the first non-
trivial vertex (in Fig. 3 it is s = 2). The s trees can
be divided into into q classes of trees whose elements are
identical up to the end points labelings and let γ1, . . . , γq
be the representatives of each class. Let p1, . . . , pq be the
number of elements in each class. Define a combinatorial
factor n(γ) inductively as

n(γ) =

q∏

i=1

pi!n(γi)
pi (6.1)

setting n(γ) = 1 if γ is the trivial tree.
The index hv associated with each vertex v wil be

called a frequency index or the frequency of v.
If one stares, for a conveniently long time, at (5.13)

and (5.15) it becomes clear that

V (k) =
∑

γ, k(γ)=k

V (γ)

n(γ)
(6.2)

where the sum runs over the trees with root at frequency
k and with frequency indices hv ≤ N ; V (γ) is a function
of the field ϕ(≤k) which, although it could be explicitly
written, is more conveniently defined by induction. If γ
is trivial, let

V (γ)
def
= Ek+1 · · · En(V ) (6.3)

and if γ bifurcates on the first vertex v0 following its root
r into γ1, . . . , γs at frequency hv0 = h let

V (γ) =

= Ek−1 . . . Eh−1ETh (V (γ1), . . . , V (γs); 1, 1, . . . , 1)
(6.4)

As a result of (6.3),(6.4) one sees that each vertex of
γ with index p corresponds to ETp , while each line of γ
joining two vertices v < v′ corresponds to

Ehv+1 . . . Ehv′−1, (6.5)

while the lines joining a vertex v to an end poit corre-
spond to

Ehv+1 . . . EN , (6.6)

and finally each end point corresponds to a function V .
The proof of (6.4) is obtained by combining (6.2) and

(6.3) with (5.9)–(5.14): one gets (6.4) immediately by
induction on the degree of the tree.

The above algorithm can be modified to obtain more
explicit expressions for V (k). Let, see (4.1),(4.2),
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V =
t∑

α=1

λ(α)

∫

Λ

v
(α)
N (ϕ

(≤N)
ξ , ∂ϕ

(≤N)
ξ ) dξ (6.7)

which is the case of interest here and introduce what
will be called a decorated tree which is a tree whose end
points bear labels θ(γ) = (ξ1, α1), . . . , (ξn, αn) instead of

1, . . . , n and ξj ∈ R
d, αj ∈ (1, . . . , t). Then (6.2),(6.4)

imply that

V (k) =
∑

n

∫ ∑

α1,...,αn

dξ1 · · · dξn
∑

γ: degree γ=n
k(γ)=k

V (γ)

n(γ) (6.8)

where the sum runs over all decorated trees γ with root
frequency k and with vertex frequencies hv with k <
hv ≤ N for v > r, and the value V (γ) will have to be
computed by using (6.3) and (6.4) except that V has to be
replaced in the evaluation of the trivial tree contribution

by: λ(α) V
(α)
N (ϕ

(≤N)
ξ , ∂ϕ

(≤N)
ξ ) if the trivial tree is

k ξ, α
(4)

The third sum in (6.8) is performed by keeping fixed
the decoration θ(γ) = ((ξ1, α1), . . . , (ξn, αn)). Finally the
combinatorial factor of the undecorated tree γ obtained
by stripping γ of its decorations.

In other words one can say that the rule for evaluating
a decorated tree is the same as that for evaluating an
undecorated tree but with a different interpretation of
the end points, which depends on the decorating indices.

For later use it is convenient to define a tree shape
which is a tree of the above types once stripped of all its
indices and decorations, except the index α attached to
the end points, which will be called type indices.

This completes the discussion of the basic graphical
algorithm used to build V (k) for k ≥ 0. It is, however,
convenient to define also V (−1). For this purpose one
thinks ϕ(≤N) as being given by

ϕ(≤N) = ϕ(−1) + ϕ(0) + . . .+ ϕ(N), (6.9)

where the field ϕ(−1) is distributed independently rela-
tive to the other ϕ(j), j ≥ 0, and it has its own covari-

ance C
(−1)
ξη which need not be specified (because it will

eventually be taken to be identically zero whenever it ap-
pears in some interesting formulae. The introduction of
V (−1) allows us to give a meaning to some expressions
that will be met so that the case k = 0 can be treated on
the same grounds as the cases k > 0, and V −1) will be
described by trees with root frequency k = −1 via (6.8)
and (6.9).

The following interpretation of a decorated tree is in-
teresting and important for later applications. Each ver-
tex v of γ can be interpreted as a cluster of the end points

positions and the tree provides an organization in a hier-
archy of clusters, of the points ξ1, . . . , ξn, which are the
position labels of the end points of the tree.

To get a picture of such clusters first draw a box
around each point ξ1, . . . , ξn; then consider a vertex v
highest on the tree: out of it emerge s lines with labels
(ξj1 , αj1), . . . , (ξjs , αjs) and do this for all the other high-
est vertices. For instance,

k h

p q m

f

t

(ξ1,α1)

(ξ2,α2)

(ξ3,α3)

(ξ4,α4)

(ξ5,α5)

(ξ6,α6)

(ξ7,α7)

(ξ8,α8)

(ξ9,α9)(ξ9,α9)

leads to

1

2

3

4

5

6

7

8

9

(5)

Then consider the next generation vertices and draw
boxes around all the end points that can be reached from
each of them by climbing the tree, etc

1 2 3 4 5 6 7 8 9

(6)

Actually the above cluster representation of γ becomes
completely equivalent to the description of γ if inside each
box one writes the frequency hv of the vertex v corre-
sponding to it [(1) attribute, conventionally, index N +1
or better no index at all to the innermost boxes enclos-
ing only single points, (2) append to the j-th innermost
box the index αj , and (3) attribute to the outside of the
outermost box the index k of the root of γ.]

For instance in the case of Fig. 5 one gets

k

m
qp

h

f t

1 2 3 4 5 6 7 8 9

(7)

where the frequencies N + 1 have not been marked.
Therefore for each decorated tree one will be able to

associate with each vertex a cluster of points and to as-
sociate with each cluster a frequency index in the above
manner; furthermore each point has a position label of γ
and a type label attached in the manner described and
exemplified in the above pictures.

The order of a vertex v will be the number of points
in the cluster corresponding to it’: it coincides with the
number of end points that can be reached from v by
climbing the tree. So the degree of the tree coincides
with the order of its root vertex as well as with the order
of the first nontrivial vertex v0 (if present).
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vii. Renormalizability to second order
and enormalization

Consider an interaction I as defined in Sec. 4, (4.1)
and (4.2), and a formal power series like (4.4):

λN(λ) = λ +
∑

|m|≥2

lN(m)λm (7.1)

and define V1,N ≡ V1, see (5.1), and for j ≥ 2

V
(α)
j,N =

[ ∑

|m|=j

lN(m)λm
] ∫

v(α)(ϕ
(≤N)
ξ , ∂ϕ

(≤N)
ξ ) dξ

V =

∞∑

j=1

t∑

α=1

V
(α)
j,N ≡ V (ϕ(≤N); λN(λ), N) (7.2)

From the general theory of the preceding section it is
easy to find the rule to compute the effective potential
V (k) corresponding to the V in (7.2). The reader who
finds the discussion below too abstract for a first read-
ing can compare the abstract steps described here with
the concrete corresponding steps done in studying the
specific model ]f4, as described in Sec. 17 or the sine–
Gordon field in Sec. 12.

One only allows trees with end points decorated by

(ξ, α, j), ξ ∈ R
d, α = 1, . . . , t, j = 1, 2, 3, , . . .

(7.3)
Then if the trivial tree

k ξ, α, j
(8)

is interpreted as [see also (4.2)]

µαj (λ)Ek+1 . . . EN
(
v
(α)
N (ϕ(≤N), ∂ϕ(≤N))

)
≡

≡ µαj (λ)v
(α)
k (ϕ(≤k), ∂ϕ(≤k))

µαj (λ)
def
=

∑

|m|=j

lαN (m)λm

(7.4)

it follows [see Sec. 6] that

V (k) =

∞∑

n=1

∫
dξ1 . . . dξn

∑

α1,...,αn
j1,...,jn

∑

γ: k(γ)=k
degree γ=n

V (γ)

n(γ)
(7.5)

which expresses V (k) as a power series in λ: the p-th
order term being obtained by selecting in (7.5) the con-

tributions such that j1 + . . .+ jn
def
= |j| = p.

If, given a tree γ with decorations (ξ1, α1, j1), . . . ,
(ξn, αn, jn), one defines the degree D(γ) as

D(γ) = j1 + . . .+ jn = |j|, (7.6)

then the contribution to V (k) of order p is obtained by
restricting the sum in (7.5) to the trees with D(γ) = p.
If we denote it by V (k),p it is

V (k),p =

∫
dξ

∑

α

∑

l

∑

k(γ)=k

D(γ)=p

V (γ)

n(γ)
(7.7)

Define

V
(k),p

(ϕ(≤k)) = lim
N→∞

V (k),p(ϕ(≤k)) (7.8)

where ϕ(≤k) =
∑k
j=0 ϕ

(j) is supposed such that each ϕ(j)

verifies the smoothness properties (3.15),(3.16) or (3.20),
depending on the regularization used for the free field.

The existence of the limit (7.8) clearly depends upon
the choice of the coeficients lN (m) in (7.1). According
to the discussion of Sec. 4, the theory is renormalizable
if there is a choice of the constants lN(m) such that the
limit (7.8) exists.

It is worth pointing out here that a trivial property
of the renormalized series: if λ is expressed as a formal
power series with N–independent coefficients in terms
of new parameters λ′, then λN (λ)—see (7.1)—becomes
a new formal power series in λ′ with new coefficients
l′N(m); it should be clear that if the power series (7.5)
in λ is renormalized, i.e. if the limts (7.8) exist, then
also the power series in λ′ is renormalized in the same
sense (provided the series expressing λ in terms of λ′

has no constant term, of course). This showsthat the
coefficients lN (m) cannot be uniquely determined by the
requirement that the theory is renormalized [i.e. that the
limits (7.8) exist].

The problem is to decide whether a theory is renor-
malizable and to estimate in some way the size of V (k),p

and, if possible, of V (k) itself.

It is possible to find a general rnormalizability criterion
and general renormalization rules [i.e. rules to build the
coefficients lN (m) in (7.1). The whole theory stems from
the simple examples considered below.

Clearly V (k),p(ϕ(≤k)) for p = 1 will always admit a
limit as N → ∞ being N–independent because of the
property (4.2) of I.

Therefore the requirement of existence of the limit
(7.8) can put nontrivial restrictions only on V2,N , V3,N ,
. . . (see (7.2)) and one can start by looking at the condi-
tions on V2,N [i.e. on lN (m) with |m| = 2] imposed by
the requirement of existence of the limit (7.8) for p = 2:
it should be clear that if the theory is renormalizable it

must be possible to fix V2,N so that V
(k),2

(see (7.8)) ex-
ists simply because V3,N , V4,N , . . . do not contribute to

V (k),2.

Clearly V (k),2 is determined by the sum of the contri-
butions of the second order trees, i.e. graphically
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k (ξ,α,2)

+ 1
2

∑N
h>k

k h

(ξ1,α1,1)

(ξ2,α2,1)

(9)

where the summation over the α indices and the integra-
tion over the ξ indices is ubderstood. In formulae Fig. 9
becomes

Ek+1 . . .EN (V2,N )+

+
1

2!

N∑

h>k

Ek+1 . . . Eh−1ETh (E>h(V1), Eh(V1))
(7.9)

where we have shortened E>h as Eh+1 . . . EN and also
ET (x1, . . . , xq) as ET (x1, . . . , xq; 1, . . . , 1).

Two cases can arise (1) the second term in (7.9) con-
verges to a limit as N → ∞ [for ϕ(≤k)’s satisfying the
smoothness mentioned above, see (3.20)]; or (2) this does
not happen.

In the second case one must choose V2,N conveniently,
if possible at all, to compensate the divergence present
in the second term.

Since V2,N (ϕ(≤N)) will always have to be in the interac-
tion space IN the divergence of the second term in (7.9)
can be compensated by a suitavbly chosen V2,N only if
such divergence arises because the second term in (7.9)
has some very large component on Ik.

It is however unclear how to define, in an abstract con-
text, the component to be considered: for the time being,
and to remain on very general grounds, one can just say
that there should be an operation Lk with range in Ik
such that the two expressions

1

2!

∑

h>k

(1− Lk)Ek+1 . . . Eh−1·

· ETh (E>h(V1), E>h(V1)) and

(7.10)

Ek+1 . . .EN (V2,N ) +
1

2!

N∑

h>k

LkEk+1 . . .Eh−1·

· ETh (E>h(V1), E>h(V1))

(7.11)

are convergent as N →∞ if ϕ(≤k) is smooth in the sense
of (3.20).

If such an Lk exists for each k it is clear that it must
depend on k in a special way because we can compute, for
p < k, the effective potential in two necessarily equivalent
ways, as the graphical relation of Fig. 10 explains (in it
summation over the indices ξ, α is understood).

k (ξ,α,2)
+

1

2

N∑

h>k
p h

(ξ1,α1,1)

(ξ2,α2,1)

= (10)

Ep+1 . . . Ek
(

+
1

2

N∑

h>k

)
+

1

2

N∑

h>p

k hk h

(ξ,α,2)

k h

(ξ1,α1,1)

(ξ2,α2,1)

(ξ1,α1,1)

(ξ2,α2,1)

where the righ hand side (r.h.s. ) is ontained by in-

tegrating (to second order in λ) the exponential of the
expression in (7.9), using (5.13).

Since the convergence of (7.10) and (7.11) should imply
convergence of both sides of the equation in Fig. 10 for
fixed k, p, k > p one finds after a brief calculation that

1

2!

N∑

h>k

(
LpEp+1 . . . Ek − Ep+1 . . .EkLk

)
·

· Ek+1 . . . Eh−1ETh (E>h(V1), E>h(V1))

(7.12)

should admit a limit as N →∞. A simpl way to enforce
such property is, of course, to require that for all p < k

LpEp+1 . . .Ek ≡ Ep+1 . . . EkLk. (7.13)

This leads to the conclusion that one would like Lk to be
definied so that (7.13) holds. Then, proceeding heuristi-
cally, note that the limits of (7.11) as N → ∞ exist for
all fixed k if they exist for just one k, as the above ar-
gument implies. One can thus determine V2,α and Lk by
imposing the existence of the limit as N →∞ for k = −1
and, at the same time, imposing that LLk make (7.10)
convergent as N →∞.

For instance one can require that

(E0 . . . ENV2,N )(ϕ(−1)) +
1

2!

N∑

h=0

· (7.14)

· L−1E0 . . . Eh−1ETh
(
E>h(V1), E>h(V1)

)
(ϕ(−1)) = 0

To continue in reat generality suppose that there isa
way of defining the operation Lk verifying (7.13) and
(7.14) and making (7.10) convergent: its existence, or
nonexistence, will turn out to be a very easy question in
the concrete nodels that we shall examine. Once such
a sequence of operations Lk is found one can produce a
new sequence with the same property by setting

L′kF =LkF +

t∑

α=1

[ ∑

|m|=2

l̃(α)(m)λm
]
·

·
∫
v
(α)
k (ϕ

(≤k)
ξ , ∂ϕ

(≤k)
ξ ),

(7.15)

where the coefficients l̃(α)(m) are arbitrarily chosen: note
that L′k verifies (7.13) if Lk does, because of (4.2).

The remarkable and interesting fact to be pointed out
is that if the initial interaction V1 is changed to V = V1 +
V2,N there are very simple graphical rules that allow one
to compute the effective interaction generated by V =
V1 + V2,N to any order in terms of new types of trees
that we call partially dressed trees.

The idea of defining such trees comes from com-
puting V2,N defined by equation (7.14) regarded as a
(trivial) linear equation for the t coefficients [see (7.4)]
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µ
(α)
2 =

∑
|m|=2 l

(α)
N (m)λm in V2,N (ϕ(−1)). Using (4.2)

and (7.13) we find that (7.14) becomes

0 =

t∑

α=1

[ ∑

|m|=2

l
(α)
N (m)λm

] ∫
v
(α)
−1 (ϕ

(−1)
ξ , ∂ϕ

(−1)
ξ ) dξ+

+
1

2!

N∑

h>−1

L−1E0 · · · Ek−1ETh (E>h(V1), E>h(V1)) =

=

t∑

α=1

[ ∑

|m|=2

l
(α)
N (m)λm

] ∫
v
(α)
−1 (ϕ

(−1)
ξ , ∂ϕ

(−1)
ξ ) dξ+

+
1

2!

k∑

h>−1

L−1E0 · · · Ek−1ETh (E>h(V1), E>h(V1))+

+
1

2!

N∑

h>k

E0 · · · EkLkETh (E>h(V1), E>h(V1)) (7.16)

By (7.14) the second term in the r.h.s. is −E0 · · · Ek(V2,k):
this implies, again by (4.2), the following important iden-
tity resting on the definitions above

Ek+1 · · · ENV2,N ≡ (7.17)

=

t∑

α=1

[ ∑

|m|=2

l
(α)
N (m)λm

] ∫
v
(α)
−1 (ϕ

(<k)
ξ , ∂ϕ

(<k)
ξ ) dξ ≡

≡ V2,k −
1

2!

N∑

h>k

LkEk+1 · · · Eh−1ETh (E>h(V1), E>h(V1)).

The inserting (7.17) in (7.9) one finds that (7.9) equals

V2,k +
1

2!

∑

h>k

(1− Lk)Ek+1 · · · Eh−1ETh (E>h(V1), E>h(V1))

(7.18)
The relation (7.18) together with the graphical represen-
tation in Fig. 9 suggests representing (7.18) as

k

α1

α2

+
1

2

N∑

h>k
k h

R α1

α2

(11)

where the summation over the ξ, α indices is understood;
the first graph represents symbolically

[ ∑

|m|=2

l
(α)
k (m)λm

] ∫
v
(α)
−1 (ϕ

(≤)
ξ , ∂ϕ

(≤)
ξ ) (7.19)

while the second graph represents symbolicaly the second
term in (7.18). Hence we have the graphical identity

k

α1

α2

+
1

2

N∑

h>k
k h

R α1

α2

k (ξ,α,2)
+

N∑

h>k
k h

(ξ1,α1,1)

(ξ2,α2,1)

=

=

(ξ,α)

(12)

where in the r.h.s. two new indices α1, α2 appear inside
a frame, reminding us that V2,k is naturally defined as a
sum of t2 terms indxed by α1, α2 and the symbols in Fig.
13 allow us to identify them

E0 · · · Ek(V2,k) =
1

2

∑

α1,α2

k∑

h=0

L−1
−1 h

(ξ1,α1,1)

(ξ2,α2,1)

(13)

To explain how to compute the higher order effective
potentials generated by V = V1+V2,N the identity in Fig.
12 above suggests introducing the notion of decorated
trees dressed to second order.

These are objects constructed from an ordinary with
no appended labels: first, one considers all the vertices
out of which bifurcate exactly two branches ending in
end points and one either appends a decorating index
R or one encloses the bertex together with the branches
emerging from it into a frame; second, to each framed end
point one appends an index α = 1, . . . , t; furthermore to

each frame and to each unframed endpoint a pair ξ ∈ R
d

and α = 1, . . . , t is appended; finally, all the unframed
vertices v receive a frequency index hv.

For instance Fig. 14 illustrates three trees that can
arise by dressing to second order an unlabeled tree (out
of four possibilities)

k h

p
q

R

s

R
→

k h

p
q

R

k h

p

α

α′

α

α′

α′′

α′′′

1

2

3

4

5

1

2

3

1

2

3

4

(14)

here the labels i = 1, 2, . . . stand for (ξi, αi).

Given a partially dressed tree γ, dressed to second or-
der, the V (γ) will be defined so that

V (k) =

∫
dξ

∑

α

∑

γ: k(γ)=k

V (γ)

n(γ)
(7.20)

where the rule to compute V (γ) is simply the same as
the one used so far except that the final lines ending in
a frame, of the form
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k

α1

α2
(ξ, α)

(14a)

have to be interpreted as representing the contributions
to V2,k descried in connection with Fig. 13.

Also the R over a vertex has to be interpreted as saying
that the rule to combine two V1’s in the computation of
the truncated expectations ET (E>k(V1), E>k(V1)) has to
be modified and produces, instead, the term in square
brackets of (7.18).

The factor n(γ) in (7.20) is now defined as identical to
the combinatorial factor n(γ) of the tree γ obtained from
γ by stripping it of all its frames and their contents as
well as of all its α decorations.

The above discussion is rather long but conceptually
simple; however it has the advantage of suggesting the
procedure for the construction of higher order “countert-
erms” and for describing the results of their presence in
the effective potentials.

viii. Counterterms, effective interaction,
and renormalization in a graphical
representation (arbitrary order)

The discussion of the preceding section can be nat-
urally extended to provide an algorithm to build V3,N ,
V4,N , . . ., i.e. the formal series (7.1).

Again if the reader finds the discussion below too ab-
stract for a first readinbg he can compare the abstract
steps described here with the corresposnding ones worked
out in Sec. 18 for the ϕ4 model.

The basic objects are the dressed trees and the trees
dressed to order p.

A tree dressed to order p will be an object obtained by
considering a tree with no labels appended on it and

(1) To each end point append an index α ∈ (1, . . . , t).

(2) To each vertex different from te root and of order
≤ p (i.e. followed eventually, though not necessarily im-
mediately, by ≤ p end points) append an index R or,
alternatively enclose it in a “frame” together with the
part of the tree following it, excluding the preceding ver-
tices (our convention is that the trees are oriented from
the root towards the end points).

(3) Append to each frame an index α ∈ (1, . . . , t).

(4) Append to each outer frame (note that, in fact,
same frames may be inside others) and to each “un-

framed” end point an index ξ ∈ R
d.

(5) Append to the unframed vertices a frequency index,
increasing along the tree.

Fig. 15 provides a few examples of partial dressing of
an unlabeled tree

→

k h
p

q
R

ξ ,α
ξ ,α
ξ ,α
ξ ,α

α
α ξ ,α

1

2

3

4

6

7
5

1

2

3

4

5

k

R
R

a

a6

5

α

α

α

α

ξ , α
8

α

1

2

3

4

7

α
α

α

ξ,α

ξ,α

ξ,α

ξ,α

1
2

3

6

4

5

R

Rk h
p

q

(15)

where the first is a tree dressed to order 4 (it would be 6 if
an extra label R was added on the vertex with frequency
h), the second to order 3, the third to order 6. The above
notion is a natural extension to p ≥ 3 of the p = 2 case
met in Sec. 7.

To each partially dressed tree γ one associates a func-
tion V (γ) so that

V (k) =

∫ ∑

α

dξ
∑

γ: k(γ)=k
γ dressed to order p

V (γ)

n(γ)
(8.1)

would be the effective potential for ϕ(≤k) obtained start-
ing from V1 + V2,N + . . .+ Vp,N .

The definition of V3,N , . . . is inductive and so built that
the last statement holds. Having already constructed
V2,N in Sec. 7, one has to explain how Vp+1,N is obtaiend
from V1, V2,N , . . . , Vp,N so that (8.1) holds once V (γ) is
apppropriately defined.

Call γ0 a shape of a degree two tree

k

α1

α2
and call Lγ0)

k the sequence of operations introduced in
Sec. 7 and called there simply Lk.

In general one looks for a sequence L(σ)
k of operations

indexed by the shapes σ of the trees dressed up to order
p equal to the degree of σ minus 1 (a shape of a tree γ
dressed to order p is the tree obtained by stripping γ of
all the frequency labels and of all the ξ labels, leaving
only the frames, the R labels and the α labels.

The operation L(σ)
k will be subject to the following

requirements (see Sec. 7).

(i) L(σ)
k acts on certain functions of the field ϕ(≤k) and

has range in the interaction space Ik. Also if F is in the

domain of L(σ)
k then Eq+1 . . . EkF is in the domain of L(σ)

q

for q < k.
(ii) The following extension of (7.13) holds:

L(σ)
k Ek · · · Eh ≡ Ek · · · EhL

(σ)
h (8.2)

To evaluate the function V (γ) associated with a partially
dressed tree one will have to interpret a branch of the tree
emerging from a vertex with frequency label k and ending
in a frame containing a shape σ and carrying frame labels
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ξ, α [see conditions (3) and (4) above] as representing a
function which,if integrated over ξ, is in Ik. For instance

R

α1

α2

α4

α5

α3

ξ,α

k
(16)

encloses a shape σ

R
σ = 

α1

α2

α4

α5

α3k

and counts in the evaluation of V (γ) as

l
(α)
N,σ(k)λσ v

(α)
k (ϕ

(≤k)
ξ , ∂ϕ

(≤k)
ξ ), (8.3)

where l
(α)
N,σ(k) are certain coefficients, that we shall call

form factors of the shape σ, to be defined later and

λ(σ) def=
∏
λα with the product ranging over the indices

appended to the end points of σ (in Fig. 16 they are
α1, α2, α4, α5).

In other words once the coefficiants in (8.3) are defined
and the meaning of R is specified the meaning of V (γ) is
essentially the same as would be attributed to a decorated
tree (with decorations which are more complicated as
they can be framed shapes of trees).

For uniformity of notations it is convenient, in this
section, to consider the unframed end points of a partially
dressed tree as framed end points containg the “trvial
shape”, ie

k kξ,α ξ,α
(17)

In this way a partially dressed tree γ can be regarded as
always ending in endframes containing tree shapes; the
name “end point” will be reserved for the end points of
the tree obtained from γ by deleting all the frames.

The meaning of the R superscripts, as well as the con-

struction of the coefficients l
(α)
N,σ(k) and of the countert-

erms Vp,N is described in terms of the operations L(σ)
k .

Let γ be a tree dressed to order p+ 1 and with degree
p + 1. Suppose that its first nontrivial vertex v0 carries
a superscript R and is the origin of an s–fold bifurcation
into s dressed trees; suppose that the frequency index of
v0 is h; the situation is described in Fig. 18:

k h

R

γ1
γ2

γ s

(18)

Then if σ is the shape of γ one interprets Fig. 17 as
representing

V (γ) =Ek+1 · · · Eh−1 · (1− L(σ)
h−1)·

· ETh (V (γ1), . . . , V (γs))
(8.4)

where L(σ)
h has to be defined so that it verifies the re-

quirements (i) and (ii) above and so that the summation
of (8.4) over all trees γ with the same shape σ and root
frequency k is ultraviolet finite (i.e. it has a limit whne
N →∞ if ϕ(≤k) is smooth).

In the present general context one cannot discuss the

existence or nonexistence of such L(σ)
h , although in each

model considered in the following sections this will be a
very easy problem; here, tocontinue, asume that at least

one such L(σ)
h exists. Of course as already remarked the

L(σ)
h operation , which basically isolates the “divergent”

part of (8.4), will not be uniquely determined, if existing
at all.

This completes the definition of the meaning of the
R superscripts and the nextstep is to define the coeffi-
cients lN,σ(k) in (8.3). This will be done via the following
prescription. Consider the tree shape σ of degree p + 1
dressed to order p and enclosed in a frame attached at
frequency k:

≡
σ

ξ,αk k
ξ,α

γ1
γ2

γ s

(19)

and assume that σ bifurcates at its first framed vertex v0
into s completely dressed shapes γ1, . . . , γs: a completely
dressed tree is one dressed at least to an order equal to
its degree.

As said above, the framed shape in Fig. 18 represents
a function of the field ϕ(≤k) of the form (8.3): to define
it we follow, in a natural sense, the procedure of the
preceding section, as described below.

Delete the outer frame enclosing σ and insert frequency
indices at all the unframed vertices of σ as well as pairs
ξ, α at all the new external outer frames (formerly inter-
nal only to the outer frame and to no others); the root of
σ is given the frequency −1 and the indices ξ, α attached
to the deleted frame are also deleted (compare Fig. 20
below with Fig. 18):

hv0k

γ1
γ2

γ s

(20)

(no superscript, R or other,can be above v0 because σ was
supposed dressed only to order p and of degree p+ 1).

Since one is supposing inductively that V (γ1), . . . ,
V (γs) are already defined (being trees of degree ≤ p),
one can evaluate the tree in Fig. 20 by giving the usual
interpretation of truncated expectation to the vertex v0
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which carries no superscript R. Then one can define the
coefficients lN,σ(k) in (8.3) in terms of the value of the
tree in Fig. 20 (see also Fig. 18) by setting:

t∑

α=1

∫
λ(σ)lN,σ(k)v

(α)
−1 (ϕ

(−1)
ξ , ∂ϕ

(−1)
ξ ) dξ =

=

∫
dξ

k∑

hv0=0

∑ 1

n(γ)
L(σ)
−1

(
E0 . . . Ehv0−1·

· EThv0
(V (γ1), . . . , V (γk))

)

(8.5)

where the second sum runs over the frequency assign-
ments to the unframed vertices (if any) of the tree γ.

Finally, again in analogy with the second order case,
the counterterms Vp,N of order p will be sums of contri-
butions Vp,N,σ coming from tree shapes σ of degree p

Vp,N,σ =

∫
λσ

t∑

α=1

l
(α)
N,σ(N) v

(α)
N (ϕ

(≤N)
ξ , ∂ϕ

(≤N)
ξ ) dξ (8.6)

where λσ has the meaning described after (8.3).
Proceeding exactly as in Sec. 7, one proves that by

using the above rules to interpret Fig. 18 and 19 one
determines, via (8.1), the effective potential correspond-
ing to V1 + V2,N + · · · + Vp,N simply by interpreting a
partially dressed tree of arbitrary degree as computed by
using the above rules starting from the highest vetices
and interpreting a lower vertex with no R superscripts
as simply representing the truncated expectations of the
functionals defined by the s–ple of trees branching out of
the vertex.

The proof is, once more, by induction and is left to
the reader with the warning that the definitions above
have been conceived with the aim of making possible this
inductive proof.

It remains to define L(σ)
k in a concrete way in each

model (if possible).
As already remarked, the ambiguity in the coefficients

of the counterterms [and therefore in the definition of the

operations L(σ)
k of identification of the divergent parts]

has its deep origin in the trivial fact that if

λ = λ′ + L(λ′) (8.7)

and L is analytic near the origin with a second order
zero, then inserting (8.7) into (7.1) and rearrangin that
formal power series in λ into a formal power series in λ′

one necessarily obtains another power series which will
enjoy the same proerties as the former one as far as the
stability as N →∞ is concerned.

The situation is very much reminiscent of the stae of
perturbation theory in classical mechanics where there
are formalpower series, for various objects, which are am-
biguously defined for trivial reaons and even “divergent”

and which can be “renormalized” by suitable prescrip-
tions, (Gallavotti, 1983a)2

An interaction I for which the operations L(σ)
k can be

taken identically zero for trees with, for some p0 ≥ 1,
more than p0 end points, disregarding the frames, will
be called super-renormalizable and sometimes we call bare
degree the number of endpoints in a tree once the frames
are deleted.

The basic idea of the above construction of the coutert-
erms is from (Zimmermann, 1969), where the notion of
“forest”, here called “tree”, is introduced; however here
the notion of tree is independent of the notion of Feyn-
man graph, not yet introduced, while in the literature the
forests are always asociated with given Feynman graphs.
It seems conceptually sinplifying and practically advanta-
geous to be able to introduce the notion of forest without
any reference to Feynman graphs.

That perturbation theory can be perhaps done in a
neater way by avoiding as much as possible the use of
Feynman graphs has been clearly pointed put in (Polchin-
skii, 1984), who presents a method quite similar to the
one introduced here to deal with perturbation theory
by using multiscale properties and effective potentials
working in momentum space (here configuration space is
used instead). The method outlined here has been used
in various super-renormalizable cases already in (Ben-
fatto et al., 1978, 1980a,b; Gallavotti, 1978, 1979a,b). In
the latter papers, however, the super-renormalizability
masks the power of the method [which becomes clearer in
(Benfatto et al., 1978, 1980a; Nicolò, 1983), even though
the theories treated are still super-renormalizable].

ix. Resummations, form factors and
beta function

Before starting the “real work”, i.e. the analysis of
concrete models, there are still quite a few remarkable
abstract considerations that can be made.

If an interaction I is super-renormalizable, the renor-
malization leads only to a slightly more complex struc-
ture of the trees (which have to be dressed up to a finite
order p0 if the subtraction operations are chosen to be
zero when the degree of the trees is larger than the con-
vergence “treshold” p0—see Sec. 8) and there is little to
discuss about them.

But if I is only renormalizable or even if it is super-

renormalizable and yet one chooses to define L(σ)
k to be

non zero for σ’s of large degree, i.e. if one “oversub-
tracts”, thwe graphical representation of V (k) is enor-
mously more complex and one wishes to simplify it as
much as possible by collecting together as many terms a
s possible without losing control of what may be going
on.

2 Although the main result of this reference has been previously
obtained in (Rüssmann, 1967) the connection with renormaliza-
tion theory is somewhat new and relevant as a reference here.
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The trouble is that one would naturally like to collect
togheter infinitely many trees but, as will become clear,
there are no chances that the resulting series will converge
in a naive sense. Nevertheless it is possible to devise a
simple “summation rule” permitting us to give a meaning
to important resummations.

A concrete example on the abstract and general dis-
cussion below is in Sec. 20, where the reader who finds
too abstract, on first reading, the contents of this section
can see the same ideas worked out concretely in the case
of ϕ4.

The idea leading to such developments can be best
illustrated via an example in which it is even mathe-
matically rigorous: the well known resummation of the
leading divergences—see (’t Hooft, 1974, 1982a,b, 1983,
1984; Landau, 1955; Landau and Pomeranchuck, 1955;
Rivasseau, 1985).

One defines a pruning operation on the dressed trees,
consisting in isolating the final bifurcation of a tree γ
which have the form of Fig. 21, called a “most divergent
branch” or a “most divergent end–frame” (for reasons
that will become clear later)..

The pruning will first delete the “most divergent end-
frames” as Fig. 21 shows

α1

α2

α

α (21)

but this will not be all, because after the deletion of
the most divergent end-frames of γ new most divergent
frames may appear in what is left of γ: then the pruning
will be pursued until no most divergent branches are left.
This defines a pruning mapping τ : γ → τγ. The idea
is then to define, if γ is a tree with no most divergent
branches (i.e. τγ ≡ γ),

V R(γ) =
∑

γ′ : τγ′=γ

V (γ′); (9.1)

In (9.1) the sum runs over infinitely many trees (even if
the ultraviolet cut–off N is finite). For instance

k
R

k

R
α7 α6 α1

α2

α5
α4

α3

ξ,α ξ,α

γ = τγ =

α7 α6

k

R (22)

However the result of the resummation in (9.1), if conver-
gent in any sense, cannot lead to anything other than the
conclusion that V R(γ) is evaluated by “slightly modify-
ing” the rules to build V (γ): this follows from remarking
that the sum (9.1) leads to a change in the meaning of the
lines reaching the end points with index ξ, α of a pruned
tree γ (i.e. a tree such that τγ = γ) and representing,
according to the set rules, the function

λ(α)v(α)(ϕ
(≤k)
ξ , ∂ϕ

(≤k)
ξ ). (9.2)

The modification is explained as follows. Consider a tree
γ which is pruned: τγ = γ. Then all trees γ′ with τγ′ = γ
are obtained from γ simply by considering each end point
of γ with index α and growing on it a tree of arbitrary size
with simple bifurcations in two branches at each vertex
and then drawing a frame around every vertex, as in Fig.
23

αk k

α6 α1

α2

α5
α4

α3

ξ,α

(23)

attributing to each frame indices αj .
An end point of γ can be either “framed”, bearing an

index α (and no index ξ), or it can be “free”, bearing
a pair of indices (ξ, α), in Fig. 24 end point of different
type are marked on an example of a pruned tree:

k

R
p

R
α1

α2
α3
α4

ξ5,α 5

ξ,α (24)

they can be, say, the end points with labels α1 or ξ5, α5.
Consider first the case of an end point which is free

and attached to a vertex v of frequency index p (by a
branch).

We shall now assume, throughout this section and in
the sections following Sec. 16 (where applications of the
following considerations are presented), that for a general
σ (not necessarily a most divergent one) the operations

L(σ)
k depend only on what remains of σ after deleting all

the frames that it may contain as well as their contents.
This property is very convenient and natural, but it has
not been assumed since the beginning in order to develop
a flexible enough formalism to permit us to study simoul-
taneously super-renormalizable as well as just renormal-
izble cases.

A frame with index α attached to a vertex of frequency
p and enclosing a shape σ (whether most divergent, as of
interest here, or not) represents, by the general theory of
Sec. 8 [see (8.5)], the function

λ(σ) l
(α)
N,σv

(α)
p (ϕ

(≤p)
ξ , ∂ϕ

(≤p)
ξ ). (9.3)

Hence it appears that by summing over all the γ′, with
τγ′ = γ and obtained by adding to each free vertex of γ
any framed most–divegent shape σ just means interpret-
ing the end branches which are like p ξ,α

as meaning

[∑

σ

λσl
(α)
N,σ(p)

]
v(α)(ϕ

(≤p)
ξ , ∂ϕ

(≤p)
ξ )

def
=

def
= λ(α)(p) v(α)

p (ϕ
(≤p)
ξ , ∂ϕ

(≤p)
ξ )

(9.4)

where the sum runs over all shapes σ that can be attached
to the end point and are most divergent.
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Similarly consider a framed end point of γ with some
index α (like the end point with index α1 in Fig. 24).
In this case the addition of a most divergent tree shape
enclosed in a frame and attached to the considered end
point just modifies the meaning of the frames of γ as fol-
lows. Recall that the form factor λσlN,σ(p) correspond-
ing to a framed shape σ is evaluated (see Sec. 8, Fig.
19) recursively by, eventually, reducing oneself to the
evaluation of the function representing the simple trees

q ξ,α corresponding to the end points of σ

(once, in the evaluation process, they become unframed)

and having the meaning of λ(α)v
(α)
q . If to each end point

of σ is added a most divergent framed shape σ and one
performs the summation over all possible such σ’s it is
clear that one simply gets the same result that would
be obtained by interpreting q ξ,α as meaning

again (9.4) (with coefficient λ(α)(q)).
In other words one may consider, in computing the

effective potentials, only the trees γ such that γ ≡ τγ
provided one interprets the end points of γ attached to
a vertex with frequency index p as having the mean-
ing (9.4): the meaning has to be kept, for consistency,
even when the endpoints of γ are inside frames (as in
Fig. 24). This means that when one computes the
form factors for the framed parts of γ and, in doing
so, eventually reduces oneself to the case of the tree

p ξ,α one interprets it as meaning (9.4) in-

stead of simply λ(α)v
(α)
p (ϕ

(≤p)
ξ , ∂ϕ

(≤p)
ξ ).

If we give to the end points of a tree γ = τγ the new
interpretation and if we represent this graphically by us-
ing “heavy dots” at the end points of γ it is clear from
the above discussion that the form factors λ(α)(k) satisfy
the graphical relation of Fig. 25,

k
=

ξ,α ξ,αk
+

k
ξ,α ξ,α

α1

α2
k

+
α1

α2

α3 (25)

where the left-hand side (l.h.s. ) can be taken as a sym-
bolic representation of (9.4) and where in the r.h.s. , in
each term, a summation over the indices αj is under-
stood.

The equation represented in Fig. 25 can be written,
pictorially

k
=

ξ,α ξ,αk
+

k
ξ,α

α1

α2

(26)

which is actually a simple recursive relation for the form
factors λ(k):: its iterative solution leads to expressing
λ(k) as a power series in λ. The latter power series, once
substituted in the V R(γ) defined, as explained above, by
interpreting the end points of |g as bearing a heavy dot
and with the meaning that in the evaluation of V R(γ)
a line k ξ,α has to be interpreted as in (9.4),

yields the representation

V (k) =

∗∑ V R(γ)

n(γ)
(9.5)

where the sum runs over the trees γ = τγ (i.e. over the
pruned trees) only.

On the other hand it might happen that the relation
in Fig. 26, regarded as an equation for the form factors
admits true solutions, not just formal solutions in the
form of power series generated by iterating it: then one
can use this solution to define the summation rule that
the sum (9.1) is “by definition” the expression V R(γ)
computed with the same rules as V (γ) but restricted to
trees γ = τγ and interpreting the end points as bearing
heavy dots, which means that they must be interpreted
as in the r.h.s. of (9.4), with λ(k) defined by the given
solution of the equation represented by Fig. 26.

In other words the equation in Fig. 26 has two different
well defined possible uses. One is to generate by iteration
the various terms graphically represented in Fig. 25 [i.e.
the formal power series for the form factors λ(k) in (9.4)].
The second is to provide a nonperturbative meaning to
the sum of the series, in Fig. 25, for the form factors, i.e.
a summation rule for the most divergent graphs. The
first use is also quite interesting, being equivalent to the
direct definition of the various trees in Fig. 25 described
in Sec. 8; this is a conceptually simpler way to build
the coefficients λ(α)(k), although (as a consequence of
the principle of conservation of difficulties) this does not
really save any work if one wishes to perform a real cal-
culation (the point being, as explicitly illustrated in the
models considered later, that Fig. 26 can be converted
into an analytic equation only at the price of doing all
the calculations necessary to evaluate the trees in Fig.
25, i.e. the formal power series for the form factors).

Following the rules of Secs. 7 and 8 for the evaluation
of the coefficients of the element of Ik associated with a
frame (see Fig. 19), one gets for 0 ≤ k ≤ N

λ(α)(k) = λ(α) +

k∑

h=0

t∑

α1,α2=1

B(α)
α1α2

(h)λ(α1)(h)λ(α2)(h)

(9.6)

where B
(α)
α1α2(h)λ

(α1)(h)λ(α2)(h) is the coefficient of the

integral
∫
Λ
v
(α)
−1 (ϕ

(−1)
ξ , ∂ϕ

(−1)
ξ ) dξ in

− 1

2

∫
L(σ0)
−1 dξ dη E0 · · · Eh−1·

· ETh
(
v
(α1)
h (ϕ

(≤h)
ξ , ∂ϕ

(≤h)
ξ ), v

(α2)
h (ϕ

(≤h)
ξ , ∂ϕ

(≤h)
ξ )

) (9.7)

The factor 1
2 comes from the combinatorial factor associ-

ated with the tree shape σ0 = . The coefficients

B are manifestly N independent.
To proceed any further one needs explicit expressions

for the B’s: the ideal situation arises when the B’s have
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a structure allowing one to conclude that, possibly ad-
justing the initial values λ(α)(N) there is a solution to
(9.6) such that

γ−ν(α)kλ(α)(k)−−−→
k→∞

0 (9.8)

where ν(α) is some dimension (in the concrete models
treated later ν(α) is naturally suggested as one shall ex-
pect that the form factors have a k dependence which
goes exponentially at a rate characteristic of each form
factor and, usually,the order-by-order behavior of the
perturbative coefficients of the form factors is estimated
to be much worse than the a priori guessed exponential).

When this is the case, and this depends upon the in-
teraction I, the above simple resummation can produce
a great gain in the expressions of V (γ) and in their es-
timates because it may introduce a damping in the con-
tributions from trees having in them bifurcations at too
high frequencies. Furthermore such damping results as
a consequence of summing, by a well defined summation
rule, a series which might be divergent (as in fact it hap-
pens in the simplest application that we shall describe
here).

The above method to build resummation rules can be
extended to cover more complicated sets of trees by mod-
ifying the pruning operation. The latter can be extended
by prescribing the pruning of a given set of shapes; for
instance one can prune all the framed end branches like

α1

α2

α
,

α1

α2

α3

α (27)

In this case the equation in Fig. 26 is modified into

=
k ξ,α

+
k ξ,α

α1

α2 ξ,α
+

k

α1

α2

α3
ξ,αk

(28)

where a sum over the αj ’s is understood in each term.
Or if one prunes out also the end branches like

α1

α2

α3

R
(29)

then the equation in Fig. 28 is replaced by

=
k ξ,α

+
k ξ,α

α1

α2 ξ,α
+

k

α1

α2

α3
ξ,αk

α1

α2

α3
ξ,αk

R

+
(30)

In the case of equations in Fig. (28) or (30) the Eq.
(9.6) is replaced by a similar one in which the r.h.s. also
contains cubic terms; their coefficients are still N depen-
dent. However the N dependence is implicit through the
fact that the frequencies are bound to vary between 0 and
N . It should also be clear that, if the cut-off is N , only
trees with at most N+1 vertices between any two succes-
sive frames are possible (and therefore can be considered

in the resummations; for instance the resummation in
Fig. 30 makes sense only if N ≥ 1, while the other two
are meningful even for N = 0). The N dependence of the
B’s will not be explicitly marked except when necessary
in Secs. 20 and22.

The ultimate resummation can be associated with the
“total pruning” operation whereby all frames are pruned
and oine is left just with dressed trees without frames in
the formula corresponding to (9.1). The graphical repre-
sentation of the latter resummation is

k
=

ξ,α ξ,αk
+

ξ,α

α1

α2
k

+

all possible framed dressed
trees of any order and
with heavy dots on the
end points and no inner
frames

(31)

where again summations over αj are understood. The
equation in Fig. 31 becomes, explicitly, for k ≤ N ,

λ(α)(k) =λ(α) +

k∑

h=0

∞∑

n=2

N∑

hi≥h
α1,...,αn

B(α)
α1,...,αn

(h;h1, . . . , hn)·

· λ(α1)(h1) · · ·λ(αn)(hn) (9.9)

where the coefficients B must be computed according to
the rules of Secs 8—see Fig. 19—and are expressed as
sums of the coefficients of

λ(α1) · · ·λ(αr)

∫
v
(α)
−1 (ϕ

(−1)
ξ , ∂ϕ

(−1)
ξ ) dξ

in L−1V
(−1)(σ)/n(σ), σ being one of the trees with r end

points in Fig. 31 deprived of the first frame and bear-
ing no R superscript on the first vertex v0 and with fre-
quencies h1, . . . , hr appeded to the vertices out of which
emerge the r end branches of σ.

By the assumption of renormalizability and of exis-
tence of the operations Lk it follows that the coefficients
in Eq. (9.9) will be such that if the form factors λ(αi)(hi)
are replaced by constants λ(αi) then the summation at r
fixed converges uniformly in N .

The problem is that, as it will appear in the concrete
case of ϕ4 theory, the sum over r is not well controlled.

Introduce the functionals BN ,B acting on the space of
sequences λ of functions λ(α)(k) and defined formally as

(BNλ)(α)(k) =
N∑

hi≥h
α1,...,αn

B(α)
α1,...,αn

(h;h1, . . . , hn)·

· λ(α1)(h1) · · ·λ(αn)(hn) (9.10)

and

(Bλ)(α)(k) =

∞∑

hi≥h
α1,...,αn

B(α)
α1,...,αn

(h;h1, . . . , hn)·

· λ(α1)(h1) · · ·λ(αn)(hn) (9.11)
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and rewrite (9.9) as

λ(k) = λ + (BNλ)(k), 0 ≤ k ≤ N (9.12)

The difference with the preceding resummation sche-
mes is that the r.h.s. of (9.12) does not really make sense
other than as a formal power series in λ(α)(k) because, as
mentionel above, there is no control over the sums over
r in (9.10) or (9.11).

Therefore already very interesting use of (9.12) is that
it can produce, by a formal solution by iteration, a well
defined power series in λ leading to a a formal power se-
ries expresssion of the form factors associated with the
resummation. Furthermore as N →∞ the coefficients of
a given order in such power series for the form factors so-
lution of (9.11) converge to the corresponding coefficients
of the formal power series obtained by iterating

λ(k) = λ + (Bλ)(k). (9.13)

The result of the above iscussion is quite nontrivial:

through the knowledge of all the coefficients B
(α)
α (h;h)

one can compute the form factors λ(k) to any desired
order in the renormalized couplins λ and then reduce
the computation of V (k) to the computation of V (γ) for
all “trivially dressed trees”, i.e. for the trees with only R
supercripts on the vertices and no frames at all, provided
their end points are interpreted as meaning the r.h.s. of
(9.4) with λ(k) being now a form factor defined by (9.12)
to any order of perturbation expansion.

In other words the knowledge of the coefficients in Eqs.
(9.12) and (9.13) allows one to reduce the calculation of
V (k) essentially to the same calculations that would be
necessary in absence of renormalization. The economy
of thought gained in using this approach in computing
pertubation theory coefficients is obvious. However it is
worth stressing that, as already remarked, in prctice the
calculation of the B coeefficients is exactly equivalent to
the evaluation of the trees with frames (i.e. to renor-
malization); it is perhaps better to regard Eqs. (9.12)
and (9.13) as a convenient way to organize perturbative
calculations by separating the “true calculations” (cor-
responding to the trees without frames) from the form
factors calculations.

Unfortunately, unlike the simple cases of the “moder-
ate” resummations described by Fig. (26),(28) or (30)
or, more generally, involving a finite number of “pruned
shapes”, no rigorous use of (9.12) and (9.13) can be made
to prescribe resummation rules because no information is
vailable on the nonperturbative meaning to be attached
to the r.h.s. of (9.12) and (9.13): one can only say that
if on the r.h.s. the second order “dominates” then λ(k)
should behave for k → ∞ in the same way as the λ(k)
that would be obtained from the most divergent resum-
mations [i.e. from (9.6)], justifying the name given to
them.

Many triviality arguments for ϕ4 are based on this as-
sumption (domination of the most divergent graphs), and

this point will be discussed in more detail in Secs. 19,20
and 22.

It is customary to write (9.12) and (9.13) as difference
equations obtained by “writing them for k and k+1 and
subtracting”

λ(k) = λ(k + 1) + (BNλ)(k) 0 ≤ k + 1 ≤ N
λ(k) = λ(k + 1) + (Bλ)(k) 0 ≤ k

(9.14)
where λ(−1) ≡ λ, and

(Bλ)(α)(k) =

∞∑

r=2

∞∑

hi≥k+1
α1,...,αr

B(α)
α1,...,αr

(k + 1;h1, . . . , hn)·

· λ(α1)(h1) · · ·λ(αn)(hn) (9.15)

while BN is defined in the same way but only for k+1 ≤
N and with the sum over the hi’s subject to the con-
straint N ≥ hi ≥ k + 1, furthermore the coefficients

B
(α)
α1,...,αr (k+ 1;h1, . . . , hn) are replaced by N -dependent

coefficients B
(α)
N ;α1,...,αr

(k + 1;h1, . . . , hn)which converge

toB
(α)
α1,...,αr(k+1;h1, . . . , hn). The operatorB is basically

the beta function [see (Callan, 1970, 1976; Symanzik,
1970, 1973)] which therefore can be used to simplify con-
ceptually the perturbation theory in the sense explained
above.

Usually Eqs. (9.14) acquire a more homogeneous form
if written for other form factors trivially related to the
ones just discussed by

λ(α)(k)
def
= γν(α)kλ

(α)
k (9.16)

where ν(α) is a suitable dimension (this will be discussed
in detail in the treatment of the concrete ϕ4

4–model)

To conclude this section it is useful to point out that
the constants λ(k) verifying the first of (9.14) can be
naturally called effective couling constants at frequeny γk

because they represent the trivial trees k ξ,α

in the same sense in which the renormalized couplings
represent the trivial trees k ξ,α.

By definition it is true that λ(N) is precisely the bare
coupling (7.1) and they are formal power series in the
renormalized couplings λ(N) = λN (λ). Note that it is
the formal power series (for k = N) generated by the
recursive solution of the first of (9.14) starting from the
zero-th order approximation λ(k) = λ.

It is convenient to label the formal power series so-
lution of(9.12) and (9.13) [or (9.14)] by the symbols
λ(k;N), k ≤ N or, respectively, λ(k;∞). The bare cou-
plings are, in this notation λ(N ;N) and they should not
be confused with λ(N ;∞); note also that while λ(k;∞)
can be (as it will be in the cases treated later) regu-
larization independent, the form factors λ(k;N) may be
strongly dependent on the regularization used.



10. Schwinger functions and effective potentials 26

The latter statement requires some more detailed ex-
planations , since the use of a different regularization
seems to yield results which just are not comparable with
the ones coming from another regularization. There-
fore to illustrate the above statement it is convenient
to “compare” the results of the Pauli–Villars regulariza-
tion at a given order n and the corresponding results
for a radically different regularization, e.g. the lattice
regularization (see Secs 1,2). The comparison of the
two approaches can be made by thinking that the lat-
tice free fields are also decomposed into a sum of in-
dependent fields associated with a hierarchy of scales
γk, k = 0, 1, . . . via the identities (3.4) of order n by set-

ting ε(p) = 2
∑d
i=1

(
1−cos api

)
/a2 rather than ε(p) = p2.

Then one proceeds, exactly as in the Pauli–Villars case,
to study the effective potentials for the fields ϕ(≤k). Their
effective potentials will be described by Eq. (9.13) with
the B coefficients depending on the cut–off a (here N =
∞ from the beginning, because one does not needN <∞
for regularization purposes when one is assuming a > 0):
such coefficients converge to the coefficients in (9.14) as
a → 0 term by term, but for a > 0 they depend on a
and for large r [see (9.11)] their dependence on a itself is
strong.

It is even conceivable that λ(k;∞) could be defined
as a nonperturbative solution of (9.14) or ((9.13)] while
λ(k;N) could admit interesting nonperturbative solu-
tions only for suitably chosen regularizations [because the
terms of (9.12) are regularization dependent in the sense
above, while those of (9.13) are not]. This question will
be discussed in more detail in Sec. 22.

x. Schwinger functions and effective
potentials

If f is a smooth test function consider the expec-
tation EEint with respect to the interaction measure

eV (ϕ≤N )
∏N
j=1 P (dϕ(j)) and let E(0,k)

def
= E0E1 · · · Ek and

ϕ(f) =
∫
ϕξ f(ξ) dξ. Then the following formal chain of

identities establishes an example of a relation between
effective potentials and Schwinger functions

S(f ; p)
def
= ETint(ϕ(f); p) ≡ ∂p

∂θp
log Eint(eθϕ(f))

∣∣
θ=0
≡

≡
∑

k1,...,kp

ETint(ϕ(k1)(f), . . . , ϕ(kp)(f); 1, . . . , 1) ≡

≡
p∑

q=1

0,∞∑

m1,...,mq≥1

m1+...+mq=p

∑

k1<...<kq

p!

m1! . . .mq!
·

· ETint(ϕ(k1)(f), . . . , ϕ(kq)(f);m1, . . . ,mq) ≡

≡
∑∗ ∂p

∂θm1
1 ..θ

mq
q

log
E≥0

(
eθ1ϕ

(k1)+...+θqϕ
(kq)

eV
)

E≥0(eV )

∣∣∣
θi=0
≡

≡
∑∗ ∂p

∂θm1
1 . . . ∂θ

mq
q

log
E0 . . .Ekq

(
e[θ1ϕ

(k1)(f)+...+θqϕ
(kq)(f)]eV

(kq)
)

E0 . . .Ekq

(
eV

(kq)
)

∣∣∣
θi=0

≡

≡
∑∗

∞∑

s=0

1

s!
(10.1)

ET(0,kq)(ϕ
(k1), . . . , ϕ(kq)(f), V (kq);m1, . . . ,mq, s)

where
∑∗

denotes the three summations in the third line
together with the combinatorial factor following them.

In some sense the key step in (10.1) is the identity
preceding the last where V is replaced by the effective
potential.

The functions S(f ; p) are called the truncated Schwin-
ger functions of order p for the interacting measure: they
are trivially related to the nontruncated Schwinger func-
tions of Sec. 4. The relevance of (10.1) is to show that
the Schwinger functions can be expressed in terms of the
effective potentials [and as it can be seen from (10.1)
viceversa, at least formally].

Even though (10.1) might a priori present convergence
problems it will be possible to check that, in fact, the
r.h.s. of the series (10.1) will converge order by order
in the perturbation series in powers of the renormalized
coupling constants λ: this will be so provided conver-
gence problems do not arise already in the perturbative
definitions of the effective potentials themselves and it
will be so in various cases which will be encountered in
this paper (more precisely in the polynomial theories).

Sometimes one wishes to study more complex “observ-
ables” like

ρ(f) =

∫

Λ

: cosαϕξ : f(ξ) dξ (10.2)

through their average values, and the average values of
their powers, with respect to the interaction measure.

A way to analyze such quantities via the effective po-
tential technique, which in particular can also be ap-
plied to the Schwinger functions, is to add ρ(f) to the
interaction potential and to try to show that if V =
V1 + V2,N + V3,N + . . . yields a well defined ultraviolet
stable effective potential so does ϕ(f) + V .

Examples of how this could be done are provided by
the theory of the sine-Gordon interaction.

However for reasons of space I shall not dedicate much
time to questions of the above type.

It is worth stressing that the convergence of the
Schwinger functions of a theory with cut-off N to their
limit values as N → ∞ needs not be pointwise but it
might take place in the sense of distributions or worse,
at least if one does not express the results in terms of
S(f ; p), i.e. of smoothed expressions involving the trun-
cated averages, but rather in terms of the non smoothed
Schwinger functions

ETint(ϕξ1 , . . . , ϕξp ; 1, . . . , 1) (10.3)
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It is probably important to avoid putting any specific
convergence requirements on how the expectations (10.3)
should approach their limits as N → ∞; in absence of
physical reasons to prefer one type of convergence to
other types one should leave this question aside, allow-
ing for any type of convergence which will a posteriori
be subject to only one constraint, namely that of leading
to a probability measure Pint on the space of fields in a
sense suitable to infer the existence of, say, a Wightman
field.

xi. The cosine interaction model in two
dimensions, perturbation theoryand multi-
pole expansion

The ideas and methods of the preceding sections can
now be applied to the actual theory of the simplest fields.

If ϕ(≤N) =
∑N
j=−1 ϕ

(j) denotes a regularized free field as
defined in Sec. 3 via a first order Pauli-Villars regular-
ization [see (3.3) and (3.7)] consider the interaction IN :

V1(ϕ
(≤N)) =

∫

Λ

λ

2

∑

σ=±1

[
ν+ : eiσαϕ

(≤N)

ξ :
]
≡

≡
∫

Λ

[
ν + λ : cosαϕ

(≤N)
ξ

]
dξ

(11.1)

where α > 0 is, here, a real positive number and λ, ν are
reals: this will be called the “cosine interaction” or the
“massive sine-Gordon interaction” with “open boundary
conditions:. The latter specification refers to the fact
that in Secs. 11–15 the field ϕ(k) will be supposed to have

covariance given by C
(k)

in (3.7) (“nonperiodic boundary
conditions”) and not by its periodized version denoted,
in (3.7), by C(k). Nevertheless, to avoid complicating the

notations we shall denote simply by C(k) and not by C
(k)

the covariance of ϕ(k) , since there will be no possibility
of confusion in Secs. 11–15.

It will turn out that the interaction I in (11.1) is renor-
malizable (actually trivially superrenormalizable, in the
sense defined at the end of Sec. 8, for α2 < 4π and
slightly less trivially also for α2 ∈ [4π, 8π)).

By the general theory of Sec. 6 the effective interac-
tion V (k), as given by (6.8), will be described in terms of
trees with end points bearing a position index ξ and an
index α = 0,±1 (not to be confused with the constant
α in (11.1)) representing respectively the three terms in
the intermediate expression in (11.1). Since α = 0 repre-
sents a constant and trees represent truncated expecta-
tions the index α = 0 can only appear in the trivial tree

k ξ,0. The indexes α = ±1 will be denoted

σ and they will be called charges indices.
Using the cluster interpretation of trees (see Fig. 7)

one can interpret each vertex v of a tree as a cluster and
define the charge Qv of a tree as the sum of the indices σ
associated with the end points in the cluster defined by
v.

Given a tree γ let v be one of its vertices with frequency
label hv which, if thought of as a cluster, contains the end
points labels ξj1 , . . . , ξjs with charge indices σj1 , . . . , σjs :
then we set

ϕ(≤hv)
v

def
=

∑
σjnϕ

(≤hv)
jn

, cluster field

Qv
def
=

∑
σjn , cluster charge

(11.2)

When v = r = (root of the tree
g) the ϕv, Qv will also be denoted ϕ(γ) and Q(γ). Given
any h ≥ −1 it makes sense, naturally, to consider the

fields ϕ
(≤h)
v and ϕ

(h)
v .

To find the rules for the computation of V (γ) one pro-
ceeds empirically trying to find an appropriate ansatz.
After a while, as reasonable ansatz, emerges that the
contribution to the effective potential of the tree γ is

V (γ) : ei α ϕ(γ) : (11.3)

where V (γ) is a suitable function of the tree γ.
Let γ1, . . . , γs be s subtrees with root v0 equal to the

first nontrivial vertex of γ branching out of v0 in |g: sym-
bolically this is represented in Fig. 32 where k = hr =
(frequency of the root of γ) and h = hv0 :

k h

γ 1

γ 2

γs

(32)

Then combining (11.3) with the general recursion re-
lation (6.4) one finds the following relation between the
various coefficients V (γ):

V (γ) = V (γ1) · · ·V (γs) Ek+1 · · · Eh−1·
· ETh ( : eiσϕ

(≤h)(γ1) :, . . . , : eiσϕ
(≤h)(γs) :),

(11.4)

which, by the rules on Wick monomials [see (A3.15) and
(A3.16) in Appendix A3] yields for k < h

V (γ) =V (γ1) · · ·V (γs)

∏s
j=1 : ei αϕ

(≤k−1)(γj) :

ei α ϕ(≤k−1)(γ) :
·

·
∑

τ∈G∗

∏

λ∈τ

(e−α
2C

(h)

λ − 1)
(11.5)

where one should remark that the ratio is ϕ–independent
and G∗ is the set of simple graphs connecting γ1, . . . , γs
(i.e. graphs with no repeated bonds and such that for
any two “objects” γi, γj there is a path of bonds con-
necting them) regarding γ1, . . . , γs as symbolic objects
determined by the vertices v1, . . . , vs following v0 in γ;
furthermore if λ = (γimγj) we have set
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C
(h)
λ

def
= Eh(ϕ(h)(γi)ϕ

(h)(γj))
def
= C(h)

γiγj
≡

∑

ξ∈γi
η∈γj

σξσηC
(h)
ξη

C
(≤h)
λ

def
= E0 · · · Eh(ϕ(≤h)(γi)ϕ

(≤h)(γj))
def
= C(≤h)

γiγj
≡

≡
∑

ξ∈γi
η∈γj

σξσηC
≤(h)
ξη (11.6)

Remark that he two relations in (11.6) have the inter-
pretation of electrostatic potential between the charged

clusters γi and γj relative to the electric potential C
(·)
ξη .

If we use the definition : eiασϕ := e
1
2α

2E(ϕ2) eiασϕ

(see
Appendix A3) Eq. (11.5) becomes

V (γ) =V (γ1) · · ·V (γs) e
−α2

∑
i<j

C(h−1)
γiγj ·

·
∑

τ∈G∗

∏

λ∈τ

(e−α
2C

(h)

λ − 1)
(11.7)

which considered together with

V (γ) =
1

2
λ, or V (γ) = ν (11.8)

for, respectively, k ξ,σ or k ξ,0.

provides a recursive definition of V (γ) and proves the
ansatz (11.3). The effective potential has therefore the
form

V (k) =
∞∑

n=1

∑

σ1,...,σn

∫

Λ

dξ1 · · · dξn·

·
∑

γ : k(γ)=k

V (γ)

n(γ)
: ei αϕ

(≤k)(γ) :,

(11.9)

where the third sum runs over the trees γ with n end
points (i.e. of degree n) carrying the end point labe;s
ξ1, σ1, . . . , ξn, σn and with root frequency k.

Expression (11.9) will be called the multipole expan-
sion for the effective interaction on scale γ−k. The name
comes from the following simple and interesting argu-
ment.

Consider the quantity Z below nd compute it by ex-
panding the exponential in powers ad using the proper-
ties of the Gaussian integral (see Appendix A3):

Z
def
=

∫
eV

(k)(ϕ(≤k))P (dϕ(≤k)) =

=

∞∑

p=0

∫
1

p!

(
V (k)(ϕ(≤k))

)p
P (dϕ(≤k)) =

=

∞∑

p=0

∫
dσ1X1 · · · dσpXp

p∏

i=1

w(Xi,σi)·

· e−α
2
∑

i<j
Vσi σj

(Xi,Xj)

(11.10)

where

∫
dσX ≡

∞∑

n=0

∑

σ1,...,σn

∫
dξ1 · · · dξn,

X = (ξ1, . . . , ξn), σ = (σ1, . . . , σn),

w(X,σ) =
∑

degree γ=n
σ(γ)=σ

V (γ)

n(γ)
,

Vσσ′(X,X ′) =
∑

ξ∈X

ξ′∈X′

σξ σξ′ C
(≤k)
ξ ξ′

(11.11)

i.e. Z in (11.10) is indeed formally [i.e. modulo con-
vergence problems in (11.10)], the partition function of
a multipole gas in which the multipole with charges
σ1, . . . , σn located in the volume elements dξ1 · dξn has
activity

w(ξ1, . . . , ξn;σ1, . . . , σn) dξ1 · · · dξn ≡ w(X,σ) dX
(11.12)

To complete the analysis of perturbation theory for
the cosine interaction one has to show that the theory is
ultraviolet finite. This is indeed the case for α2 < 4π but
if α2 ≥ 4π this is so only for α2 < 8π and, perhaps, for
α2 = 8π.This problem is studied in Sec. 12 below.

xii. Ultraviolet stability for cosine inter-
-action and renormalizability for α2 < 8π

Let ϕ(≤k) =
∑k
j=−1 ϕ

(j) be a sample field in which

ϕ(j) verifies (3.15) and (3.16) and let the covariancesC(j),
j = −1, 0, . . . , N verify (3.19) (j0 = 1 in the present case)

being defined by C
(j)

in (3.7) [see comment following
(11.1)].

To study the ultraviolet stability of the effective po-
tentials V (k)(ϕ(≤k)) one bounds [see (11.3)] the quantity

M(∆1, . . . ,∆n; γ)
def
=

∑

γ: s(γ)=γ,
k(γ)=k ; σ(γ)=σ

∫

∆1×···×∆n

·

· |V (γ)|
n(γ)

e
1
2α

2C(≤k)
γ γ dξ1 · · · dξn

(12.1)

having estimated the Wick–ordered exponentials

: ei αϕ
(≤k)(γ) := e

1
2α

2C(≤k)
γ γ ei α,ϕ

(≤k)(γ)

by e
1
2α

2C(≤k)
γ γ ; and the sum runs over all trees with fixed

shape s(]g) = γ [to avoid confusion the shape is here de-
noted s(γ) rather than σ(γ) as in Sec. 8], fixed root fre-
quency index k and fixed charge labels σ = (σ1, . . . , σn)
for the n end points. Hence the sum runs over the fre-
quency labels hv that can be assigned to the nontrivial
vertices v > r of the shape γ. Finally ∆1, . . . ,∆n are
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n cubes extracted from a pavement of Λ with cubes of
side size γ−k; we shall denote the latter pavement by Qk,
assuming that the side of Λ is divisible by γ−k.

Of course one looks for bounds uniform in N and uni-
formly summable over the choices of ∆1, . . . ,∆n in Qk.
In fact this is motivated by the remark that the contri-
bution to V (k) from the trees with shape γ and charges
σ cab be written

∑

∆1,...,∆n

∑

γ: s(γ)=γ,
k(γ)=k ; σ(γ)=σ

∫

∆1,...,∆n

V (γ)

n(γ)
·

· e 1
2α

2C(≤k)
γ γ eiαϕ

(≤k)(γ) dξ1 · · · dγn

(12.2)

so that a bound, valid for all N and all k ≤ N , like

M(∆1, . . . ,∆n; γ) ≤m(γ) e−κγ
kd(∆1,...,∆n)·

· γ
(
( 1
4πα

2−2)(n−1)+ 1
4πα

2
)
k,

(12.3)

where m(γ) is a suitable constant depending only on the
shape γ, would be sufficient to show that the effective
potentials are well defined order by order in perturbation
theory, so that they converge to limits as N → ∞ at
least on subsequences; actually it will be clear that one
could also easily prove plain convergence without need of
subsequences.

The estimate (12.3) shows more because it shows that
the effective potential has a strong short range property
on the scale γ−k naturally associated with with the fre-
quency k; the short range property is expected to play
an important role in the infrared stability, but as it will
become clear later, it also plays a role in ultraviolet sta-
bility.

In trying to prove (12.3) it is convenient to rewrite the
recursive relation (11.7) as

V (γ) e
1
2α

2C(≤k−1)
γ γ = e−

1
2α

2
(
C(≤h−1)

γ γ −C(≤k−1)
γ γ

)
·

·
( s∏

i=1

V (γi)e
1
2α

2C(≤k−1)
γi γi

)
·

∑

τ∈G∗

∏

λ∈τ

(e−α
2C

(h)

λ − 1), for h < k

(12.4)

where the relation
∑

i,j C
(≤h−1)
γi γj ≡ C

(≤h−1)
γ γ is used and

we set C(−1) ≡ 0.

Let v > r be any vertex of γ and denote v′ the vertex
of γ preceding v; denote γv the subtree of γ with root at
v′ and first vertex v; for instance in Fig. 33 γv is the tree
consisting in all the branches of γ that can be reached by
climbing the tree starting from v′ and passing through v:

r
v’

v

ξ1
 .
 .
 .
 .
 .
 . .

,α 1

ξ ,α n n

(33)

Call ξ1, . . . , ξn, σ1, . . . , σn the end point labels for the po-
sitions and, respectively, the charges. Eq. (12.4) implies
[see below]

|V̄ (γ)| e(α2/2)C(≤k−1)
γγ ≤ Nδ ·

( ∏

v>r

e−κ0γ
hvd∗(Xv)

)
·

·
( ∏

v>r

e−(α2/2)
(
C(≤hv−1)

γvγv
−C

(≤h
v′ −1)

γvγv

))
· (12.5)

·
( n∏

i=1

λ

2
e
(α2/2)C

(≤hvi
−1)

ξiξi

)

where vi is the tree vertex directly connectd to the end
point ξi and Nγ , κ0 > 0 are constants and

d∗(Xv) =graph distance of the points of

Xv modulo the clusters inside v,
(12.6)

i.e. d∗(Xv) is obtained by drawing lines connecting points
in the cluster Xv belonging to distinct maximal subclus-
ters of Xv (which are the clusters corresponding to the
vertices of γ following v immediately, see Fig. 7 for in-
stance) in such a way that any subcluster can be reached
from any other by walking on such lines and possibly
jumping inside the subclusters: then d∗(Xv)is the mini-
mum of the sum of the lengths of the above lines over all
possible ways of drawing them.

The exponential factor in (12.5) requires an explana-
tion: it arises from a bound on the last product in (12.4)

and from the exponential decay of C
(k)
ξ η = C

(0)

γkξ γkη
[see

(3.19)] for some κ > 0

∣∣∣
∏

λ∈r

(e−α
2C

(h)

λ − 1)
∣∣∣ ≤

∏

λ∈r

(
eα

2C
(h)

λ α2|C(h)
λ |

)
≤

∏

λ∈r

[
α2eα

2n2
vC

(0)
00

∗∑

ξ,η

Ae−κγ
h|ξ−η|

]
,

(12.7)

where nv is the number o vertices in Xv (nv ≤ n), and
the sum runs over the pairs ξ, η in the subclusters joined
by λ, whose number is bounded by nv ≤ n. Since |ξ−η| is
larger or equal to the minimum distance between the two
sub-clusters, (12.5) follows, with Nγ being a coefficient
depending only on the family of numbers nv, i.e. on the
shape γ = s(γ) of γ only.

To proceed one has to find a reasonable bound on the

first product in (12.5). Let C
[·]
γv,γv

denote the same ex-
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pression as C
(·)
γv ,γv

when all the points in the cluster cor-

responding to v are collapsed in one of them; it is

C
[·]
γv ,γv

≡ C(·)
00 Q

2
v (12.8)

where Qv is the charge of the cluste v. Then the first
product in (12.5) can be written

[∏

v

e−
1
2α

2
(
C

(≤hv−1)
00 −C

(≤h
v′ −1)

00

)
Q2

v

]
·

·
[∏

v

e
1
2α

2
(
C(≤hv−1)

γvγv
−C

(≤hv−1)

γvγv

)
·

· e
1
2α

2
(
C(≤hv−1)

γvγv
−C

(≤hv−1)

γv γv

)]

(12.9)

and the term in the last brackets can be bounded by
using (3.19) and

∑

ξ,η∈Xv

(
|C(≤hv−1)
ξη − C(≤hv−1)

00 |+

+ |C(≤hv′−1)
ξη − C(≤hv′−1)

00 |
)
≤

≤ 2n2
vA 1

2
(1 − γ− 1

2 )
(
γhvd(Xv)

) 1
2 = (12.10)

= Ã
(
γhvd(Xv)

) 1
2

where d(Xv) is the length of the shortest path connecting
all the points of the cluster Xv. In the last step of (12.10)
use has been made of (3.19) via

|C(≤h)
ξη − C(≤h)

00 | ≤ |C(0)
γpξ γpη − C

(0)
00 | ≤

A 1
2

h∑

p=0

(
γh|ξ − η|

) 1
2

(12.11)

Hence using the inequality

∑

v

γhvd∗(Xv) ≥
∑

v

1

n2
n

γhvd(Xv). (12.12)

[Hint: Eq. (12.12) does not hold “without the sums”; see
(18.15) for a similar but deeper inequality], one finds

−κ
2

∑

v

ηhvd∗(Xv) + Ã
∑

v

[γhvd(Xv)]
1
2 ≤ A(γ) <∞

(12.13)
and one can bound (12.5) as

|V (γ)| e
1
2α

2C
(≤k−1)

γ γ ≤

≤ N ′
γ

[ ∏

v>r

e−
1
2α

2Q2
v

(
C

(≤hv−1)
00 −C

(≤h
v′−1)

00

)
·

· e− 1
2κγ

hvd∗(Xv)
]
·
n∏

i=1

e
1
2α

2C
(≤hvi

−1)|

ξi ξi

(12.14)

The integral (12.1) can now be estimates using (see Ap-
pendix A4)

∫

R2×...×R2

dξ2 dξ3 · · · dξn
∏

v

e−
1
4κγ

hvd∗(Xv) ≤

≤ Bn
∏

v>r

γ−2hv(sv−1),
(12.15)

with sv = number of branches emerging from the vertex
v in γ and Bn is some constant.

Using also C
(≤h)
00 = (h+ 1)C

(0)
00 we see that

M(∆1, . . . ,∆n; γ) ≤ N ′′
γ e

− 1
4κd(∆1,...,∆n)·

·
∑

h

[ n∏

i=1

e
1
2α

2hvi
C

(0)
00

]
·

·
∏

v>r

γ−2hv(hv−1)e−
1
2Q

2
v(hv−hv′)C

(0)
00 ,

(12.16)

where the sum runs over the frequency labelings of the
shape γ such that k(γ) = k.

Taking into account the relation between the number
sv of branches emerging from v in γ and the number nv
of points in the cluster Xv corresponding to v

∑

v>w

(sv − 1) = nw − 1 (12.17)

one easily checks, denoting C = C
(0)
00 ≡ 1

2π log γ:

∑

i

α2

2
(hvi − k)C − log γ

∑

v>r

·

·
[
2(hv − k)(sv − 1) +

α2

2
C Q2

v (hh − hv′)
]
≡

≡ log γ
∑

v>r

((α2

4π
− 2

)
(nv − 1) +

α2

4π
−

− α2

4π
Q2
v

)
(hv − hv′)

(12.18)

so that, using again (12.17) and (12.16),

M(∆1, . . . ,∆n; γ) ≤ N ′′′
γ e

− 1
4κd(∆1,...,∆n) γk

γ

(
( 1
4π −2)(n−1)− 1

4πα
2
)
k
∑

h

∑

v>r

γ−ρv (hv−hv′ ),
(12.19)

with

ρv
def
= −

(α2

4π
− 2

)
(nv − 1)− α2

4π
+
α2

4π
Q2
v. (12.20)

The summation in (12.19) is over the frequency label-
ings of γ and, therefore, over the h’s such that N ≥
hv − hv′ ≥ 1.
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Eq. (12.3) follows, provided ρv > 0 for all v. In fact
since v > r implies nv ≥ 2 and |Qvv| ≥ 0 it is clear that
ρv ≥ − 1

2πα
2 + 2—i.e. ρv > 0 if α2 < 4π.

This proves (12.3) and the ultraviolet stability for α2 <
4π. Since one can easily check, as the bounds (12.19) and
(12.20) hint, that for α2 ≥ 4π the contribution to V (k)

from the trees

k h

ξ,+

ξ,−

(34)

is in fact divergent as N →∞, the problem has to be
reexamined for α2 ≥ 4π—i.e. renormalization is neces-
sary.

The key remark to study the case α2 ≥ 4π is that the
bounds (12.19) and (12.20) can be improved.

In fact let v be a “zero charge” or “neutral” vertex of
γ: Qv = 0. Let v′ be the vertex preceding v and let
hv, hv′ be their frequency labels. Then in the evaluation
of V (γ) the subtree γv of γ with root v′ and containing v
and all the following vertices has the meaning, according
to the general theory of the tree expansion in Secs. 4 and
5,

EThv′

(
: ei αϕ

(h
v′ )(γv1 ) :, . . . , : ei αϕ

(h
v′ )(γvs ) :

)
(12.21)

if v1, . . . , vs are the vertices immediately following v.
However, when all the points of the cluster Xv coincide

it is ϕ(γv) = 0 because Qv = 0 and since (12.21) is a
truncated expectation it must vanish [in fact the first
argument becomes identically 1 and ET (1, . . .) ≡ 0].

Therefore (12.21) will be equal to ei α ϕ
(h

v′−1)(γv′ ) times
a factor which will be proportional, given ε ∈ (0, 1) arbi-
trarily (see (3.6)), to

(
γhv′

∑

ξ,η∈Xv

|ξ − η|
)1−ε

. (12.22)

If one collects together the contributions to the V (k) from
the trees having the same shape up to the charge indices
and having fixed clusters of zero charge then one realizes
that this improves the estimate producing a result which
is a finite sum of terms which can all be bounded by the
same bound that can be put on the “worst” among them,

namely the one obtained by replacing : ei α ϕ
(h

v′ −1)(γv′ ) :
by : cos

(
αϕ(hv′−1)(γv′)

)
:. The latter will, in turn, in-

troduce in the evaluation of the expressions analogous to
(12.21) a factor proportional to

(
γhv′ |ξ − η|

)2(1−ε)
(12.23)

if Qv′ = 0 because the cosine differs from 1 by a second
order infinitesimal. The details will not be discussed here
as a much more complicated similar analysis will be pre-
sented in Sec. 18. Via some simple algebra this leads to
replacing (12.3) by a bound on

M(∆1, . . . ,∆n) =
∑

σ

∫

∆1×...×∆n

dξ1 · · ·dξn·

·
∑

s(γ)=γ

σ(γ)=σ

V (γ)e
1
2α

2C(≤k)
γγ

(12.24)

which, if v0 denotes the first vertex of γ following the
root r, is estimated by

∣∣M(∆1, . . . ,∆n)
∣∣ ≤ N γe

−κ
4 d(∆1,...,∆n)γ

(
( α2

4π −2)n+ α2

4π

)
k·

·
∑

h

( ∏

v>v0

γ−(ρv+2−ε)(hv−hv′ )
)
γ−ρv0 (hv0−h) (12.25)

because in the intermediate steps the integral (12.15) will
be replaced by

∫
dξ2 · · · dξn

( ∏

v>r

e−
κ
4 γ

kvd∗(Xv)
)
·

·
∏

v: ρv=0
v>v0

(
γhv′

∑

ξ,η∈Xv

|ξ − η|
)2−ε (12.26)

by using the remarks leading to (12.23): the first nontriv-
ial vertex v0 of γ plays a special role, because if Qv0 = 0
the expresion : cos(αϕ(≤k)(γV0)) :: will be proportional
to the result obtained after the last truncation and no
further truncation will be done at frequency k. There-
fore no factors like (12.23) can be contributed by the first
vertex v0.

The itegral (12.26) obviously leads to an extra fac-

tor in (12.15) of the form B
n ∏

v>v0
γ−2(1−ε)(hv−hv′). In

fact the product of exponentials in (12.26) forces the
points in the cluster v to be within a distance γ−hv ;
hence (12.23) can be replaced in the integral (12.26) by
(γhv′γ−hv)2(1−ε) h2

v (B′)nv , provided κ
4 is replaced by κ

8
and B′ is conveniently chosen (see Appendix A4).

The bound (12.25) proves that if one collects together
several trees of the same type and if use is made of
the charge symmetry then all trees with nonzero charge
Qv0 6= 0 (hence |Qv0 | ≥ 1) yield ρv0 > 0 and ρv+2−2ε >
0 if ε is taken small enough, for all α2 < 8π. Hence
(12.25) proves that the ultraviolet stability can be vio-
lated, if α2 < 8π, only by trees which have zero charge:
Qv0 = 0.

For α2 < 8π not all the neutral trees have ultraviolet
stability problems: onlu the neutral ones with n = nv0
end points suche that [see (12.20)]

(α2

4π
− 2

)
(n− 1) +

α2

4π
< 0 (12.27)

So, for α2 < 8π there is a sequence of tresholds obtained
by setting the l.h.s. of (12.27) equal to 0:
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α2
n

4π
= 2

2n− 1

2n
= 1,

3

2
,
5

3
, . . . (12.28)

As α2 reaches α2
n and beyond it the trees with n vertices

and zero charge “become ultraviolet unstable”—i.e. their
contribution to the effective potentials are not convergent
as N →∞.

However the reason for the instability is somewhat triv-
ial and it is manifestly due to the fact that the first non-
trivial vertex v0 of |g, when γ is neutral, gives a contri-

bution to V (γ) of the form : ei α ϕ
(≤k)(γ) :, which does

not vanish when the positions of the end points labels
ξ11, . . . , ξn become identical.

But id one defines L(k)
γ = 0 unless Qv0 = 0 or α2 < α2

n

and

L(k)
γ

∫
: ei α ϕ

(≤k)(γ) : V (γ) dξ
def
=

∫
V (γ) dξ, (12.29)

if Qv0 = 0 and α2 < α2
n and if one collects together the

trees γ of the same shape up to the charge indices and
with the same frequency indices and the same vertices of

zero charge one sees that the operaors L(γ)
h define trnor-

malizations operations, according to the general theory
of Secs. 69, such that the dressed graphs have the form
in Fig. 35:

k

R

h
or

k
(35)

Either they contain an index R as a superscript on
the first vertex v0 after the root r or they are entirely
contained in a single frame with an index σ = 0 appended
to the frame [meaning that they contribute a constant to

the efective potential because L(γ)
k takes values in the

space of the constants by (12.9).
A tree with an R over the first vertex will mean a con-

tribution to the to the effective potential which is equal
to the one that would be given by the tree without the R

but with : ei αϕ
(≤k)(γ) : replaced by : ei αϕ

(≤k)(γ) − 1 :.
Collecting again the contributions to the effective po-

tential from all the trees with given shape up to the
charge indices and summing their contributions over all
the possible frequency and charge labels at fixed neutral
vertices one sees that the contribution to the effective
potential sums up to the same quantity (12.4) with the
replacement

: ei αϕ
(≤k)(γ) : → : cos αϕ(≤k)(γ)− 1 : (12.30)

and the latter expression vanishes when all the points
ξ1, . . . , ξn collapse into a single point and the order of zero
is of the order of the square of the zero of ϕ(≤k)(γ). The

latter can be evaluated by recalling the basic smoothness
properties of ϕ(≤k) described by (3.16) (recall that the
space dimension is here d = 2): it is of the order of

B2
(
γ

∑

ξ,η

|ξ − η|)2(1−ε), (12.31)

if B = supB∆ and ε > 0 is prefixed arbitrarily.
This improves the bound (12.25) by replacing also ρv0

by ρv0 = ρv0 + 2− 2ε.

The arbitrariness of ε implies that, if α2 < 8π, then
ε can be chosen so that ρv0 > 0 and, therefore, all the
unframed dressed trees are ultrviolet finite in the sens
that, collecting together the contributions from the trees
with given shape, up to the charge indices, one obtains
a total contribution to the effective potential which is
ultraviolet finite.

The framed trees contribute only to the constant part
of the effective potential and therefore need not be stud-
ied. However their theory would also be simple and they
turn out to be untraviolet finite: in fact the sum of the
contributions to the effective potential coming from the
neutral trees of a given degree is a constant which can
be written as

∫
νk dξ and, from (12.25) and the general

theory one can find

|νk| ≤ Ñ (γ)
(
γ( α2

4π −2)(n−1)+ α2

4π

)k
λn (12.32)

Since, given α2 < 8π, it is L(γ)
k = 0 if n, the number of

end points (“degree”) of γ is large enough it follows that
the cosine interaction is super-renormalizabl in the sense
of Sec. 8 (see the final comments of Sec. 8).

Exercise: study the exponential interaction (5.5) and
show that it is ultraviolet finite up to α2 < 4π. Show that
it is not renormalizable for α2 ≥ 4π (hint: just imitate
the same steps and estimates used for the cosine case).

xiii. Beyond perturbation theory in the
cosine interaction case: asymptotic
freedom and scale invariance

Having completed the perturbative analysis for the co-
sine field theory in terms of formal power series with no
control on convergence one wonders what it really means
to study an interacting field theory.

The simplest type of result that one can think to try to
prove for the interacting measures Pint is the following.

There exist (infinitely many inequivalent) one param-

eter families Pλ of measures on the space S′(R2), of the

distributions on R
2, whose Schwinger functions admit

asymptotic expansion in the parameter λ near λ = 0 coin-
ciding with the formal perturbatio expansion of the cosine
interaction discussed in Secs. 11 and 12 (with ν = 0).

Super-renormalizability is the deep property behind
the methods, so far known, to obtain a proof of the above
proposition in the cosine interaction case as well as in the
corresponding proof for many other supr-renormalizable
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field theories (e.g. −λ : ϕ4 : in two dimensions or
−λ : ϕ4 : −µ : ϕ2 : ν in three dimensions; in fact the
ideas and methods involved do not distinguish between
the mentioned theories).

The first idea is to try to build Pλ as a limit of measures
of the form

Z−1
( N∏

j=0

χj(ϕ
(j))

)
eV (ϕ(≤N))

N∏

j=0

P (dϕ(j)) (13.1)

where χj are characteristic functions selecting fields hav-
ing so large a probability that

1 ≥
∫ ∞∏

j=0

( N∏

j=0

χj(ϕ
(j))P (dϕ(j))

)
≥ e−ε(λ)|Λ| (13.2)

with ε(λ)−−−→
λ→0

0 faster than any power and (see (11.1)
with ν = 0)

V (ϕ(≤N)) =

∫

Λ

(
λ : cos αϕ

(≤N)
ξ : +νN(λ)

)
dξ (13.3)

where νN (λ) is the sum of the finitely many countert-
erms due to the renormalization described in Sec. 12 [see
(12.31)] if any, i.e. if 4π ≤ α2 < 8π.

The characteristic functions χj will be so chosen to al-

low one to treat “naively” the fields ϕ(j) when χj(ϕ
(j)) =

1: i.e. χj will be the characteristic functions of the set

{
ϕ

∣∣ | sin
(α
2

(ϕ
(j)
ξ −ϕ(j)

η )
)
|
}
< Bj (γj |ξ−η|)1−ε, ∀ξ, η ∈ Λ

(13.4)
where Bj = B (1 + j)a log(e+ j + λ−1) for some B, ε >
0, a > 1

2 (to be chosen). The probability of the above

event with respect to P (dϕ(j)) is bounded below, by using
(3.17), for all a ≥ 1

2 by

∏

∆⊂Λ

(
1−Ae−αB2(1+j)

)(
log(e+ j + λ)

)2 ≥

≥
(
1−Ae−αB2(1+j) · (log(e+ j + λ))2

)γ2j|Λ|
,

(13.5)

In (13.2) one can take, with χj as in (13.4),

ε(λ) =

∞∑

j=0

γ2j log
(
1−A·

· (1 + j + λ−1)−αB
2(1+j) log(1−A(1+j+λ−1))

)
=

= O(λ∞)

(13.6)

i.e. ε(λ)−−−→
λ→0

0 faster tan any power of λ.
Since the amount of phase space thrown away by the

insertion of the characteristic functions in (13.1) is, if

measured with the free-field measure, very negligible [see
(13.2) and (13.4)] it is quite clear that the perturbation
theory expansion for the Schwinger functions of the mea-
sure (13.1) and those of the measure obtained by taking
away from (13.1) the characteristic functions are identical
uniformly in N .

Therefore if one succeeds in showing that the measure
(13.1) has a limit as N → ∞ (possibly only on subse-
quences) the one parameter family claimed to exist in
the above proposition is constructed.

This is in fact true and it is the way which we will be
followed in proving the proposition stated at the begin-
ning of this section. Since the construction clearly de-
pends on the arbitrary parameter B in (13.4) one must
expect that the family Pλ of measures obtained as limits
of (13.1) is B–dependent.

The measure (13.1) will be called a “restricted cosine
field”: it is an object of limited interest even in the limit
N → ∞. Its importance lies only in the fact that its
understanding is preliminary to the understanding of the
interesting case essentially consisting in letting B →∞.

It is important the following remark: the restrictions
(13.4) do not imply that the field ϕ(≤N) is constrained to
be smooth for large N . Actually a simple computation
shows that the cut-off on rough or large fields imposed by

the inequalities (13.4) is such that ϕ
(≤N)
ξ − ϕ(≤N)

η have
essentially the same covariance, hence the same average
size, with respect to the free Gaussian measure or with
respect to the free restricted Gaussian measure [i.e. the
Gaussian measure restricted to the ensemble of fields de-
scribed by (13.4)]. This means that the problem of taking
the limit as N →∞ of (13.1) is still nontrivial and that
some new idea is necessary for its solution.

Arguments on field theory are often given, in the liter-
ature, which treat the the fields as if they verified (13.4)
and the problem of controlling what happens when the
field violates the conditions imposed in (13.4), i.e. the
problem of controlling the large fluctuations, is often
solved by handwaving saying that the large fluctuations
are “depressed” by the positivity of the action.

It will be clear that, instead, many real problems arise
in trying to give a rigorous meaning to such arguments;
in my understanding the situation is, in general, very
subtle and I cannot see the actual solution of the above
large fluctuations problem (even in the cases in which it
is known how to handle it on a mathematically rigorous
basis) as just a refined way of rephrasing the mentioned
positivity argument. Furthermore this is a case in which
it makes no sense to appeal to “physical arguments” be-
cause the issue is [precisely whether field theory has any-
thing to do with physics.

The problem of the relevance of the large fluctuations
seems to have been clearly perceived as a deep one, even
in field theories with a formally positive action in the
context of constructive field theory and it should be re-
garded as one of its a conceptual contributions, see (Ben-
fatto et al., 1978, 1980a,b; Glimm, 1968a,b; Glimm and
Jaffe, 1968, 1970a,b; Magnen and Seneor, 1976; Nelson,
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1966, 1973a,b,c; Nicolò, 1983).
The new ideas needed to deal with the problem of prov-

ing the existence of the limit (13.1) as N → ∞ at fixed
B are two:
(i) the asymptotic freedom and
(ii) scale invariance.
Their role and interplay in field theory seems to have been
clearly realized as early as 1959 by Wilson, see (Wilson,
1971). It turns out that they are best illustrated in the
theory of the cosine field.

Suppose that one wishes to study the distribution of
the low frequency fields ϕ(0), . . . , ϕ(p) in the restricted
ensemble. Then the function

F (N)(ϕ(0), . . . , ϕ(p))
def
=

[ p∏

j=0

χj(ϕ
(j))

]
·

·
∫ [ N∏

j=p+1

χj(ϕ
(j))

]
eV (ϕ(≤N))

N∏

j=p+1

P (dϕ(j))

(13.7)

is the density of the distribution of ϕ(0), . . . , ϕ(p) with re-
spect to the measure P (dϕ(0)) · · ·P (dϕ(p)) and the first
step is to show that it is an integrable function with re-
spect to the measure P (dϕ(0)) · · ·P (dϕ(p))

From the above discussion on the relevance of the phase
space “neglected” [see (13.2) and (13.6)], it is natural to
think that the result of the integration in (13.7) should
simply be

eV
(k)(ϕ(≤k)) (13.8)

up to corrections negligible as λ → 0 and due to the
presence of the characteristic functions in (13.1).

However this does not really make sense, because the
theory of the preceding sections provides an asymptotic
expansion in λ for V (k) which has little chance of being
convergent.

The next best guess is that instead of (13.8) one gets,
for a prefixed integer t ≥ 0

e

[
V (k)(ϕ(≤k))

][t]
+λt+1Rt(ϕ

(≤k);λ) (13.9)

where
[
·
][t]

denotes the truncation of a power series in
λ to order t and Rt represents a “remainder”.

Therefore
[
V (k)(ϕ(≤k))

][t]
will be given just by the

perturbation theory developed in the preceding sections
counting only trees with at most t end points; the choice
of t in (13.9) is arbitrary provided that the remainder
can be well estimated for the chosen t.

The validity of a result like (13.9) means that the inte-

gral of eV (ϕ(≤N)) over ϕ(N), . . . , ϕ(p+1) can be performed
successively by using perturbation theory; therefore in
order to have any hope of proving (13.9) with reasonable
bounds on the remainder it is necessary that V (q)(ϕ(≤q)

regarded as a “potential” on ϕ(q) at fixed ϕ(q−1), . . . , ϕ(0)

has a very small small size, at least on the restricted en-
semble (13.4); actually, not only should its size be small,
but it should even go to 0 as q →∞, asymptotic freedom,
if N =∞.

In order that the above property holds for all q ≤ N
it must of course hold for q = N . Hence the check of the
property of asymptotic freedom starts with a check of its
validity for q = N .

To explain what the above words concretely mean one
considers the field ϕ(N) and remarks that, as discussed
in Sec. 3, it can be regarded as smooth and essentially
constant on cubes ∆ of size γ−N , which will be thought as
extracted from a pavement QN of Λ with cubic tesserae
of side length γ−N . Furthermore the values of ϕ(N) on
different tesserae are almost independent because of the
exponential decay on scale γ−N of the covariance of ϕN).

This suggests writing the nonconstant (i.e. nontrivial)
part of the interaction as a sum of contributions each
coming from a given ∆ ∈ QN , i.e. as

∑

∆∈QN

λ

∫

∆

: cosα (ϕ
(≤N−1)
ξ + ϕ

(N)
ξ ) : dξ =

∑

∆∈QN

·

· (λ eα2

2 C
(≤N)
00 |∆|) ·

∣∣∣∣
∫

∆

cosα (ϕ
(≤N−1)
ξ + ϕ

(N)
ξ )

dξ

|∆|

∣∣∣∣ ≡

≡
∑

∆∈QN

λγ( α2

4π −2)NS∆, (13.10)

where use has been made of C
(≤N)
00 = (N +1) log γ

2π , |∆| =
γ−2N , and by the preceding arguments one regards the
variables S∆, which are defined here and have “size of
O(1)” because they are averages of a cosine, as random
variables functions of the field ϕ(N) parameterized by the
field ϕ(≤N−1) and ϕ(j), j ≤ N − 1, are supposed to be in
the set defined by (13.4).

The variables S∆ can be thought of as continuous spins
sitting on the lattice QN and the calculation of the inte-
gral

∫
χN (ϕ(N))e

∑
∆
λ γ( α2

4π
−2)NS∆P (dϕ(N)) (13.11)

can be thought of as the problem of evaluating the parti-
tion function of a spin system, on the lattice QN , which

is a perturbation by an energy λW =
∑

∆ λγ
( α2

4π −2)NS∆

of the “free measure”

P (
∏

∆

dS∆) =

∫ ∏

∆

δ(S∆ − Sδ)χN (ϕ(N))P (dϕ(N)),

(13.12)
which, intuitively, can be thought of an almost factorized
measure with respect to the variables S∆.

So the problem of computing the integral (13.11) in
terms of its value for λ = 0 can be interpreted as a sta-
tistical mechanics problem for a spin system of bounded,
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uncorrelated spins with a local perturbation whose size
is

λγ( α2

4π −2)N (13.13)

If α2 < 8π one sees that the “effective coupling on
the fields with frequency N” is (13.13) ” and it goes to
zero as N → ∞: which means that the spin system is a
“very high temperature” for large N , and one can very
reasonably hope to use the high temperature expansion
techniques of statistical mechanics to estimate perturba-
tively the integral (13.11). The result of such estimates
is in general that

∫
eλW dP = e

∑t

p=1

λp

p! E
T (W ;p)+Rt (13.14)

and

|Rt| ≤ λt+1 × system volume in

lattice spacing units
× const (13.15)

It is therefore clear that the result of the integral (13.14)
gives rise to a very complex new function of ϕ(≤N−1).

For this reason one does not say that a theory is asymp-
totically free just if the computation of the effective cou-
pling constant for ϕ(N) gives a result tending to zero with
N →∞ as in (13.13).

The correct definition of asymptotic freedom is set
up by considering the main term of (13.9) and by in-
terpreting it as a potential for ϕ(k) parameterized by
ϕ(lek−1); then one computes the “effective coupling con-
stant λN (k)” and says that the interaction is asymptoti-
cally free if

lim
k→∞

lim
N→∞

λN (k) = 0 (13.16)

The self consistent nature of this condition being clear,
one can hope to be really able to check (13.16) and use
it to obtain good estimates on Rt.

Although the calculation, or estimates, of λN (k) looks
a priori much harder than the evaluation of λN (N) per-
formed above [see (13.13)], it turns out that one can eas-
ily estimate λN (k) by the general theory of perturbations
developed in the previous sections.

To obtain an estimate of λN (k) one first needs its pre-
cise definition: in fact [V (k)(ϕ(≤k))][t] no longer depends
on a single constant which, as above for k = N , can be
naturally related to N but it is rather a “many body”
nonlocal interaction: is is a sum over the trees with ≤ t
end points of terms like [see (11.9),(12.31)] like

∫ ∑

σ

∑

γ,σ(γ)=σ

V (ξ1, . . . , ξn; γ)·

·
(

: cos(αϕ(≤k)(γ))− δQγ ,0 :
)
dξ1 . . . dξn

(13.17)

where γ denotes a tree shape of degree n (i.e. with n end
points), |Bs are the charges at the end points of γ and
Qγ =

∑
i σi is the total charge of γ.

To interpret (13.17) as a spin-spin interaction for a
lattice spin system one has to recall the main property
of ϕ(k) of being approximately constant and smooth on
the scale γ−k and of being independently distributed on
the same scale (approximately, of course).

Therefore following the same philosophical principles
already used above one splits (13.17) into a sum over all
possible n–tuples of tesserae ∆1, . . . ,∆n ∈ Qk of terms
like

∫

∆1,...,∆n

V (ξ1, . . . , ξn; γ)·

·
(

: cos(αϕ(≤k)(γ))− δQγ ,0 :
)
dξ1 . . . dξn

(13.18)

Then one will interpret (13.8) as a many body interaction

between the spins (S∆1 , . . . , S∆n) ≃ (ϕ
(k)
ξ1
, . . . , ϕ

(k)
ξn

and

check that (13.18) is bounded by

CtλN (k)ne−κγ
k d(∆1,...,∆n) (13.19)

uniformly in N and with λN (k) and κ independent on
the particular term like (13.18) contributing to the ef-
fective potential, and also independent of the considered
expansion order t; here Ct, κ > 0 are suitable constants.

Then the constant λN (k) will be naturally called the
effective coupling constant for the field ϕ(k): the inter-
action (13.18) then susceptible to the very same inter-
pretation as (13.10) in terms of continuous lattice spin
systems.

All the technical work necessary to study the bounds
(13.19) in the cosine field case has already been done in
the proof of its renormalizability: in fact (12.25) with
ρv0 replaced by ρv0 + 2 − 2ε, as explained after (12.31)
immediately yields a bound on (13.18) of the form (13.10)
with

Ct = CtB
2, (13.20)

λN (k) = λγ( α2

4π −2) k(1 + k)2a(log(e+ k + λ−1)4)

and C + t is B–independent and κ = κo

4 > 0, for all N
provided ε in (13.4) is chosen so that ρv0 +2−2ε > 0—i.e.

ε≪ 2− α2

4π .
Therefore the cosine interaction is asymptotically free

for |a2 < 8π provided it is correctly renormalized for
α2 ∈ [4π, 8π).

One should remark the deep difference between the
cases α2 < 4π and α2 ∈ [4π, 8π): in the first case condi-
tions (13.4) are not necessary to obtain (13.20) because
the bounds (12.19) and (12.25) can be used and because
they had been obtained without using the smoothness
property of ϕ(≤k).
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Such properties are necessary to obtain the improve-
ment on (12.25) (i.e. ρv0 →∼ ρv0 + 2) needed to
achieve ultraviolet stability for α2 < 8π. Recall that
the improvement follows, after renormalization, only if
| cosαϕ(≤k)(γ) − 1 : is bounded by (12.31) and this is
possible only if the smoothness condition in (13.4) holds
[the boundedness of the fields is not really necessary and
one could proceed without it].

Actually the latter remark shows that (13.20) can be
improved by replacing Ct by a B–independent constant
if α2 < 4π. One can also remark that while the proof
of the proposition at the beginning of Sec. 13 on the
existence of the P ’s easily implies, by the arbitrariness of
B in (13.4) the complete construction of the cosine theory
in the case α2 < 4π this is no longer so for α2 ≥ 4π,
when the presence of the field cut-off introduced by the
characteristic functions in (13.1) is really essential to have
asymptotic freedom. In the latter case, α2 ∈ [4π, 8π),
new ideas are necessary to control the B →∞ limit.

The discussion of the latter limit will be postponed to
Sec. 14 and in the present section no more differences
will arise between the cases α2 < 4π and α2 ∈ [4π, 8π).

Having checked the asymptotic freedom for the cosine
interaction one realizes that the partial solution of the
ultraviolet problem provided by the proposition stated at
the beginning of this section still requires the analysis of
the many statistical mechanics problems (one per scale)
of weakly coupled continuous lattice spin systems.

One can, in fact, regard as such the problem of per-
forming the successive integrations over ϕ(p) of

χ(ϕ(≤p)) e[V
(p)(ϕ(≤p))][t] (13.21)

for p = N,N − 1, . . . , k + 1.
The reason behind the feasibility of the above feat

is the second important idea on the problem: the free
fields ϕ(0), . . . , ϕ(N) are identically distributed up to triv-
ial scaling (see Sec. 3).

This means that, whatever p is, the integral (13.21) can
be regarded as the computation of the partition function
of the same spin system on a fixed lattice affected by
a perturbation which is p dependent and which, by the
asymptotic freedom property, has a p dependence becom-
ing weaker as p becomes larger.

Therefore, as a matter of fact, one can perform the
integral of (13.21) over ϕ(p) by trying to use the naive
formula

Ep(χp e[V
(p)(ϕ(≤p))][t]) = (13.22)

= e

([∑
t

j=1

1
j! E

T
p ([V (p)(ϕ(≤p))][t],j)

][t]
+θ λN (p)t+1Rtγ

2p|Λ|
)

[see (13.4)], where|θ| ≤ 1 and Rt is a positive constant
depending on Ct and κ [see (3.19)]l the factor γ2p in front
of the volume |Λ| comes from the fact that the volume
has to be measured on the scale on which the field ϕ(p)

“lives” (see below).

The validity of (13.22) rests on the following lemma:

Lemma 1: Formula (13.22) is valid for p = 0 id one
replaces [V (0)][t] by a finite linear combination of expres-
sions like (13.17) with k = 0 which are such that the
integrals (13.18) are bounded by (13.19) with p = 0 and
λN (0) replaced by a free parameter λ.

By the scale invariance of the multiscale decomposition
such a lemma would then imply (13.22) for arbitrary p.

Accepting lemma 1, hence (13.22), remark that

[ t∑

j=1

1

j!
ETp ([V (p)(ϕ(≤p))][t], j)

][t] ≡
[
V (p−1)

][t]
(13.23)

which is evident if one recalls the definition of the formal
power series in λ for V (p−1) [see (5.13), (5.14) and the
relations following them in Sec. 5].

Then since
[
V (p−1)

][t]
verifies the bound (13.19) with

p− 1 replacing p, provided ϕ(0), . . . , ϕ(p−1) verify (13.4),
the integral (13.7) is, recursively, estimated by

F (k)(ϕ(0), . . . , ϕ(k)) =
( k∏

j=0

χj(ϕ
(j))

)
· (13.24)

· e
(
[V (k)][t]+

∑N

p=k+1
θRtγ

2p|Λ|λn(p)|t+1
)

where |θ| ≤ 1 and the remainder is simply the sum of
the remainders produced by successively integrating the
fields ϕ(N), . . . , ϕ(k+1) using (13.22), i.e. lemma 1 above.

So the remainder in (13.24) is bounded by

Rk|Λ| =|Λ|Rt
∞∑

p=k

· (13.25)

·
(
λγ( α2

4π −2) p (1 + p)2a (log(e+ k + λ−1))4
)

This proves that F (k) [see (13.7)] is well defined and
bounded uniformly inN if α2 < 8π: in fact it is enough to
choose in (13.24) and (13.25) the arbitrary integer t ≥ 0
to be not smaller than t0 where t0 is the first integer such

that (α
2

4π − 2)(t0 + 1) + 2 < 0, so that t0 = 1 if α2 < 4π,

t0 = 2 if α2 ∈ [4π, 16π
3 ), t0 = 3 if α2 ∈ [ 16π3 , 6π), t0 = 4 if

α2 ∈ [6π, 32π
5 ), etc.

If F (k) is well defined and bounded as N varies it
follows from abstract analysis that there is a subse-
quence of the sequence of measures (13.1) which con-
verges “weakly” to a limit Pλ as N → ∞ for all values
of λ ∈ R; any such one parameter family will verify the
properties in the proposition stated at the beginning of
the section [there are many many sequences of measures
(13.1) since we can change the parameter B in (13.4) or,
more generally, since one can modify the choice of the
characteristic functions]. I shall not discuss the details of
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such an analysis, since I consider it not too relevant to
the heart of the matter treated here.

So the discussion of the proposition of the proposition
at the beginning of this section is complete for the co-
sine interaction and rests on the above technical lemma;
the lemma will not be proved here (although to do so is
not particularly difficult since it is a “mean field theory
bound” in its statistical mechanics interpretation, as the
reader familiar with statistical mechanics can convince
himself). The relevance of Lemma 1 for the ultraviolet
problem from the constructive field theory point of view
has been pointed out in (Benfatto et al., 1978, 1980a,b;
Gallavotti, 1978, 1979a,b) and then used by many work-
ers who have often built it in as an important ingredient
necessary in the development of more daring and deep
ideas [see (Balaban, 1982a,b, 1983; Gawedski and Kupi-
ainen, 1980, 1983, 1984), see (Westwater, 1980) for re-
lated ideas]. Some of the methods in (Gallavotti, 1978)
in the brilliant papers on the hierarchical model in sta-
tistical mechanics [see (Bleher and Sinai, 1973, 1975)
and (Collet and Eckmann, 1978) [these are the methods
used to attack the model called the “hierarchical field” in
(Gallavotti, 1978, 1979a)]; in some sense the role of the
application of such methods to field theory was to point
out the path to follow to apply renormalization group in
constructive field theory using techniques already devel-
oped in statistical mechanics and taking almost literally
the ideas introduced in statistical mechanics by (Wilson,
1970).

The proof of Lemma 1 can be found in a rudimen-
tary form in (Gallavotti, 1978, 1979a) and in a complete
form in (Benfatto et al., 1978, 1980a,b) where a much
stronger version (see Lemma 2 of Sec. 14 of this paper)
is derived; in (Gallavotti, 1979a) lemma 1 is obtained
by literally reducing it to a classical statistical mechan-
ics problem of high temperature expansions for a system
of weakly coupled spins, using the techniques of (Kunz,
1978; Sylvester, 1979) later improved in (Cammarota,
1982) [see (Seiler, 1982) for a review].

The proof in (Benfatto et al., 1978, 1980a,b) has been
criticized as unnecessarily too complex being based on
“delicate” properties of higher order elliptic boundary
value problems; I do not think that this criticism is jus-
tified. While it is true that one relies on properties of
PDE’s, interesting in themselves but technically involved,
it should be stressed that the proof proposed in the above
reference is conceptually very simple and intuitive and it
also provides a general technique for the theory of Markov
fields. The basic ideas behind the proof are explained in
simple cases in (Gallavotti, 1981). A simpler account
of the other earlier ideas can be found in (Gallavotti,
1979a,b). The detailed proofs of Lemma 1 presented in
the above quoted papers should not mislead the reader
into believing that they are much more than technical
developments of a very simple probabilistic idea. I also
believe that the so-called simpler proofs are either weaker
or equivalently difficult, not surprisingly so by the well-
known law of conservation of difficulties.

Field theory is a technical domain and I believe that all
proofs there are equivalently hard and equivalent to the
first proofs ever given on the same subjects; it is useful
to devise new ones because they can lead to the more
efficient organization of the proofs and to the intuition
behind them, which seems an essential step for further
progress.

xiv. Large deviations: their control
and the complete construction of
the cosine field beyond α2 = 4π

The work done in Sec. 13 solves in some sense the prob-
lem of the ultraviolet stability when the random fields
into which one decomposes the free field are constrained
to fluctuate by a finite amount. The amount of the al-
lowed fluctuations is determined by the parameter B in
(13.4).

One cannot easily take the limit B → ∞ because (see
Sec. 13) diverge with B diverge in general (Rt−−−−→B→∞

∞).

Actually this is the case for α2 ∈ [4π, 8π) while for
α2 < 4π, as already mentioned in Sec. 13, the properties
(13.4) are not necessary to obtain bounds on the effec-
tive potentials and the error term in (13.24) is uniform
in B [because in (13.20) the constant Ct can be taken
independent of B; see the remark after (13.20)].

For α2 < 4π it is therefore easy to let B → ∞ and
build a family Pλ, λ ∈ R, of probability measures on the
fields on R

2, which verifies the properties of the propo-
sition at the beginning of Sec. 13 but which is not con-
centrated on an ensemble of fields restricted by (13.4);
this is a family of measures that can naturally be taken
as defining the interacting cosine field for α2 < 4π; with
some extra work it could also be proved that the limit as
N →∞ of the interaction measure with B = +∞ exists
without any need of passing to subsequences and, hence,
no nonuniqueness problems arise.

A complete theory for the cosine interaction for α2 <
4π has been first worked out in (Frölich, 1976), where the
infrared limit is also studied.

Much more interesting, as a field theory problem, is
the case α2 ∈ [4π, 8π). So far the possibility of remov-
ing the “field cut-off” B when α2 ≥ 4π has been really
proved only in the interval; α2 ∈ [4π, 32π

5 ) ⊂ [4π, 8π); the

values α2 ∈ [ 32π5 , 8π) have not yet been reached because,
as it will become clear soon, one has to find some suit-
able positivity property of the effective potential, and in
(Benfatto et al., 1982) and in (Nicolò, 1983) the positiv-
ity has been checked “by hands” rather than on the basis
of a general algorithm; since the positivity requirements
become more and more stringent as α2 → 8π it is impos-
sible to take α2 too close to 8π unless one understands
in a simpler way why things seem to adjust to produce
the right signs at the right moments.

I shall first discuss in some detail the mechanism which
allows one to remove the field cut-off (B →∞) for α2 ∈
[4π, 16π

3 ): this is the case in which the minimum value
that can be given to t i n (13.24) is t = 2, as discussed in
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Sec. 13.
Since t is so small it is easy to write explicitly

[V (k)(ϕ(≤k))][t] in terms of the graphically eloquent tree
language or even as a plain old-fashioned formula.

As an example one has, in the trees picture:

[V (k)(ϕ(≤k))][2] =

∫ ∑

γ: k(γ)≤2
degree γ≥2

V (γ)

n(γ)
dξ (14.1)

and the V (γ) are represented, if σ = ±1, by the following
tree graphs

k ξ, σ
=
λ

2
: eiασϕ

(≤k)

ξ
: (14.2)

k ξ, 0
= ν (14.3)

k ξ, σ

ξ1, σ1

ξ2, σ2

=

(14.4)
=

(λ
2

)2 (
e
−α2C

(h)

ξ1ξ2
σ1σ2 − 1

)
e
−α2C

(≤h−1)

ξ1ξ2
σ1σ2 ·

· :
(
e
i α σ2ϕ

(≤k)

ξ1
+σ2ϕ

(≤k)

ξ2 − δσ1+σ2,0

)
:

k

σ1

σ2
ξ, 0 =

(14.5)

=
(λ
2

)2
k∑

h=0

∫ (
e
−α2C

(h)

ξ1ξ2
σ1σ2 − 1

)
e
−α2C

(≤h−1)

ξ1ξ2
σ1σ2dξ1

and in (14.4), (14.5) the subtraction affects only the zero-
charge trees (σ1 + σ2 = 0) as expressed by δσ1+σ2=0; the
combinatorial factor is 1 for (14.2) and (14.3) and 2! for
(14.4) and (14.5).

If we sum over frequencies and charges the following
analytic representation for [V (k)][2] emerges:

[V (k)][2] ≡
∫

Λ

(
λ : cosαϕ

(≤k)
ξ : +ν

)
dξ +

(λ
2

)2
∫
dξdη·

·
(
e−α

2C
(≤N)

ξη − e−α2C
(≤k)

ξη
)

: cosα(ϕ
(≤k)
ξ + ϕ(≤k)

η ) : +

+
(λ
2

)2
∫

Λ

dξ dη
(
eα

2C
(≤N)

ξη − eα2C
(≤k)

ξη
)
·

· : cosα(ϕ
(≤k)
ξ − ϕ(≤k)

η )− 1 : − (14.6)

−
(λ
2

)2
∫

Λ

(
eα

2C(≤k) − 1
)
dξdη

In this special case one represents the features of the gen-
eral case discussed in Sec. 13: the only “dangerous term”
is the third, big because of the +α2 in the exponential.

However using the ideas of the preceding section one can
check (as already done in general in Sec. 13) that its
contribution to the effective coupling is

−λ
2

4

∫

∆2

|ξ − η|α
2

2π α2B2
k (γk|ξ − η|)2−2εdξdη = λN (k)2

(14.7)

where eα
2C

(≤N)

ξη has been bounded, uniformly in N , by

C
(≤N)
ξη ≤ 1

2π log |ξ − η|−1 and it has been assumed [see

(3.16)] that for ξ, η ∈ ∆

| sin α
2

(ϕ
(≤k)
ξ − ϕ(≤k)

η )| ≤ Bk (γk|ξ − η|)1−ε (14.8)

for some Bk; ∆ is a cube of the pavement Qk of Λ by
cubes of side length γ−k. Then the integral (14.7) is
easily evaluated by a scale transformation of ∆ to a unit
box and, in conformity with the general bounds of Sec.
13, yields

λN (k)2 ≡ λ2γ−4kγ
α2

2π kB2
k · const ≃

(
λγ( α2

4π −2)k
)2
B2
k

(14.9)
expressing the asymptotic freedom of the second order
contribution to V (k), for α2 < 8π.

The problem of going beyond the formal perturbation
theory is that one cannot neglect the region where (14.8)
does not hold with Bk given by

Bk = B (log(e+ k + λ−1)) (1 + k)a (14.10)

as one would like to do on the grounds that, for a ≥ 1
2 the

probability of field fluctuations violating (14.8) is exceed-
ingly small, as described by the phase-space estimates
(13.6).

In fact although such fluctuations are irrelevant in
the description of the free field they might be en-
hanced in the interacting field case, because the poten-
tial [V (k)(ϕ(≤k))][2] becomes very large (and, worse, its
size is even N dependent, even for k small, in the region
(ξ, η) ∈ Λ2 where (14.8) is violated.

At this point one is often confronted with the state-
ment “well, the free field ϕ(≤k) will have a distribution
which depresses the phase-space region where the free
field distribution contains, among other things, a term

e
− 1

2

∫
Λ
(∂ϕξ)2dξ

”.
More precisely one refer here to the possibility of

bounding the third term in (14.6) by using the inequali-

ties (1 − cosx) ≤ x2

2 and

∣∣eα
2C

(≤N)

ξη − eα2C
(≤k)

ξη

∣∣ ≤ const e
−κγk|ξ−η|

|ξ − η|α2

2π

(14.11)

which follows from the properties of C
(0)
ξη . Denoting

ωkξη
def
= 1 − cosα(ϕ

(≤k)
ξ − ϕ(≤k)

η ), ζkξη
def
= (ϕ

(≤k)
ξ − ϕ(≤k)

η ),
and using Lagrange’s interpolation, one finds the bound
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∣∣λ2

∫
|ωkξη |

(
eα

2(C
(≤N)

ξη
−C

(≤k)

ξη
)) dξdη

∣∣ ≤

≤ const λ2α2

∫
|ζkξη | |ξ − η|−

α2

2π e−γ
kκ|ξ−η|dξdη ≤

≤ const, λ2α2γ2( α2

4π −2)k

∫
| ∂ϕ(≤k)

ξ |2dξ (14.12)

[the wick ordering in the third term in (14.6) has been
neglected, as it is not very important, since the term
comes from a zero charge tree], expressing the notion that

the “bad term” in (14.6) is dominated by
∫
| ∂ϕ(≤k)

ξ |2dξ
times a small constant, if k is large.

However the proof that follows controls the large part
of (14.6) by a method not reducible just to the inequality
(14.12) and making use of more detailed properties of
the expression (14.6); this seems to be the reason why
the proof below cannot be extended to cover the whole
range α2 ∈ [4π, 8π); this does not mean that a proof
based just on the validity of the inequality (14.12) is not
possible—and, indeed, one should look for it.

One checks that the region of the ϕ fields where (13.4)
fails gives only a very small correction in the estimate of
the error terms via the following argument.

Fix B > 1 in (13.4) once and for all [see below] and
a > 1

2 large (say a = 3
2 ; this parameter could probably be

taken even equal to 1
2 by suitably refining the estimates

below).
Given ϕ(0), . . . , ϕ(k−1), ϕ(k), define

Dk =
{
ξ, η ∈ Λ | sin α

2
(ϕ

(≤k)
ξ − ϕ(≤k)

η )| >

> Bk (γk|ξ − η|)1−ε
} (14.13)

where ε > 0 is the number in (13.4) fixed so that (13.20)

holds [i.e. ε≪ 2− α2

4π ]. Let D−1 = ∅.
Define also the set

Rk =
{

∆ |∆ ∈ Qk, ∃ ξ ∈ ∆, η with γk|ξ − η| < 1 and

| sin α
2

(ϕ
(≤k)
ξ − ϕ(≤k)

η )| > Bk
σ

(γk|ξ − η|)1−ε
}

(14.14)
where σ > 1 will be conveniently chosen later. Then for
k ≥ 0

Dk ⊂ Dk−1 ∪ (Rk ×Rk) (14.15)

In fact let (ξ, η) ∈ Dk and ξ ∈ ∆, η ∈ ∆′. Suppose that

(ξ, η) 6∈ Dk−1 ∪ (Rk×Rk); then γk|ξ− η| < B
−1/(1−ε)
k <

Bk < 1 and

| sin α
2

(ϕ
(≤k)
ξ − ϕ(≤k)

η )| < Bk
σ

(γk|ξ − η|)1−ε, (14.16)

| sin α
2

(ϕ
(k−1)
ξ − ϕ(k−1)

η )| < Bk−1(γ
k−1|ξ − η|)1−ε,

otherwise ∆ ∈ Rk and ∆′ ∈ Rk so that either (ξ, η) ∈
Rk×Rk or (ξ, η) ∈ Dk−1. But (14.16) implies, for k ≥ 1,
the contradiction with (ξ, η) ∈ Dk:

| sin α
2

(ϕ
(≤k)
ξ − ϕ(≤k)

η )| ≡ (14.17)

| sin α
2

(ϕ
(k−1)
ξ − ϕ(k−1)

η )| cos
α

2
(ϕ

(k)
ξ − ϕ(k)

η )+

+ cos
α

2
(ϕ

(k−1)
ξ − ϕ(k−1)

η ) sin
α

2
(ϕ

(k)
ξ − ϕ(k)

η )| ≤

≤
(
Bk−1γ

−(1−ε) +
Bk
σ

)
(γk|ξ − η|)1−ε ≤

Bk(γ
k|ξ − η|)1−ε (γ−(1−ε) +

1

σ
) ≤ Bk (γk|ξ − η|)1−ε

provided σ is chosen, as it can and will, so large that

γ−(1−ε) +
1

σ
≤ θ < 1, ∀k ≥ 1 (14.18)

The case k = 0 is analogous, if ϕ(−1) ≡ 0.
Coming back to (14.15) assume, inductively, that it

has been possible to prove that

∫
eV (ϕ(≤N))P (dϕ(≤N)) · · ·P (dϕ(k+1)) ≤ eV̂

(k)

Λ
+R+(k)|Λ|,

(14.19)

where denoting ωk,±ξη
def
= α(ϕ

(≤k)
ξ ± ϕ(≤k)

η ),

V̂
(k)
Λ

def
= λ

∫

Λ

: cosαϕ
(≤k)
ξ : dξ+

+
λ2

4

∫

Λ2

(
e−α

2C
(≤N)

ξη − e−α2C
(≤k)

ξη
)

: cosαωk,+ξη : dξdη+

+
λ2

4

∫

Λ2

(
eα

2C
(≤N)

ξη − eα2C
(≤k)

ξη
)

: cosαωk,−ξη − 1 : dξdη−

− λ2

4

∫

Λ2

(
eα

2C
(≤k)

ξη − 1) dξ dη (14.20)

i.e. one assumes that the part of the interaction which
caused the worst problem in (14.6) is actually missing in
(14.20) [and of course one will also assume, see below, a
good bound on R+(k)].

The reason this is not a terrible approximation is re-

lated to a special property of V
(k) ≡ [V (k)(ϕ(≤k))][2],

whereby such bad terms, if present, would be very nega-
tive and therefore they could be really thrown out of the
integration of the exponential of (14.20) because one is
interested only in upper bounds (the lower bounds having

been discussed in Sec. 13). The negativity of V
(k)− V̂ (k)

i.e. , if ωk,±ξη
def
= α(ϕ

(≤k)
ξ ± ϕ(≤k)

η ), of

∫

Dk

(
eα

2C
(≤N)

ξη − eα2C
(≤k)

ξη
)

: cosαωk,−ξη − 1 : dξdη ≡
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≡
∫

Dk

((
eα

2C
(≤N)

ξη − eα2C
(≤k)

ξη
)
eα

2 (C
(≤k)
00 −C

(≤k)

ξη
)·(14.21)

· (cosωk,−ξη − 1) + (1− e−a2 (C
(≤k)
00 −C

(≤k)

ξη
))

)
dξdη

holds, because in Dk it is

− 2 sin2 α

2
(ϕ

(≤k)
ξ − ϕ(≤k)

η ) + α2(C
(≤k)
00 − C(≤k)

ξη ) ≤

≤
(
− 2B2

k + α2C
)
(γk|ξ − η|)2−2ε (14.22)

where we used, with Cε, C being suitable constants,

C
(≤k)
00 − C(≤k)

ξη =

k∑

j=0

(C
(j)
00 − C

(j)
ξη ) ≤

≤
k∑

j=0

Cε(γ
j |ξ − η|)2−2ε ≤ C(γk|ξ − η|)2−2ε.

(14.23)

If B is supposed to be chosen so that B2
0 > α2C it

follows that the r.h.s. of (14.22) is bounded by

−B2
k(γ

k|ξ − η|)2−2ε < 0. (14.24)

This remark makes it possible to neglect the interac-
tion, or at least its bad part, in the regions where the field
is rough and one can therefore use the free-field proper-
ties to prove this via rigorous bounds.

The precise way to make use of the above ideas to
study the integral

eV̂
(k)

Λ P (dϕ(k)) (14.25)

is the following. The first step in estimating (14.25) is

to replace V̂ (k)Λ by a simpler function, at least as far as
functional dependence on ϕ(k) is concerned. Note that
the ϕ(k) dependence of (14.20) is neither polynomial nor
trigonometrical since ϕ(k) enters in a most complex way
into the integration domains.

To find the simpler form that is sought imagine that
Λ in (14.20) is replaced by an arbitrary set J and call

V̂
(k)
J the resulting expression. Then for suitably chosen

A,A(λ):

V̂
(k)
J ≤ V̂ (k)

J/Rk
+N (Rk)·

· (λγ( α2

2π −2)k + λ2γ2( α2

2π −2)kB2
k) =

= V̂
(k)
J/Rk

+N (Rk)A(λ)γ2( α2

2π −2)kB2

(14.26)

which follows immediately from the asymptotic freedom

bounds (13.20), which in turn hold because ϕ
(≤k)
ξ −ϕ(≤k)

η

is considered only in the region (J × J)/Dk: N (Rk) is
just the number of boxes composing Rk.

Therefore (14.25) can be bounded above by

∑

Rk

∫
e
V̂

(k)

Λ/Rkχ(Rk)P (dϕ(≤k))eA(λ)B2γ( α2

4π
−2)k N (Rk)

(14.27)
where χ recalls that ϕ(k) is constrained to be such that
the r.h.s. of (14.14) is precisely Rk.

Then call HJ the expression obtained from V̂
(k)
J by

replacing Dk by Dk−1; denoting ωk,±ξη
def
= α(ϕ

(≤k)
ξ ±ϕ(≤k)

η )
it is, therefore, by definition

HΛ/Rk
= λ

∫

Λ/Rk

: cosαϕ
(≤k)
ξ : dξ +

λ2

4

∫

(Λ/Rk)2
dξdη·

· (e−α
2C

(≤N)

ξη − e−α
2C

(≤k)

ξη ) : cosαωk,+ : +
λ2

4
·

·
∫

(Λ/Rk)2/Dk−1

dξdη (eα
2C

(≤N)

ξη − eα2C
(≤k)

ξη ) · (14.28)

: cosαωk,+ − 1 : −λ
2

4

∫

(Λ/Rk)2
(eα

2C
(≤k)

ξη − 1) dξdη

And one checks that

V̂
(k)
Λ/Rk

≡HΛ/Rk
+
λ2

4

∫

Sk

(
eα

2C
(≤N)

ξη − eα2C
(≤k)

ξη
)
·

· : cosα(ϕ
(≤k)
ξ − ϕ(≤k)

η ) − 1 : dξdη (14.29)

where Sk = (Λ/Rk)2 ∩ (Dk−1/Dk) so that

(Λ/Rk)2/Dk = (14.30)

=
{[

(Λ/Rk)2/Dk−1

]
∪ Sk

}
/
[
(Λ/Rk)2 ∩ (Dk/Dk−1)

]

and the set (Λ/Rk)2 ∩ (Dk/Dk−1) is empty because of
Dk ⊂ Dk−1 ∪ (Rk ×Rk) [see (14.15)].

Let (ξ, η) ∈ Sk ⊂ Dk−1 ∩ (Λ/Rk)2, k ≥ 1; then it is
(γk−1|ξ − η|)1−εBk−1 < 1, i.e.

(γk−1|ξ − η|)1−ε < γ1−εB−1
k−1 (14.31)

because the sine is bounded by 1. Hence for all k ≥ 1
and (ξ, η) ∈ Sk

| sinα
2

(ϕ
(≤k)
ξ − ϕ(≤k)

η )| ≥ | sin α
2

(ϕ
(k−1)
ξ − ϕ(k−1)

η )|−

− | cos
α

2
(ϕ

(k)
ξ − ϕ(k)

η )| − | sin α
2

(ϕ
(k)
ξ − ϕ(k)

η )| ≥

≥ Bk−1

[
1−

(Bk
σ

(γk−1|ξ − η|)1−ε
)2

] 1
2 ·

· (γk−1|ξ − η|)1−ε − Bk
σ
γ1−ε(γk−1|ξ − η|)1−ε ≥

≥ Bk
[Bk − 1

Bk

(
1− B2

k

B2
k−1σ

2

) 1
2 − γ1−ε

σ

]
· (14.32)

· (γk−1|ξ − η|)1−ε ≥ Bk θ (γk−1|ξ − η|)1−ε,
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where if we suppose (as we can) that σ is large enough,
and use (14.11), θ is

θ = min
k≥1

[Bk − 1

Bk

(
1− B2

k

B2
k−1σ

2

) 1
2 − γ1−ε

σ

]
> 0 (14.33)

The inequality between the first and the last terms can
be checked directly also for k = 0.

Therefore the integral in (14.29) is for all k ≥ 0 non-
positive, provided [see also (14.22),(14.23)]

− 2 sin2 α

2
(ϕ

(≤k)
ξ − ϕ(≤k)

η ) + α2(C
(≤k)
00 − C(≤k)

ξη ) ≤

≤
(
− 2θ2B2

kγ
−2(1−ε) + α2C

)
(γk|ξ − η|)2−2ε < 0

(14.34)
i.e. if B is supposed large enough, as is possible. Hence
for all k ≥ 0

Ṽ
(k)
Λ/Rk

≤ HΛ/Rk
(14.35)

which implies, if we go back to (14.27),

∫
eṼ

(k)

Λ P (dϕ(k)) ≤
∑

Rk

[ ∫
χ(Rk)eHΛ/RkP (dϕ(k))

]
·

· eN (Rk)A(λ)γ( α2

4
−2)k

(14.36)

The advantage of replacing Ṽ
(k)
ΛRk

by HΛ/Rk
in (14.27)

is that the function HΛ/Rk
is a “simple trigonometrical

expression” in the fields ϕ(k) [see (14.28)], and no depen-
dence is any more present on the very complicated set
Dk; of course there is a dependence on Rk, but Rk is a
union of cubes and therefore this dependence is not so
bad; besides, one wishes to keep it fixed, as the integral
(14.36) is performed at fixed Rk (because of the presence
of the χ functions).

At this point one needs a way of estimating integrals
like the one in (14.36). What is known about the inte-
grand is that HJ can be written as

Hj =
∑

∆∈Qk

λ

∫

∆∩J

cosαϕ
(≤k)
ξ1

dξ1
|∆|+

+
∑

∆1,∆2∈Qk
σ1,σ1=±1

λ2

∫

(∆1×∆2)∩J2

dξ1
|∆1

dξ2
|∆2|
·

· h(2)
σ1σ2

(ξ1, ξ2) cosα(σ1ϕ
(≤k)
ξ1

+ σ2ϕ
(≤k)
ξ2

)+

+
∑

∆1,∆2∈Qk

λ2

∫

(∆1×∆2)∩J2

dξ1
|∆1

dξ2
|∆2|
· (14.37)

· h(2)(ξ1, ξ2)
1− cosα(ϕ

(≤k)
ξ1
− ϕ(≤k)

ξ2
)

(γk|ξ1 − ξ2|)1−ε
+

+
∑

∆1,∆2∈Qk

∫

(∆1×∆2)∩J2

dξ1
|∆1

dξ2
|∆2|

h(0)(ξ1, ξ2)

where the h(·) functions are λ independent and where
the Dk−1 dependence can be thought as included in the
h functions. Furthermore the theory of the preceding
sections or the explicit expressions for the h functions
[see (14.28)] imply that

∫

∆

|λ| |h(ξ1)| dξ1 ≤ Ã λγ( α2

4π −2) k ≤ Hk, (14.38)

∫

∆1×∆2

λ2 |h(2)(ξ1, ξ2)| dξ1 dξ2 ≤

≤
(
λγ( α2

4π −2) k
)
AB2

ke
−κγkd(∆1,∆2) ≤ Hk

(14.39)

where Ã, A,Hk are suitably chosen constants.
In other words at fixed Rk the integral in (14.36) looks

like the partition function of a classical spin system on
the lattice Qk.

The reason the estimates (14.38), (14.39) do not de-
pend on ϕ(k−1) is that in the “bad terms” of HΛ no pair
(ξ, η) ∈ Dk−1 appears, so that (14.39) is obtained by the
same estimates leading to the proof of asymptotic free-
dom (and actually follows from them) is Sec. 13.

It is possible to formulate a rather general version of
the Mayer expansion allowing one to estimate naively the
integral (14.36).

Given ∆ ∈ Qk let χb∆, χ∆
◦b def= 1 − χb∆ be the character-

istic functions of the events on ϕ(k)

{
ϕ(k)

∣∣∃ ξ, η ∈ ∆ such that

|ϕ(k)ξ − ϕ(k)η| < b (γk|ξ − η|)1−ε
} (14.40)

and of its complement, respectively.
Let R be a subset of Λ pavable by Qk, i.e. union

of ∆’s in Qk, and let Rc be its complement; denote

χR
def
=

∏
∆⊂R χ∆ if R is the disjoint union of cubes

∆ ⊂ R; then the following lemma, closely related to
Lemma 1, Sect. 13, holds.

Lemma 2. Given an integer t ≥ 0 there exist con-
stants G, g, g′, b∗, depending only on t and the parameters
γ, ε, κ, such that if HΛ verifies (14.38)(14.40) then

∫
P (dϕ(k))χbRc χR

◦b eHΛ/R ≤
[ ∫

χR
◦ b P (dϕ(k))

] 1
2 ·

· e
([∑

t

p=1
ET

k (HΛ;p) p!−1
][t])
· (14.41)

· e
(
δ(b,Hk) γ2k|Λ|+δ′(b,Hk)N (R)

)

where the errors have a value close to the one which would
be naively expected from the point of view of statistical
mechanics:

δ(b,Hk) ≤ G
(
(Hk b

g eHkb
g

)t+1 + e−g
′ b2+g Hk b

g)

δ′(b,Hk) ≤ GHkb
g, (14.42)
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and N (R) is the number of cubes ∆ in R. Furthermore
if b is large enough, b > b∗:

∫
P (dϕ(k))χbΛ e

HΛ ≥

≥ e
([∑

t

p=1
ET

k (HΛ;p) p!−1
][t])

−δ(b,Hk) γ2k|Λ|
,

(14.43)

and finally, for suitably chosen and suitably chosen con-
stants α0, β0:

∫
P (dϕ(k))χR

◦ b ≤
(
α0e

−β0 b
2)N (R)

(14.44)

The k dependence of the constants is trivially due to
the scaling properties of the field. The first bound in
(14.42) could be easily improved: here it is given in the
form in which it had been found in (Benfatto et al., 1978,
1980a,b, 1982) where Lemma 2 is proved under the extra
assumption that γ is close to 1 (an assumption which can
be easily released but which is sufficient for our purposes
since γ is restricted only by γ > 1).

Clearly (14.43) implies as a special case Lemma 1 of 13.
Lemmas 1 and 2 will not be proved here, because their
statistical mechanical character makes them somewhat
foreigners to field theory; also a detailed proof would be
very long in spite of its conceptual simplicity; the reader
can find it in the references given above.

At this point it is not difficult to conclude the esti-
mates. First remark that in the present case

[ 2∑

p=1

ETk (HΛ; p) p!−1
][2] ≤ V̂ (k−1)(ϕ(k−1)) (14.45)

because the l.h.s. , being the result of a Gaussian inte-
gral of simple trigonometric functions, can be explicitly
computed; after the simple calculation one finds that the
difference between the r.h.s. and the l.h.s. is given exactly
by

∫

Dk−1

dξ dη
(
eα

2C
(≤k)

ξη − eα2C
(≤k−1)

ξη
)
·

· : cos
[
α (ϕ

(≤k−1)
ξ − ϕ(≤k−1)

η ) − 1
]

:

(14.46)

which is not positive for the same reasons the (14.21) and
(14.22) were not positive.

Therefore one applies Lemma 2 to evaluate the integral
(14.36), choosing t = 2 and b = Bk; the result, by using
also (14.45) and (14.46), is

∫
eV̂

(k)

P (dϕ(k)) ≤
∑

Rk

eV̂
(k−1)+γ2kδ(Bk,Rk)·

·
(
α0e

−β0B
2
k
)N (Rk)/2

eN (Rk)δ′(Bk,Rk) ≡ (14.47)

≡ eV̂ (k−1)eγ2kδ(Bk,Rk)(
1 + α

1
2
0 e

− 1
2β0B

2
keδ

′(Bk,Rk)
)|Λ|γ2k

≡

≡ eV̂ (k−1)+ε(k)|Λ|

and, by (14.42),(14.39), and (14.38),
∑∞

k=0 ε(k) = O(λt).
This means that if one assumes (14.19) for k = N − 1

and (14.29) holds then for all k ≥ K(λ), the (14.19) holds
with

R+(k) = R+(k + 1) + ε(k) (14.48)

Hence the ultraviolet stability will be proved as soon as
one shall have been able to check (14.29) for k = N−1—
i.e. to obtain an estimate of

∫
eV (ϕ(≤N)) P (ϕ(N)). (14.49)

In the latter case the V (ϕ(≤N)) is just the sum of the
trees

N
and

ξ,σ N

σ1

σ2

ξ,0 (36)

i.e.

λ

∫

Λ

: cos(αϕ
(≤N)
ξ ) dξ + ν

∫

Λ

dξ −
(λ
2

)2·

·
∫

Λ

dξdη
(
eα

2C
(≤N)

ξη − 1
)
≡

∑

∆∈QN

λγ( α2

4π −2)N ·

·
∫

Λ

cos(αϕ
(≤N)
ξ )

dξ

|∆| + ν
∑

∆

γ−2N−

−
∑

∆

(λγ( α2

4π −2)N)2 h

(14.50)

where h is
∫

∆×∆

γ−
α2

2π Neα
2C

(≤N)

ξη
(
1− e−α2C

(≤N)

ξη
)dξdη
|∆| (14.51)

Hence in the first step one does not have to worry
about DN/DN−1, because there is no obstacle in using
Lemma 2 to evaluate the integral (14.49): assumptions
(14.38) and (14.39) are satisfied withHΛ ≡ V (N) ≡ V , by
(14.50) and (14.51); i.e. in the first step there is no need
to worry about the smoothness of ϕ(N) in order to get
the asymptotic freedom bounds, as explicitly remarked
in Sec. 13 (see comments following (13.13)).

The validity of the inductive hypothesis for k = N − 1
is completed by checking that

[ 2∑

p=1

1

p!
ETN (V (N); p)

][2]

≤ V̂ (N−1) (14.52)

which is proved as (14.45) by (14.21) and (14.52) written
for k = N − 1.
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This completes the proof for α2 < 16
3 π.

There would be no problem in applying the above tech-

niques to evaluate the integral of eV
(N)

to an arbitrarily
fixed order t > 2.

If α2 ∈ [ 163 , 6π) still nothing , basically, changes in
the above scheme of proof except that the series of the
errors, both in the upper ad lower bounds, will converge
only if t ≥ 3; the positivity of the “bad terms” was used
in an essential way in the above proof in two steps and
now it can be used in the same way. In fact the two

steps were, first, to remove the region Dk−1 from V̂Λ/Rk

(done in (14.35)) and, second, to “rebuild” V̂ (k−1) (done
in (14.45) and (14.52)).

The just mentioned two “positivity steps” are now, for
α2 ∈ [ 163 , 6π), carried through in the same way, because
it turns out that no new positivity property is needed

on V̂ (k) besides the one, already pointed out and amply

used, present in the second order part of V̂ (k): the second
order dominates in the inequalities necessary to control
the third order terms and its positivity properties are
enough for the estimates.

The situation changes for α2 ≥ 6π: now the second or-
der dominates only in the inequalities necessary to carry
out the first of the two steps of the proof where the pos-
itivity is needed. In the second step it is not known
whether it dominates; in fact the proof has been carried
through in the interval [6π, (

√
17− 1)π) and, later, up to

32
5 π by using other ideas slightly improving on the above
ones, based on detailed properties of the effective inter-
action to fourth order in (Benfatto et al., 1982) and in
(Nicolò, 1983).

In order to obtain ultraviolet stability up to α2 < 8π
some new idea seems necessary, and the paper (Nicolò,
1983) seems to go in the right direction; see also the
comment after (14.12) above

The above difficulties are also an indirect consequence
of the fact that the large–fluctuations problem has not
been solved in a naive way, by free field domination (see
comments after (14.21)), and a better understanding of
this point seems important and desirable.

The techniques used for the sine–Gordon equation can
be used also to treat the exponential interaction (5.5) for
α2 < 4π (see (Frölich, 1976)); the exponential interaction
can be treated also for α2 ≫ 4π, for d = 2, or for d ≥ 3,
which are cases in which it can be proved to be trivial
(see (Albeverio et al., 1979)).

xv. The cosine field and the screening
phenomena in the 2-dimensional Coulomb
gas and in related Statistical Mechanical
systems

Before studying the ϕ4 fields it is appropriate to con-
clude the theory of the cosine fields by pointing out their
“surprising” connection with the two–dimensional classi-
cal statistical mechanics of Coulomb systems and Yukawa
gases.

The “neutral Coulomb gas” and the “charged Yukawa

gas” describe charged particles of charge ±1 presenting,
for some values of temperature and density very interest-
ing and non trivial “screening phenomena”.

In general a system of charged particles interacting via
a potential Cxy will be defined by the grand canonical
partition function Z1(Λ, b, λ)

∞∑

n=0

(λ
2

)n 1

n!

∑

σ1,...,σn

∫

Λn

e
−β

∑
i<j

σiσj Cxi,xj dx1 . . . dxn

(15.1)
with σj = ±1, or Z2(Λ, β, λ), for a priori neutral systems:

∞∑

n=0

(λ
2

)n 1

n!

∑

σ1,...,σn∑
i

σi=0

∫

Λn

e
−β

∑
i<j

σiσj Cxi,xj dx1 . . . dxn

(15.2)
The cases which can be studied in terms of the cosine

interaction are
(a) The “regularized Yukawa gas”, with Cxy given by

Cm0,M
xy =

∫
ei p (x−y)

( 1

m2
0 + p2

− 1

M2 + p2

) dp

(2π)2

(15.3)
(b) The “regularized Coulomb gas” given by

V (m0,M)
xy = C(0,M)

xy − C(0,m0)
xy (15.4)

where the r.h.s. has to be interpreted as the limit of

C
(m,M)
xy − C(m,m0)

xy as m→ 0; i.e. as

∫
dp

(2π)2
( M2

M2 + p2
cos p (x− y)− m2

0

m2
0 + p2

)
(15.5)

Note that when the regularization parameter M is let
to +∞ it is:

V (m0,M)
xy −−−−→

M→∞

1

2π
log(am0|x− y|)−2 (15.6)

where a > 0 is a suitable constant (a = log 2− g, g being

the Euler-Mascheroni constant). We set m0
def
= am0.

The partition function for the above systems can
be easily written in terms of a Gaussian random field
ψ(−R,N), sum of N +R+ 1 independent fields:

ψ
(−R,N)
ξ =

N∑

j=−R

ψ
(j)
ξ (15.7)

and in terms of the functions

: cosαψ
(−R,N)
ξ :UV≡ e

1
4α

2C
(m0,mN )

00 cosαψ
(−R,N)
ξ

(15.8)
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where mN
def
= m0γ

N+1.
The covariance C(j) of the random field ψ(j) will have

Fourier transform (of a free field with open boundary
conditions, see Sec. 3)

1

m2
0γ

2j + p2
− 1

m2
0γ

2j+2 + p2
, (15.9)

Then one checks that the regularized Yukawa gas par-
tition function Z1

Y,N(Λ.β.λ) is, if we set α =
√
β, M =

m0γ
N+1,

∫
eλ

∫
:cos αψ

(−R,N)

ξ
:UV dξP (dψ(−R)) . . . P (dψ(N))

(15.10)
while the regularized Coulomb gas partition function in
the neutral grand canonical ensemble and with potential
(15.4) with M = m0γ

N+1 and with m0 replaced, for
notational convenience, by m0γ

−1, is Z0
C,N (Λ, β, λ) given

by

lim
R→∞

∫
eλ

∫
:cos αψ

(−R,N)

ξ
:UV dξP (dψ(−R)) . . . P (dψ(N))

(15.11)
It is convenient to introduce also the auxiliary partition
function Z1

C,R,N (Λ, β, λ)

∫
eλ

∫
:cos αψ

(−R,N)

ξ
:UV dξP (dψ(−R)) . . . P (dψ(N))

(15.12)
which will be called “infrared regularized (non-neutral)
Coulomb gas partition function, and (15.11) can then be
written

Z0
C,N (Λ, β, λ) = lim

R→∞
Z1
C,R,N(Λ, β, λ) (15.13)

Finally we remark the following relation between the
Coulomb gas and the Yukawa gas (see (15.10)):

Z1
Y,N ≡ Z1

C,0,N (15.14)

The proof of (15.10)–(15.15) has essentially already
been explained in Sec. 11 (and called there the “mul-
tipole expansion”); however the interpretation work nec-
essary to derive the present statement from Sec. 11 is
such that it is simpler to derive the above relations from
scratch.

Consider the integral in (15.10) and expand the ex-
ponential in powers: calling, for simplicity, C(−R,N) ≡
C(m0γ

−R,m0γ
N+1) the covariance of ψ(−R,N), we see that

∞∑

p=0

λp

2p p!

∑

σ1,...,σp

e
1
2α

2 pC
[0,N ]
00

∫
dx1 . . . dxp·

· E
( p∏

j=1

e
iασjψ

(0,N)
xj

)
≡

∑

p≥0, σ1,...,σp

λp

2p p!

∫
dx1 . . . ·

· e−
1
2α

2
∑1,n

i,j
σiσjC

[0,N ]
00 = Z1

Y,N(Λ, β, λ) (15.15)

because the diagonal terms (“self energy”terms) in the
sum

∑p
i,j=1 are canceled by the exponential factor out-

side the integral; in the first step of (15.15) the formulae
for the Wick ordering of the cosine and for the expecta-
tion E of the exponentials have been used (see Appendix
A3 and Sec. 11).

Recalling that the cancellation was due to the expo-
nential factor due to the Wick ordering, we see that the
evaluation of the integral (15.12) by the same technique
will lead to expressions of the r.h.s. of (15.12) as

∞∑

p=0

λp

2p p!

∑

σ1,...,σp

∫
dx1 . . . dxp·

e
−α2

∑
i<j

C[0,N ]
xi,xj

− 1
2α

2
∑

i,j=1p C
[−R,−1]
xi,xj

(15.16)

because the : · :UV in (15.8) is a “partial Wick ordering”
and therefore it can produce the cancellation of the diag-
onal terms of only the “ultraviolet part of the potential”,

i.e. C
(0,N)
xy .

Expression (15.16) can be rewritten as

∞∑

p=0

λp

2p p!

∑

σ1,...,σp

∫
dx1..dxpe

−α2
∑

i<j
σiσjC

(0,N)
xixj ·

· e−
1
2α

2
∑

p

i,j=1
(C(−R,−1)

xixj
−C

(−R,−1)
00 )· (15.17)

e−
1
2α

2(
∑p

i=1
)2C

(−R,−1)
00 ≡

∞∑

p=0

λp

2p p!

∑

σ1,...,σp

∫
dx1..dxp·

· e−α
2
∑

i<j
(C(R,N)

xixj
−

(R,N)
00 )σiσj · e− 1

2α
2Q2

σC
(−R,−1)
00

with Qσ =
∑

i σi. In this way one obtains an expres-
sion for Z1

C(−R,N), Eq. (15.12), implying (15.11) with

Coulomb potential V m0,M) with M = m0γ
N+1, m0 =

m0γ
−1 (the later choice is a matter of notational conve-

nience, γ being fixed).
It is expected that the “neutral Coulomb gas” de-

scribed by

Z0
C(Λ, β, λ) = lim

N→∞
Z0
C(N)(Λ, β, λ) (15.18)

is a well defined thermodynamical system, exhibiting
some kind of screening phenomena, for α2 < 4π; basi-
cally it should behave as a neutral Yukawa gas with m0

determined by λ, α (and M = +∞) at least for α2 small
(see (Brydges, 1978), (Frölich and Spencer, 1981)).

For α2 ∈ [4π, 8π) one expects that the Coulomb as
“collapses in the ultraviolet”, remaining nontrivial in
the sense that the collapse produces just a background
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of multipoles on which free charges move and interact
through nontrivial screening phenomena (note that in
two dimensions the Coulomb gas interaction does not go
to zero at infinity and, for α2 ∈ [4π, 8π) it even diverges
too fast near zero, making the partition function infinite
because it involves integrating the non summable factor

|x− y|−α2/2π).
The same collapse is expected to happen to the Yukawa

gas in the same region of α2 except that no screening in
the infrared is necessary in order for the system to exhibit
well defined thermodynamic behavior (in fact the poten-
tial decays exponentially at infinity as a consequence of
the choice m0 > 0, which gives a meaning to m−1

0 as
a natural screening length); however screening phenom-
ena are expected to occur in the ultraviolet region where
the Yukawa gas should collapse in the same way as the
Coulomb gas, i.e. by producing an infinite density back-
ground of multipoles on which free charges move.

In other words the conjecture is that the Coulomb gas
(nonregularized in the infrared and in the ultraviolet) and
the Yukawa gas (nonregularized in the in the ultravio-
let) with parameters λ, α,m0 describe the same physical
phenomena, or at least have partially overlapping physi-
cal interpretations, if the Yukawa range m−1

0 is suitably
chosen as a function of λ, α for α2 ∈ [0, 8π).

For α2 > 8π it is believed that the nonregularized
Yukawa gas is trivial (i.e. it collapses “without hope”)
and the Coulomb gas no longer exhibits infrared phe-
nomena of any kind; at least not so strong to produce
exponentially decaying effective interactions or correla-
tions.

The work done in Secs. 11 and 12 on the cosine in-
teraction allows one to make rigorous some of the above
conjectures, though much work remains to be done to-
wards the complete understanding of the whole theory.

In the case of the Yukawa gas the above mentioned con-
nection (the sine-Gordon transformation) between the
Yukawa gas and the cosine field allows one to translate
the properties of stability of the Yukawa gas in the re-
gion α2 ∈ [0, 32π/5), where the cosine field stability id
under control. And for α ∈ [3π, 32π/5) the above men-
tioned interpretation of the Yukawa gas as a gas with
infinite density of collapsed dipoles (for α2 ∈ [4π, 6π))
and of dipoles and quadrupoles (for α2 ∈ [6π, 32π/5)),
with zero total charge, emerges quite clearly. I do not
enter here into the details of this interpretation of the
results of the theory of the cosine interaction: the work
begun in (Benfatto et al., 1982) and (Nicolò, 1983).

In the case of the Coulomb gas some of the above con-
jectures also follow as corollaries of the theory of stability
of the cosine field, but the connection requires some ex-
planations.

The first remark is that the problem of studying the
Coulomb systems with “no infrared cut-off”, i.e. with
R = +∞ can be reduced to the theory of the cosine in-
teraction in the ultraviolet regime by the following chains
of identities and arguments.

Rewrite (15.12), using the factorization ′ : ex+y :=

“ex : : ey : for x, y independent Gaussian variables:

Z1
C(R,N)(Λ, β, λ) =

∫
P (dψ(0)) . . . P (dψ(N))·

[ ∫
P (dψ(−R)) · · ·P (dψ(−1)) exp

[∑

σ

∫

Λ

dξ′

(λ
2
e−

1
2α

2C
(−R,−1)
00 : ei σαψ

(0,N)

ξ :
)

: ei σαψ
(−R,−1)

ξ :
]]

≡
∫
P (dψ(0)) . . . P (dψ(N))· (15.19)

·
[ ∫

P (dϕ(0)) · · ·P (dϕ(R−1)) exp
[ ∑

σ

∫

Λγ−R

dξ′

λσ,R(ξ′) : e
iσαϕ

(0,R−1)

ξ′ :
]]

where ξ = ξ′γR and ϕ
(0,R−1)
ξ′ ≡ ψ(−R,−1), so that

ϕ(0,R−1) has the same distribution as a sum of indepen-
dent fields ϕ(j):

ϕ
(0,R−1)
ξ′ =

R−1∑

j=0

ϕ
(j)
ξ′ (15.20)

with covariance C
(0)
γjξ,γjη. This follows immediately from

the definitions by computing and comparing covariances:

actually one could put ϕ
(j)
ξ = ψ

(R−j)
γRξ′

. Furthermore, in

(15.19) λσ,N (ξ′) means

λσ,N (ξ′) =
1

2
λγ2Re−

1
2α

2C
(−R,−1)
00 e

iασψ
(0,N)

γRξ′ (15.21)

The interpretation of

eVc(ψ
(0,N)) ≡

∫
P (dϕ(0)) · · ·P (dϕ(R=1))·

exp
[∑

σ

∫

Λγ−R

dξ′ λσ,R(ξ′) : e
iσαϕ

(0,R−1)

ξ′ :
] (15.22)

is, clearly, that of an effective interaction in the sense
used in the preceding section on field theory; it should
describe the Coulomb gas on scales m−1

0 (through an
equivalent gas of multipoles; see Section 13 for this inter-
pretation; see also below).

To describe (15.22) one can try to find an expansion
for VC(ψ(0,N)) in powers of λ.

The work for such an expansion has already been done
in Sections 11 and 12, because the integral in (15.22) can
be interpreted as an integral of the type studied here.

Using the results and the notations of Sections 11 and
12 one expresses it in terms of trees:

Vc =

∫
dξ

∑

σ

∑

γ: σ(γ)=σ

ξ(γ)=ξ

V (γ)

n(γ)
(15.23)



Screening in the 2-dimensional Coulomb gas 46

where the V (γ) are computed with exactly the same rules
of Sect. 11 provided that we interpret the elementary
trees

k ξ, σ
(37)

as λσ,R(ξ) defined by (15.21), rather than 1
2λ; the index

σ is ±1, while the index 0 is not allowed, because in the
exponential in (15.22) there is no cosntant term.

All the results and bound in Sec. 12 carry through
with essentially no change, besides the mentioned change
of interpretation of fig. (37).

One therefore finds that V (γ) can be expressed, to a
given order in λ, as

( n∏

j=1

λσj ,R(ξj)
)
Wγ(ξ1, . . . , ξn) (15.24)

and Wγ will satisfy (see (12.4),(12.8),(12.9), and (12.14))

|Wγ(ξ1, . . . , ξn)| ≤ Nγ̂
( n∏

j=1

e
1
2α

2C
(≤hvj

−1)

00

)
·

·
( ∏

v>r

e−
1
2α

2Q2
v(hv−hv′ )C

(0)
00 e−

1
4κγ

hvd∗(ξv),
) (15.25)

where N
γ̂

depends only on the shape of γ. Actually, one

will be interested only in expressions like (15.24) summed
on the indices of γ: in particular one is interested in the
summations of (15.24) ove the different indices σ, ξ that
can be appended to the endpoints of otherwise identical
trees . In this way the charge symmetry is used and some
modifications appear, as explaines in Sect. 12, which al-
low one to to improve the boumd (15.25) by replacing
Q2

v

4π by
(Q2

v

4π + 2(1 − ε)δQv ,0

)
if v > v0 = (first nontrivial

vertex of the tree); this cancellation, in fact, takes place
already when one sums only over the charge coinfigura-
tions which attribute the same absolute charge to each
vertex v and integrate ove —ξ.

According to the discussion of Sect 11 the l.h.s. of
(15.22) can be interpreted, via (15.23), as the Boltzmann-
-Gibbs factor in a gas of multipoles, each represented
by the trees with the same shape up to the charge in-
dices which vary subject to the restriction that the ab-
solute charge |Qv| of each vertex is fixed. The activ-
ity of the multipole will be defined, quite arbitrarily [see
(Gallavotti and Nicolò, 1985c) for a deeper discussion]:

∗∑

σ

∑

h

∫

γ−R∆×(γ−RΛ)n−1

dξ1 · · · dξn·

·

(∏n
j=1 λσj ,R

)
Wγ(ξ1, · · · , ξn)

: e
iα

∑
j
σjψ

(0,N)

γRξj :

(15.26)

where
∑∗

runs over all charge configurations σ which at-
tribute gives absolute value to the total chargeQv to each

of the clusters associated with the vertices v of γ (called
above, simply, vertex charges); the sum

∑
h runs over all

the possible frequency labels that can be appended on
the shape of γ, and ∆ is a fixed unit cube.

The collection of the terms with the same vertex charge
is natural for physical reasons (charge symmetry), and
mathematically it produces the just-mentioned cancella-
tions.

If we reexpress (15.26), by “going back to scale 1”, it
becomes

∑ ∫

γ−R∆×(γ−RΛ)n−1

dξ1 · · · dξn (λγ2R− α2

4π R)·

·
n∏

j=1

: e
iα

∑
j
σjψ

(0,N)

γRξj : Wγ(ξ1, · · · , ξn) :≡

≡
∑

γ−2Rn

∫

∆×Λn−1

dx (λγ2R− α2

4π R)n·

· : Wγ(γ
−Rξ1, · · · , γ−Rξn) : e−α

2YN (x,σ),

(15.27)

where
∑ ≡∑∗

σ

∑
h, see (15.26), and

YN (x1, . . . , xn;σ1, . . . , ξn)

is the Yukawa potential, with ultraviolet cut-off N , of the
charges s1, . . . , σn at positions x1, . . . , xn.

Therefore the activity of the multipole will be bounded
(by using (15.24),(15.25) and the cancellation remarked
after (15.25) and recalling that ε > 0 is an arbitrary
parameter which can be chosen as small as necessary)

∑

h

γ−2Rn

∫

Λn−1

dx2 · · · dxn (λγ2R− α2

4π R)n·

·
∣∣

∗∑
: Wγ(γ

−Rξ1, · · · , γ−Rξn) :
∣∣ ≤

≤ N
γ̂
γ−2Rγ−( α2

4π −2)Rn
∑

h

( ∏

v>v0

· (15.28)

γ(( α2

4π −2)(nv−1)+ α2

4π −α2

4π Q
2
v+2(1−ε) δQv,0)(hv−hv′ )

)
·

· γ
(
( α2

4π −2)(n−1)+ α2

4π −α2

4π Q
2
v0

)
(hv0 ) UN,n

where the sum over the frequency indices is of course
bounded by the infrared cut–off: hv ≤ R. For more
details see (Gallavotti and Nicolò, 1985c).

Before discussing formula (15.28), let us note that if
N = −1, i.e. if the Coulomb potential has no ultraviolet
part (which is the case usually considered in the litera-
ture), the effective potential becomes a constant and i is
no longer a random variable and it has the interpreta-
tion of (grand canonical) pressure of the gas. Therefore
(15.28) becomes a bound on the Mayer coefficients of the
gas (see below for some consequences of this remark).

To examine the remarkable formula (15.28) one distin-
gushes two cases: either α2 ≥ 8π or α2 < 8π. Below
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one uses the arbitrariness of ε by taking it conveniently
small.

In the first case the r.h.s. of (15.28) goes to zero as R→
∞, as can be checked elementarily, for QV0 6= 0: the gas
is a gas of “neutral multipoles” (i.e. in the infrared limit
one is in a multipole phase; see (Frölich and Spencer,
1981). If QV0 = 0 then one can check that the r.h.s. of
(15.28) is uniformly bounded in R.

On the second case let

ρ = (
α2

4π
− 2)n+ 2 ≡ α2

4π
− 2)(n− 1) +

α2

4π
; (15.29)

then either ρ ≤ 0 abd the r.h.s. of (15.28) diverges in
general as R → ∞ or ρ > 0 and in this case the bound
(15.28) is uniformly bounded in R, and it tends to 0 if
Qv0 6= 0.

The conclusions from the above estimates are
(1) If α2 > 8π (hence ρ > 0), the picture od the Coulomb
gas consisting, as far as its properties on scale m−1

0 are
concerned, of neutral multipoles is consistent, because
the activity of such multipoles is finite. This will be called
the “multipole theorem” (see also (Frölich and Spencer,
1981)).
(2) If α2 > α2

n, where α2
n are the tresholds defined by set-

ting ρ = 0 in (15.29), then thinking that the gas contains
several multipoles pf charge p with p ≤ n but that no
multipoles with charge higher than n can be well defined
entities (“molecules”, of course, should be their name)
becomes consistent.
(3) It is remarkable that the above tresholds α2

n, above
which the Coulomb gas (with ultraviolet cut–off) gener-
ates molecules of p bound atoms precisely coincide with
the tresholds α2

n where the Yukawa gas charges colapse
into clusters of p ≤ n particles (in the ultraviolet limit),
see (Frölich, 1976).

This is a confirmation of the above implicitly conjec-
tured “duality” between the infrared properties of the
Coulomb gas and the ultraviolet properties of the Yukawa
gas for α2 in [0, 8π).

If we call pC(λ, β) the pressure of the Coulomb gas with
ultraviolet cut–off, as a function of the charge activity λ
and of the inverse temperature β = α2, the above analysis
proves, as is easily checked, that if

pC(λ, β) =
∑

p≤n

λpf
(p)
C (β) + λnR(n)(λ, β), (15.30)

with R(n)(λ, β)−−−→
λ→0

0, then the coefficients f
(p)
C (β) can

be shown to be uniformly bounded in the infrared limit
R→∞ for α2 > α2

n, and that only the even ones have a
nonzero limit.

In other words the Mayer series coefficients of order
≤ n are formally well defined by convergent integrals
for α2 > α2

n. The latter property follows immediately
by considering the case N = −1 in which, as remarked
above, the effective potential coincides with the grand

canonical pressure. It should be obvious that the general
case N ≥ −1 (but finite) can be reduced always, and in
atrivial way, to the N = −11 case.

This leads to the natural conjecture that pC(λ, β) is
smoother and smoother in λ at λ = 0 as β = α2 grows.

For α2 < 4π not much can be said about smoothness;
for α2 ∈ (4π, 6π) the function should have two derivatives
(actually three if α2 ∈ (16

3 π, 6π)); for α2 ∈ (6π, 40
6 π)

it should have four derivatives (actually five for α2 ∈
(32

5 π,
40
6 π), etc); for α2 > 8π the pressure should be in-

finitely smooth at λ = 0.
By derivative one means here that (15.30) holds as an

asymptotic formula with R(n)(λ, β) tending to zero faster
than λn as λ→ 0.

The conjecture suggests that while α2 crows (i.e. as
the temperature decreases), the Coulmb gas presents an
inifinite sequence of phase transitions in which it passes
from the “plasma phase”, small α2, with Debye screen-
ing phenomena, to the “multipole phase”, α2 large, with
no screening in the infrared: the “Kosterlitz–Thouless”
regime would be the last stage in a sequence of increas-
ingly complex phase transitions in which bound states
(“neutral molecules”) of increasing size become possible
in thermal equilibrium.

So far the basis for the above conjecture are the esti-
mates of this section (15.28) which imply the finiteness
of the coefficients of the Mayer expansion; such estimates
have been pointed out in (Gallavotti and Nicolò, 1985c).
Further work towards a full proof of (15.30), i.e. with es-
timates on the remainder in (15.30), is in progress (Ben-
fatto et al., 1986).

I think that the beautiful properties of the cosine in-
teraction exhibited in this section justify its i inclusion in
this work, althought they are not strictly an example of a
problem of field theory: they show that field theory is not
just a theory of quantum relativistic systems but that it
can be relevant to very different matters, Coulomb gases
are onle one example out of many more, in solid state
physics and in physics of fluids, for instance.

xvi. Nature and classification of the
divergences for ϕ4 fields

In order to see how to build the operators L(σ)
k realizing

the renormalization of the ϕ4 field theory I defined by

V1 =

∫ (
− λ : ϕ

(≤N)
ξ

4
: −µ : ϕ

(≤N)
ξ

2
: −

− α : (∂ ϕ
(≤N)
ξ )2 : −ν

)
dξ

(16.1)

it is useful, albeit not strictly necessary, to have a clear
idea of how divergences arise in it and how strong they
are.

I shall consider in detail only the foour parameter in-
teraction (16.1) in four dimensions, calling λ(α), α =
4, 2, 2′, 0, the parameters −λ,−µ,−α,−ν respectively.

If d = 2, 3 one could consider theories simpler than
(16.1) which in some cases can be constructed as true field
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theories, going beyond the formal theory of perturba-
tions, by literally repeating the arguments of Secs. 13,14
[e.g. if d = 2 one could consider the interaction(5.3), or
if d = 3 one could consider the interaction (5.6)]. Some
more details on these simple (“super-renormalizable”)
cases will be presented in Sec. 21.

Suppose that the field with ultraviolet cut–off γN , γ >
1, is decomposed as a sum of independent fields living on
scales γ−k, k = 0, 1, . . . , N and satisfying (3.17)–(3.20)
with n = 3, (say):

ϕ
(≤N)
ξ = ϕ

(−1)
ξ + ϕ

(0)
ξ + . . .+ ϕ

(N)
ξ (16.2)

where ϕ(−1) is a degenrate field with covariance C(−1)

which will be eventually put equal to zero, so that
ϕ(−1) = 0, and which is introduced only for the purpose
of unifying certain notations.

The use of a Pauli-Villars regularization of order n ≥ 2
is necessary to give a meaning to (16.1) if d = 4; actually
the third term in (16.1) already requires n ≥ 2 even for
d = 2, while the first two lose meaning only if d ≥ 4 when
n = 1. Here the choice n = 3 is motivated by the fact
that in the subtraction algorithm built to renormalize
the divergences it will be convenient to be able to say
that the fields have two derivatives and therefore can be
developed in Taylor series to second order included. It
is not impossible that one could perform the work with
n = 2 but it would be certainly be harder : in any case
this question acquires importance when one tries to go
beyond perturbation theory; when one is dealing only
with perturbation expansions it would be even better to
have fields so regular to have derivatives of any order,
e.g. the ones arising from the regularization (3.21).

Fixed λ = (−λ,−µ,−α,−ν) in (16.1) the effective po-

tential V
(k)
1 “on scale k” will be expressed in terms of

simple trees as explained in Sec. 6: the end points will

be marked by a pair (ξ, α) with ξ ∈ R
d and α = 0, 2, 2′, 4

expressing which of the four terms in (16.1) is represented
by the end point under consideration.

An expression for V (γ) can be found by the same tech-
nique used in the cosine field case in Secs. 11 and 12:
namely let a tree γ bifurcate at the first nontrivial vertex
v0 after the root r into s subtrees γ1, . . . , γs, and let h be
the “frequency” of the vertex v

k h

γ1

γ2

γs

(38)

As in the case of the cosin interactioc, one has to guess
first the formof V (γ), and an obvious guess is the follow-
ing very general one:

V (γ) =
∑

P

V (k)(ξ1, . . . , ξn; γ, P )P (ϕ(≤k), ∂ ϕ(≤k)),

(16.3)

where the summation runs over all the possible Wick
monomials of the form P = : (∂ ϕξ)

2 : if γ is a trivial
tree, or

P = : ϕn1

ξ1
· · ·ϕns

ξiq
∂ϕξiq+1 . . . ∂ϕξim

: ,

0 ≤ q ≤ n, 1 ≤ ni ≤ 4
(16.4)

where the derivative ∂ means a derivative with respect to
one of the coordinates of the field arguments; the above
assumption is made only for the trees having nontrivial
vertices. In fact (16.4) is not true for the trivial tree
representing −α : (∂ ϕξ)

2 :, k ξ,2′ ; this will

be the only (natural) exception.
Assuming (16.3) and (16.4), with the above mentioned

exception, we find the rules for the evaluation of the trun-
cated expectations of products of Wick monomials, see
Appendix C, yield the following recursion relation, de-
duced from diagram (38) after recalling that a tree ver-
tex has the meaning of a truncated expectation (see Secs.
6,7):

V (k)(ξ1, . . . , ξn; γ, P ) =
∑

P1,...,Ps

[ s∏

j=1

V (k)(ηj ; γj , Pj)
]
·

·
∑

v∈γP

∑

τ∈π
connected

[ ∏

λ∈τ
λ=(a,b)

C
(k)
ab

][ ∏

λ∈π/τ
λ=(a,b)

C
(≤k−1)
ab

]
(16.5)

where η1, . . . ,ηs are the s clusters into which the points
ξ are decomposed by γ1, . . . , γs, i.e. the s clusters corre-
sponding to the vertices v1, . . . , vs of the tree γ immedi-
ately following v0 and such that vj ∈ γj .

Let TP be the set of graphs obtained as follows. Rep-
resent a Wick monomial P like (16.4) by drawing q

points ξi1 , . . . , ξiq in R
d and n1, n2, . . . , nq pairwise dis-

tinct lines, respectively, emerging from each of them, and
m−q points ξiq+1, . . . , ξim a line, labeled ∂ and emerging
from each of them.

It is convenient to think of the points ξi1 , . . . , ξim as
enclosed in a box out of which emerge the lines just de-
fined. For instance the monomials : ϕ2

ξ1
ϕξ2 ∂ϕξ3 : and

: ϕ3
ξ1
ϕ3
ξ2
∂ϕξ3 ∂ϕξ4 : are represented as in Fig. 39, where

1, 2, . . . stand for ξ1, ξ2, . . ..

∂

∂

1 2
3

1

2

3

4
(39)

and each of the above objects will be called a “Wick
monomial”. Then, given s Wick monomials P1, . . . , Ps,
the symbol TP will denote the set of graphs obtained
by joining pairwise some of the lines associated with the
Wick clusters representing P1, . . . , Ps in such a way that
(explicit examples are worked out in Figures 40–43 be-
low):
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(i) two lines emerging from the same cluster cannot be
joined together;
(ii) there should be enough lines paired so that the lines
plus the sets inside the boxes associated with each Pj
form a connected set;
(iii) the set of the points associated with P1, . . . , Ps to-
gether with the lines emerging from them and still “free”
(i.e. not paired with the lines) represent, once the points
from which they emerge are enclosed into a single box,
the monomial P .

In the above definitions and constructions, as well as
in the upcoming ones, one has to bear always in mind
that the lines emerging from each point are regarded as
pairwise distinct (and this will eventually give rise to a
combinatorial problem).

Furthermore τ ⊂ π with the subscript “connected” (see
(16.5)) means a subset of the lines of π which still keeps
the connection between the boxes. A line λ obtained by
pairing (“joining” or “contracting” will be synonymous of
“pairing”) two lines is identified by its two extreme points
together with the field indices (∂ or nothing) which will
be kept and appended to the line near the end point from
which they emerge (so that it might happen that a line
carries two, one or no indices ∂; if it carries only one it
will be appended near the appropriate end point).

Therefore λ = (a, b) with a = ξ, b = ξ′ represents a
line obtained by joining two lines emerging from ξ and ξ′;
similarly if a = (ξ, ∂), b = ξ′ then λ = (a, b) represents
the line obtained by joining together a nonlabeled line
emerging from ξ′ and a labeled one emerging from ξ. The
resulting line will be represented by a segment joining ξ
to ξ′ carrying a label ∂ near ξ (or equivalently carrying
a label ∂ξ); and similar interpretations are given to the
cases a = ξ, b = (ξ′, ∂) or a = (ξ, ∂), b = (ξ′, ∂).

The symbols C
(·)
λ ≡ C

(·)
ab denote the appropriate co-

variances (propagators)

C
(·)
ab = E(ϕ(·)

ξ ϕ
(·)
η ), C

(·)
ab = E(ϕ(·)

ξ ∂ηϕ
(·)
η ),

C
(·)
ab = E(∂ξϕ(·)

ξ ϕ
(·)
η ), C

(·)
ab = E(∂xϕ(·)

ξ ∂ηϕ
(·)
η ),

(16.6)

if (a, b) = (ξ, η), (ξ, (η, ∂η)), ((x, ∂ξ), η), ((x, ∂ξ), (η, ∂η)),
respectively. Recall that here ∂ or ∂ξ means a deriva-
tive with respect to some component of ξ whose index is
omitted for simplicity of notation.

For instance consider Fig.40, where the integer j stands
for j

∂ ∂

P= , P =1 , P =2

1
4

2
3

11
4 2

1

3
5

6
(40)

Then one possible element π ∈ TP is drawn in Fig.41

∂

4 2
1

3
5

6
(41)

where the dotted box represents the box corresponding
to P . A possible τ ⊂ π is any nonempty subset of the
inner lines, inside the dotted box in Fig.41. Similarly if

1 2

3
P= , P =

1
, P =

2
, P =

3
,1 4

5

7

6

8

9

10

12

13

11

2
3

(42)

a simple possible π is

1 4

5

7

6

8

9

10

12

13

11

2
3

(43)

and τ is any subset of the five inner lines which contains
at least one of the first two and one of the last three.

Relation (16.5) defines recursively and completely the
coefficients V (k)(γ;P ) once one specifies the meaning of
V (k)(γ;P ) for the elementary trees γ0 k ξ,α.

Of course V (k)(γ0;P ) ≡ 0 unless P is : ϕ(≤k)4 :, :

ϕ(≤k)2 :, : ∂ ϕ(≤k)2 :, or 1; and in such cases V (k)(γ0;P )
is just −λ,−µ,−α,−ν, respectively, for α = 4, 2, 2′, 0 (no
confusion should arise between the renormalized coupling
constant α and the endpoint index carrying the same
name).

To find bounds on V (k)(γ;P ) one can proceed as fol-
lows: first by using (16.5) one decomposes this quantity
into a (very large) sum: each term of the sum will corre-
spond to a fixed selection S of one index for every possible
summation arising by applying recursively (16.5). One
has to imagine that one such special selection S has been
fixed (say one special choice of P , of P1, . . . , Ps, of π, τ
etc, with similar choices made for each of the successive
vertices of γ which arise while disassembling γ1, . . . , γs,
etc).

the bases for the bound that will be derived shortly are
the estimates (3.19).(3.20) and (3.17), and the following
notions which have been already introduced in Secs. 4–
sec(9) above and in the preceding lines of this section, but
which it will be convenient to collect again and organize
in the form in which they will be used below.

(1) Each vertex v of a tree γ is associated with a cluster
of end points of γ; this cluster will be denoted ξv.

(2) The selection S of the summation indices just in-
troduced permits one to associate with each vertex v a
monomial Pv which can be thought of as graphically rep-
resented by a box containing the points ξv, with lines
emerging from them and out of the box itself.: some of
the lines may bear an index ∂; the lines emerging from
the box represent the graphical image of the monomial
Pv.

(3) The number nev of lines emerging from the box en-
closing the cluster ξv will be the sum ne1,v + ne2,v of the
number of labeled lines, ne1,v, and of the number, ne2,v of
unlabeled lines (e: external; 1: labeled 0; 0: unlabeled).

(4) A selection S of the summation indices leads to a
graphical representation of the corresponding contribu-
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tions to V (k)(γ;S).
Out of each endpoints ξ of |g emerge either four un-

labeled lines or two labeled lines or no lines at all, de-
pending upon the value of the appended type indices
α = 4, 2, 2′, 0. The case α = 0 can appear only in the
trivial trees k ξ,0, which will be disregarded

for the time being; in fact α = 0 corresponds to a con-
stant P = 1 and the truncation of the expectations elim-
inates it unless the tree is trivial, i.e. it indicates no
truncations.

The structure of γ encloses the end points into a hierar-
chically arranged sequence of boxes, each corresponding
to a tree vertex v, and it is possible to make the con-
vention hat pairings of the lines are drawn in the graph-
ical representation so that the lines contracted between
the clusters v1, v2, . . . , vs, representing PV1 , . . . , Pvs , to
build the monomial Pv (v being the vertex immediately
followed by v1, . . . , vs) are all contained inside the box
corresponding to v, as in Fig.4043 above.

For uniformity of notation it is convenient to imagine
that the end points of γ also represent clusters of a single
point and that they generate little boxes around it (recall
that, however, the end points of a tree are conventionally
not regarded as tree vertices).

For instance, three possible selections corresponding to
the tree

k

v’

v

P

ξ ,4
1

ξ ,4
2

ξ ,2
3

ξ ,2
4

’

(44)

(where v, v′ are vertex names, p, h, k are frequency labels)
are represented by

∂

∂

∂

∂

∂

∂

1 2

34

1 2

34

1 2

34 (45)

(if 1, 2, . . . stand for ξ1, ξ2, . . .).
(5) If in S there is a line paired to another, there will
be a smallest box containing the contracted line, i.e. the
two endpoints (this is enough by the above drawing con-
vention); if v is the corresponding tree vertex and hv
is its frequency index, then one says that thecontracted
line has frequency hv and one attributes the index hv to
each of the two lines giving rise to the contracted line
of frequency hv; the uncontracted lines will be given the
frequency index k = k(γ) = (frequency of the root of the
tree); they are called “external”.

So with each box one can associate a frequency index
qhich is the frequency index hv of the vertex v corre-
sponding to the box. As a consequence one can associate
with each line in S a frequency which is the frequency in-
dex of the line. Note that the association of a frequency
index with a line depends on S and not just on the tree
γ. By convention the box associated with the root r of
the tree γ is the whole plane containing the tree.

(6) The above set of indices still does not secify com-
pletely the selection S: one has to mark, for this purpose,
each line which belongs to the set called τ in (16.5) by
a label, say θ, recalling its origin (as a lineof the set |t):
we call it a “character label”; lines with the label θ will
be called “hard” or “high-frequency” lines.

(7) It is important to stress, again, to avoid combinatorial
errors, that in the above construction two lines emerging
from the same vertex still have to be regarded as different
and distinguishabe. To keep track of the combinatorics it
is convenient to imagine that the lines emerging from the
innermost vertices (i.e. from the end points) are num-
bered: from 1 to 4 if the vertex represents −λ : ϕ4 :,
from 1 to 2 if it represents −µ : ϕ2 : or −α : (∂ ϕ)2 :.
Such labels will be called “identity labels”.

It is also clear that the number of selections differing
just by the identity labels is bounded vy 4n if the tree
has n end points.

Before continuing it is important to stress that, by our
definitions, a selection S of summation indices yields a
connected graph joining all the endpoints ξ of γ with
lines marked by

(a) a frequency index,
(b) a character index or no index per internal line: if the
index is missing the line is “soft”; if it is present the line
is “hard”,
(c) an index ∂ or no index per each extreme of a line,
and
(d) an identity index per each end point og the line (in-
ternal or not).

the frequency index and the character indices cannot be
randomly assigned: they are organized by the tree γ in
such a way that, if we draw the boxes corresponding to
each vertex of γ, the lines internal to each box form a
connected graph and so does their subset formed by the
hard ones among them.

The lines that are external, together with the points
out of which they emerge and with the largest (finite)
box, form a graphical representation of the Wick mono-
mial P selected by S.

The reader familiar with Feynman’s graphs will rec-
ognize in such a representation of S something which
can be called a “decorated Feynman graph”, the decora-
tions being the above collection of labels listed in (a)–(d)
above. One also recognizes the connection between the
above decorated graphs and trees and the basic notion
of “forest” in (Zimmermann, 1969). To obtain bounds
on V (k) consider the contribution to it by a choice of the
summation indices S.

Denoting V (γ;S)PS such a contribution, where PS de-
notes the Wick monomial selected by S and using (3.19)
and (3.20) one finds after some meditation the (“good”)
estimate in terms of ε = max(|λ|, |α|, |µ|, |ν|):

|V (γ;S)| γk d−2
2 ne

0,v0γk(
d−2
2 +1)ne

1,v0 ≤ εn· (16.7)
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·
[∏

ℓ0

γ
d−2
2 hℓ0

][ ∏

ℓ1

γ( d−2
2 +1)hℓ1

][ ∏

λ

B e−κγ
hλ |λ|

]

where d > 2, for simplicity, λ represents an inner line
of frequency hλ associated with S and |λ| is the distnce
bewtween the end points of λ; regarding the contracted
lines of S as composed by two joined half lines, and re-
garding the external lines also as half lines, we find that
the first product in the r.h.s. is over the half lines bear-
ing no ∂ label while the second product is over the half
lines bearing a ∂ label. The first nontrivial vertex of γ is
denoted by v0 and B, κ > 0 are suitable constants.

The factor multiplying the l.h.s. , |V (γ;S)|, has been
introduced for convenience (it will be clear shortly that
it is a natural multiplier in the l.h.s. of the inequality
(16.7)).

The bound (16.6) is really trivial “power counting”,
once the presence of the exponential factors is under-

stood. It arises from bounding C
(h)
λ contributed by the

hard lines λ in S, with frequency index h.
Recalling (16.6) one sees, for instance, that there is

B > 0 such that if λ = (a, b), a = ξ, b = η

|C(h)
ab | ≤ (γ

d−2
2 h)2Be−κγ

h |ξ−η| (16.8)

or, if a = ξ, b = (ξ′, ∂):

|C(h)
ab | ≤ (γ( d−2

2 +1)h)γ
d−2
2 hBe−κγ

h|ξ−η| (16.9)

or, if a = (ξ, ∂), b = (ξ′, ∂):

|C(h)
ab | ≤ (γ( d−2

2 +1)h)2Be−κγ
h|ξ−η| (16.10)

while C
(≤h−1)
ab , contributed by the soft lines, can be

bounded only by (16.8), (16.9) and (16.10) without the
last exponential factor (or, rather, with that factor re-
placed by e−κ|ξ−η|, useless), provided d > 2 (if d = 2 an

extra factor h has to be added in bounding C
(≤h−1)
ab ).

One could write the exponential factor in (16.7) as∏
v e

−κγhvd∗(Xv), using the notations introduced in Sec.
12 (particularly Eq. (12.6)) to treat the cosine field; how-
ever, this remark has been made only for the sake of
comparison and will not be needed in what follows.

It remains to cast (16.7) into a more usable form. Se-
lect a vertex v ∈ γ and let m2,v,m4,v,m2′,v be the num-
bers of vertices in the cluster ξv associated with v and
bearing an index α = 2, 4, 2′, respectively: m2,v +m4,v +
m2′,v = nv = (number of points in ξv), and note that
if v is a nontrivial vertex of the tree, nv ≥ 2 because v
represents a truncation operation. For each v introduce
also:

ninner0,v = number of lines without ∂ label before the con-
tractions, contained in the box corresponding to v but
not in any smaller one,

ninner1,v = number of lines with a label ∂ before the con-
tractions, contained in the box corresponding to v but
not in any smaller one,

the number of lines being counted before the contractions
means that each inner line of a graph S counts twice in
the evaluation of ninner , and

ne0,v = number of lines without ∂ label before the con-
tractions, emerging from the box corresponding to v
ne1,v = number of lines with ∂ label before the contrac-
tions, emerging from the box corresponding to v

A simple calculation allows us to rewrite (16.7) as

ε γ
d−2
2 k ne

0,v0γ
d
2 k n

e
1,v0

(∏

λ

Be−κγ
hλ |λ|

)
·

·
( ∏

v>r

γhv
d−2
2 ninner

1,v

)
,

(16.11)

where r is the root vertex of the tree γ.
Let γ have n endpoints labeled ξ1, . . . , ξn and let the

external lines of the graph S emerge from the first p
points ξ1, . . . , ξp, as it can be assumed without loss of
generality. Then one is interested, according to the gen-
eral ideas developed in Sec. 12 in connection with the
asymptotic freedom notion and the interpretation of the
effective potential as potential for a continuous spin sys-
tem, in bounding the quantity

MS(∆1, . . . ,∆p) =

∫

∆1×...×∆p×Λn−p

|V (γ;S)|·

· sup
∣∣PS(ϕ(≤k), ∂ ϕ(≤k))

∣∣dξ1 · · · dξn
(16.12)

where ∆1, . . . ,∆p are cubes of side size γ−p in which
the points appearing as labels to fields in PS vary in
(16.12): these cubes are extracted from a pavement
QP of Λ. The supremum in (16.12) is over the fields

ϕ(≤k) =
∑k

j=0 ϕ
(j) with ϕ(j)verifying (3.20). If one

denotes B̃ = sup |B∆| (see (3.20)), one finds (setting
ne0,v0 = ne0, n

e
1,v0 = ne1, n

e = ne0 + ne1)

sup |PS | ≤ γ
d−2
2 k ne

0γ
d
2 k n

e
1B̃n

eN (16.13)

and the constant N depends only on the degree of the
polynomial PS (hence it depends neither on j nor on the
degree n of γ: in fact N = O(nε!)).

Inserting (16.13) into (16.12) one finds that (16.12) is

estimated by B̃n
eN times the integral over ∆1, . . . ,∆p×

Λn−p of the r.h.s. of (16.7) (and this explains also why the
factor in the r.h.s. of (16.7) is a natural one to introduce).

The only term in (16.7) which is not constant is the
last factor: its integral over the set indicated in (16.13)
has already been considered in Sec. 12 (see (12.15)) –see
remark following (16.8)– and the result is expressed by
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Bn1

( ∏

v>r

γ−d hv (sv−1)γ−k d
)
e−

κ
2 d(∆1,...,∆n) γk

, (16.14)

where B1 > 0 is a suitable constant and sv is the number
of branches emerging from v in γ (see Appendix D for a
roof of (16.4)).

Using (16.13),(16.11) and (16.14). we can bound the
integral (16.12) by

MS(∆1, . . . ,∆p) ≤ γ−
κ
2
γkd(∆1,...,∆p) ε B̃n

eN·
· γ−k dγk d−2

2 ne
0γ

d
2 k n

e
1+k d

2n
e
1 ·

·
( ∏

v>r

γhv
d−2
2 ninner

0,v γhv
d
2n

inner
1,v γ−hv d (sv−1)

) (16.15)

The latter estimate can be elaborated by using the iden-
tity

∑
v′<v(sv − 1) = (nv′ − 1), see (12.17). Remember-

ing that the end points of γ are not considered as ver-
tices of γ and denoting simply m2,m4,m2′ , ne1, n

e
0, n

e the
m2,v0 ,m4,v0 , . . ., respectively, if v0 is the first nontrivial
vertex of γ following the root, one finds

MS(∆1, . . . ,∆p) ≤ εnB̃n
e

B
n

1γ
−dk

[ ∏

v>r

γ−d(hv−k)(sv−1)γ
d−2
2 (hv−k)n

inner
0,v γ

d
2 (hv−k)n

inner
1,v

]
·

· γ−dk
∑

v
(sv−1)γ

d−2
2 k (2m1+4m4−n

e
0)γ

d
2 k (2m2′−n

e
1)·

· γ d−2
2 ne

0 kγ
d
2 n

e
1 ke−

κ
2 γ

kd(∆1,...,∆p)N ≡ (16.16)

≡ εnB̃ne

B
n

1N e−
κ
2 γ

kd(∆1,...,∆p)γ−k (2m2+(4−d)m4)·
·
[ ∏

v>r

γ−d(hv−k)(sv−1)γ
d−2
2 (hv−k)n

inner
0,v γ

d
2 (hv−k)n

inner
1,v

]

Denoting v′ the vertex preceding v in γ and denoting
ñinnerj,v , j = 0, 1, the number of lines before contrac-
tions (i.e. half lines), inside the box corresponding to
v (which is not necessarily the first box containing them;
i.e. ñinnerj,v ≥ ninnerj,v in general) and using

∑

v>r

(hv − k)(sv − 1) ≡
∑

v>r

(hv − hv′)(nv − 1),

∑

v>r

(hv − k)ninnerj,v ≡
∑

v>r

(hv − hv′) ñinnerj,v , (16.17)

ñinner0,v ≡ 2m2,v + 4m4,v − ne0,v,
ñinner1,v ≡ 2m2′,v − ne1,v, j = 0, 1

one realizes from (16.16) that

MS(∆1, . . . ,∆p) ≤ N εn B̃n
e

B
n

1 e
−κ

2 γ
kd(∆1,...,∆p)·

· γ−k (2m2+(4−d)m4)
∏

v>r

γ−ρv (hv−hv′ ) (16.18)

with

ρv = −d+ 2m2,v + (4− d)m4,v +
d− 2

2
ne0,v +

d

2
ne1,v.

(16.19)
Therefore recalling that the contribution to V (k) of the
trees of given shape is obtained by summing over all the
possible choices S and over all the possible frequency
assignments to the vertices of the trees (i.e. over all the
possible values of hv − hv′ > 0, hv < N), one realizes
that the estimate (16.18) and (16.19) for (16.12) implies
ultraviolet finiteness if for all S and all tree shapes it is
ρv > 0.

However, clearly, there are plenty of cases with ρv ≤ 0
for some v, if d ≥ 2.

The situation would be slightly better if one had
started with a more restrictive interaction I (see (16.1))
–e.g. if I had been replaced by

∫

Λ

(
− λ : ϕ(≤N)4 − µ : ϕ(≤N)2 −−γ

)
(16.20)

In this case it is easily realized that, in (16.18) and
(16.19), one has just to take ne1,v = 0,m2′,v = 0.

This implies

{
d = 2 ⇒ ρv > 0, ∀v
d = 3 ⇒ ρv > 0

unless ne0,v = 2 and

m2,v + m4,v = 2, or ne0,v = 0 and m2,v +m4,v = 0: i.e.
the theory (16.20) is ultraviolet finite in dimension d = 2.
However if d = 3 it is not ultraviolet finite and one has
to check if it is renormalizable.

Going back to (16.1) for d = 4 we discover many cases
with ρv ≤ 0; in general it, however, clear that ρv > 0 if
there are too many lines external to the box correspond-
ing to v, i.e. if ne0,v ≥ 5.

The above discussion completes the analysis of the ori-
gin of the divergences and of their strength. In the next
sections the problem of renormalizing the theory (16.1)
will be studied and solved for d ≤ 4.

A final but, as it will turn out, very important remark
is that the above method allows us to produce estimates
of (16.12) when the rule to compute V (γ;S) is modified
by replacing the λ(α) contributions from the end points
of γ with constants r(α)(hj) with hj being the frequency
of the vertex to which the j-th end point is attached by
its tree branch.

Suppose that

r(α)(h) = γ(4−d)h δα,4+e h δα,2+dh δα,0 (16.21)

and repeat the power counting argument leading to the
bound (16.18). In this case the result will be, for n > 1,

MS(∆1, . . . ,∆p) ≤ N B̃n1 e−
κ
2 d(∆1,...,∆p) γk ·

·
( ∏

v>r

γ−ρ
′
v (hv−hv′ )

)
·
( n∏

j=1

r(αj)(hj)
) (16.22)
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and

ρ′v = −d+
d− 2

2
ne0,v +

d

2
ne1,v (16.23)

i.e. the lines coming from vertices of type α = 2 acquire
the “same dimension” as those coming from the vertices
of type α = 4.

In the bounds (16.22) and (16.23) the values αj must
be nonzero so that the factor γdh δ2,0 plays no role in
deducing them. It has been inserted only for later refer-
ence.

xvii. Renormalization of ϕ4-field
to second order

The application of the general renormalization theory
(see Secs. 7 and 8) to cure the ultraviolet instability
pointed pout in Dec. 16 follows the same scheme met in
the case of the cosine field, in Sect. 12.

It is slightly more complex, because polynomials do
not have nice multiplication properties, not as nice as
those of complex exponentials multiplication rules which
plaid a (hidden) role in simplifying the algebra in the
discussion of the cosine interaction.

However it is still true that, to proceed, one has to
understand in detail only the renormalization theory to
second order, i.e. the definition of the subtraction oper-

ation L(σ0)
k with σ0 = , the other cases being

easily understandable in terms of this special case.
A detailed understanding of the above simple case is

absolutely essential and the inexperienced reader should
check the minutest details of the following few straight-
forward but lengthy calculations, which are the heart of
renormalization theory (contrary to what is sometimes
asserted about the true difficulties being connected with
the “overlapping divergences”, a term that is not even
defined here).

To proceed as in Sec. 7 one starts by defining the trees
dressed to order 1: which are just the trees considered in
Sec. 16. The one considers the trees of degree two (i.e.
with two endpoints); actually they are

α1, α2 = 2, 2′, 4
k h

ξ1 α1

ξ2 α2

(46)

They have been estimated in Sec. 16, but it is easy to
compute them explicitly from their expressions in Sec.6;
after integration over the end points position labels ξ1, ξ2
they contribute to V

(k)
1

1

2
V

(k,α1,α2)
1 =

1

2

∫

Λ

dξ1dξ2·

· Ek+1 · · · Eh−1ETh
(
v
(α1)
h (ϕ

(≤h)
ξ1

, ϕ
(≤h)
ξ2

)
) (17.1)

A simple calculation which the reader should perform at
least once in his life, in spite of its length (after all non
so bad) gives

(1) V (k,2,2) = µ2

(
2

1

)2 ∫
: ϕ1ϕ2 : C

(k)
12 dξ12+

+ µ22!

∫ (
C

(≤h)
12

2
− C(≤k)

12

2)

(2) V (k,2,2′) = µα

(
2

1

)2 ∫
: ϕ1∂ϕ2 : ∂2C

(k)
12 dξ12+

µα2!

∫ (
(∂1C

(≤h)
12 )2 − (∂1C

(≤k)
12 )2

)

(3) V (k,2,4) = µλ

(
2

1

)2(
4

1

) ∫
: ϕ1ϕ

3
2 : C

(k)
12 dξ12+

+ µλ2!

(
4

3

) ∫
: ϕ2

2 :
(
C

(≤h)
12

2
− C(≤k)

12

2)

(4) V (k,2′,2′) = α2

(
2

1

)2(
4

1

) ∫
: ∂ϕ1 ∂ϕ

3
2 : ∂2

12C
(k)
12 +

+ α22!

(
4

3

) ∫ (
∂12C

(≤h)
12

2
− ∂12C

(≤k)
12

2)
dξ12

(5) V (k,2′,4) = αλ

(
2

1

)2(
4

1

) ∫
: ∂ϕ1ϕ

3
2 : C

(h)
12 dξ12+

+ αλ2!

(
4

3

) ∫
: ϕ2

2 :
(
∂1C

(≤h)
12

2
− ∂1C

(≤k)
12

2)

(6) V (k,4,4) = λ2

(
4

1

)2

1!

∫
: ϕ3

1ϕ
3
2 : C

(h)
12 dξ12+

+ λ2

(
4

2

)2

2!

∫
|ϕ2

1ϕ
2
2 : (C(≤h)2 − C(≤k)2)dξ12+

+ λ2

(
4

3

)2

3!

∫
: ϕ1ϕ2 :

(
C

(≤h)
12

3
− C(≤k)

12

3)
dξ12+

+ λ2

(
4

4

)2

4!

∫ (
C

(≤h)
12

4
− C(≤k)

12

4)
(17.2)

where ϕ1, ϕ2 mean ϕ
(≤k)
ξ1

, ϕ
(≤k)
ξ2

, and C
(·)
12 means C

(·)
ξ1ξ2

,

dξ12 = dξ1dξ2, ∂1 ≡ ∂
∂ξ1

, ∂2 ≡ ∂
∂ξ2

, (∂1C
(·))2 ≡ ∂ 1C

(·) ·
∂ 1C

(·); the symbol V (k,α1,α2) denotes V (k)(γ) with γ
given by Fig.46.

Some of the above integrals are not ultraviolet sta-
ble, once appropriately summed over h (i.e. for h ∈
[k + 1, N ]), as it is easy to check using the bounds of
Sec.16 and showing that they admit “good bounds” (or
by direct computation from (17.2)); see the following ta-
ble where (i),(ii),(iii),(iv) mean “first addend”, “second
addend”, “third addend”,“fourth addend” (when present
in the rows of (17.2)), and S,U mean “stable” or “unsta-
ble”; d ≥ 2 is the dimension of the theory

(i) (ii) (iii) (iv)

(1) S U if d = 4
(2) S U if d ≥ 2
(3) S U if d = 4
(4) U U if d ≥ 2
(5) S U if d ≥ 2
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(6) S U if d = 4 U if d ≥ 2 U if d ≥ 2

Using (17.2) and proceeding according to the theory
of Sec.7 we can find counterterms V2,N to V1 so that the

effective potentials V
(k)
2 of V1 +V2,N are ultraviolet finite

to second order.
Following the ideas developed in Sec. 7, one can start

by trying to define the operation Lk making (7.10), i.e.
(1−Lk) applied to (17.1) and summed over h ∈]k+1, N ]
diverge for ξ1 = ξ2.

Therefore one can think of defining Lk by specifying
its action on functions F having the form of the r.h.s.
of (17.2) with kernels in front of the Wick monomials
replaced by general kernels w(ξ1, ξ2):

F =

∫
w(ξ1, ξ2)P dξ1dξ2 (17.3)

with the restriction that the w kernels are translation in-
variant on A (recall that periodic boundary conditions
are imposed on Λ) and rotation covariant with respect
to the rotations by π

2 around the coordinate axes (which
are the only meaningful rotations on the torus Λ). The
covariance here refers to the fact that the Wick monomi-
als in (17.2) may contain derivatives of the fields: each
derivative bears an index denoting to which component
it refers and hence will bear corresponding indices– i.e.
it will be a tensor; this fact does not explictly show up in
(17.2) or in the upcoming formulae because of the conven-
tion used here that suppresses the indices of the deriva-
tives, for simplicity of notation.

Once the action of Lk is specified on the functions of
the form of (17.3) it will be extended to their linear com-
binations by linearity, some more comments on Lk as an
operator will be made later after discussing its action on
F ’s like (17.3).

To produce the cancellations of the divergences which
appear once the r.h.s. of (17.2) are summed over h, gen-
erating expressions which are linear combinations of ex-
pressions like (17.3) diverging for ξ1 = ξ2, the action of
(1 − Lk) should result in replacing the monomial P in
(17.3) by a new expression RP vanishing as ξ2 − ξ1 → 0
to an order so high that the integrals are no longer di-
vergent.

An examination of the integrals shows that the follow-
ing choice of RP would produce ultraviolet finite inte-
grals:

R 1 = 0

R : ϕ1ϕ2 : = : ϕ1

(
ϕ2 − ϕ1 − (ξ2 − ξ1)∂ϕ1−

− 1

2
(ξ2 − ξ1)× (ξ2 − ξ1)∂2ϕ1

)
: ,

R : ϕ1∂ϕ2 : = : ϕ1

(
∂ϕ2 − ∂ϕ1 − (ξ2 − ξ1) · ∂ ∂ϕ1

)
: −

R : ∂ϕ1∂ϕ2 : = : ∂ϕ1

(
∂ϕ2 − ∂ϕ1) (17.4) : ,

R : ϕ2
1ϕ

2
2 : = : ϕ2

1(ϕ2 − ϕ1)
2 : ,

R : ϕ1ϕ
3
2 : = : ϕ2

2(ϕ1 − ϕ2)
2 : ,

R P = P otherwise

and using (3.20) (recall that the regularization being used
here has n = 3), one sees that the replacement of P by
RP replaces P by a Wick polynomial which has a zero
of order, respectively, ∞, third, second, first, first, zero.

Hence if there is an operation Lk such that (1 − Lk)
acting on the integrals in (17.2) just changes P into RP ,
then Lk has the property that (7.10) is, in the present
case, ultraviolet finite because the above mentioned or-
ders of zero of RP are sufficient, in the worst cases, to
make the expressions (17.3) ultraviolet finite.

From (17.4) one deduces that the operation Lk “which

identifies the divergent parts” of V
(k)
1 to second order has

to act on the integrals (17.2) or more generally (17.3) as

Lk
∫
w(ξ1, ξ2) dξ1dξ2 =

∫
w(ξ1, ξ2) dξ1dξ2

Lk
∫
w(ξ1, ξ2)ϕξ1ϕξ2 :=

∫
w(ξ1, ξ2)ϕξ1

(
ϕξ1+

+ (ξ2 − ξ1)∂ξ1 +
1

2
(ξ2 − ξ1)2 × ∂2ϕξ1

)

Lk
∫
w(ξ1, ξ2)ϕξ1∂ϕξ2 : =

∫
w(ξ1, ξ2)ϕξ1 (17.5)

(
ϕξ1 + (ξ2 − ξ1)∂ξ1 · ∂ϕξ1

)

Lk
∫
w(ξ1, ξ2) ∂ϕξ1∂ϕξ2 :=

∫
w(ξ1, ξ2) ∂ϕξ1

(
∂ϕξ1)

2

Lk
∫
w(ξ1, ξ2) ∂ϕ

2
ξ1∂ϕ

2
ξ2 :=

∫
w(ξ1, ξ2) (ϕξ1)

4,

Lk
∫
w(ξ1, ξ2) ∂ϕξ1∂ϕ

3
ξ2 :=

∫
w(ξ1, ξ2) (ϕξ1)

4,

Lk ≡ 0, otherwise

so that the action of (1−Lk) on the integrals like (17.3)
is precisely obtained by replacing in them P by RP .

One has to check that Lk takes values in the space of
the interactions; this is in fact the basic reason why the
theory is renormalizable.

Possibly integrating by parts or using the rotation in-
variance properties of the coefficients w(1, 2), on can eas-
ily check that the action of Lk on the integrals in (17.5)
is equivalent to the action of the following operator L on
the Wick monomials inside the integrals (here ϕ ≡ ϕ(≤k),
θ, θ′ = 1, 2, . . . , d, ∂θ = ∂

∂θ(θ) , if ξ(θ) is the θ-th component
of the point ξ):

L 1 = 1 ,

L : ϕξ1ϕξ2 : = : ϕ2
ξ1 : − (ξ2 − ξ1)2

2d
: (∂ϕξ1)

2 : ,

= 1 ,

L 1 : ∂ϕξ1∂ϕξ2 : = = : (∂ϕξ1)
2 : (17.6)

L : ϕ2
ξ1ϕ

2
ξ2 = : : ϕ4

ξ1 :,

L : ϕξ1ϕ
3
ξ2 := : ϕ4

ξ1 :,

1 = 1 ,
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L = 0 otherwise

This proves that the range of Lk is in the space of the
interactions if one takes Lk to defined by acting on ex-
pressions like (17.3) by replacing P inside them by LP
(see (17.6)).

The above e analysis shows, also, that trivially the
action of (1 − Lk) on expressions like (17.3) is precisely
the substitution of P by RP .

It is convenient to stop to point out the following. The
operation Lk defined above is not unambiguously defined
as an operator in the sense of functional analysis: to let
Lk act on functions like (17.1) one has, by definition, first
to express them as a sum of functions like (17.3) and then
to act term by term replacing P by LP (see (17.6)).

However the expression of (17.1) as a linear combina-
tion of expressions like (17.3) is not unique.

Therefore, in order that the above definition of Lk
makes sense one has also to prescribe how one writes
(17.1), or more generally a function in the domain of Lk,
as a linear combination of terms like (17.3). Expression
(17.2) is the prescription used here for the functions of
interest. Also later on we shall have to use a well-defined
prescription for the decomposition of the effective poten-
tials as sums of terms on which the action of the higher
order subtraction operations L(σ) is defined. The pre-
scription for the decomposition of the effective potential
has therefore to be thought of as part of the definition of
Lk.

Taking into account the above comment we then check
the relation (7.13) first by verifying that the prescription
to decompose the interesting functions (i.e. the effective
potentials) as a sum of terms in the domain of the Lk
operations commutes with the expectations Ep+1 · · · Ek,
and second by asking whether Lk also commutes (in the
sense of (7.13) with them.

Both the above checks are very simple in our case; ac-
tually, the systematic use of Wick ordered interactions
and of Wick monomials has the basic motivation of mak-
ing this check an essentially trivial consequence of (4.2)
(implies by Wick ordering) and the definition of Lk.

From (17.6) and (17.4) and applying the general theory
of Sec. 7 (see (7.14) and (7.16)) one finds easily the
following expression of the counterterms V2,N ; if ϕ ≡
ϕ(≤N) it is

V2,N = −
∫
dξ1

N∑

h=0

{
: ϕ2

ξ1 :

∫
dξ2

[1

2
µ2

(
2

1

)2

C
(h)
12 +

+ µλ 2!

(
4

2

)
(C(≤h)2 − C(<h)2)+

+ αλ2!

(
4

2

)
(∂1C

(≤h)2 − ∂1C
(<h)2)+

+ λ2 3!

2

(
4

3

)2

(C(≤h)3 − C(<h)3)+

+ µα
1

2

(
2

1

)
∂1C

(h)
12

]
+

: (∂1ϕξ1)
2 :

∫
dξ2

[
− µα

(
2

1

)2
ξ2 − ξ1
d

∂2C
(≤h)−

− µ2 1

2

(
2

1

)2
(ξ2 − ξ1)2

2d
C(h)12−

λ2 3!

2

(
4

3

)2
(ξ2 − ξ1)2

2d
(C

(≤h)
12

3
− C(<h)

12

3
)+

+
α2

2
∂12C

(h)
12

]
+ : ϕ4

ξ1 :

∫
dξ2

[
µλ

(
2

1

)(
4

1

)
C

(h)
12 +

+
λ2

2
2!

(
4

2

)
(C(≤h)2 − C(<h)2)

]
+

1

∫
dξ2

[µ2

2
2!(C(≤h)2 − C(<h)2)+

+ µα 2! (∂1C
(≤h)2 − ∂1C

(<h)2)+ (17.7)

+
α2

2
2! (∂12C

(≤h)2 − ∂12C
(<h)2)+

+
λ2

2
4!

(
4

4

)2

(C(≤h)4 − C(<h)4)
]}

It should be stressed that for some terms in (17.2) the
rule (17.6) produces needless subtractions, as far as the
ultraviolet stability is concerned; in fact rule (17.6) coin-
cides with the “usual rule” in the literature only in the
“usual” case α = µ = 0, d = 4; if d < 4 then (17.6) is
oversubtracting even in this case.

Nevertheless the “universal rule” (17.6) will be used for
simplicity of exposition; it would probably be not difficult
to make the theory of Secs. 7 and 8 more flexible so
that more refined subtraction methods become possible
permitting us to introduce counterterms only for “really
divergent” parts of the effective interaction.

It is easy to compute in the above cases the meaning
of the trees dressed to second order (see Fig. (47))

k h

ξ1 α1

ξ2 α2

ξ α
k h

R
ξ1 α1

ξ2 α2

(47)

According to Sec. 7 (see (7.10)) the framed tree repre-
sents one of the terms in (17.7) with the summations over
h ranging from 0 to k (rather than to N) and with ϕ now
meaning ϕ(≤k), up to a factor 2. Precisely select the con-
tribution to (17.7) from the term V (k,α1,α2) in (17.2) (or

V (k,α2,α1), whichever is present in (17.2)) containing v
(α)
N ,

α = 4, 2, 2′, 0, i.e. containing : ϕ4 :, : ϕ2 :, : (∂ ϕ)2 :, 1;
then the frame in Fig. (47) means

r(α)(σ, k) v
(α)
k (ϕ(≤k), ∂ ϕ(≤k)), (17.8)

where the r coefficient is the coefficient of the term in
(17.7) just selected but with the summation over h rang-
ing from 0 to k; here σ is a symbol for the tree shape
framed in Fig. (47). clearly rα)(σ, k) is proportional to
λ(α1)λ(α2).
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The unframed dressed tree in Fig. (47) represents, if
we follow the rules of Secs 7,8, exactly (17.2) with the re-
placement induced by (17.4), P → RP , see (7.16). Thus
if we introduce the new fields

Dξ1,ξ2
def
= ϕξ1 − ϕξ2 ,

D1
ξ1,ξ2

def
= ∂ϕξ1 − ∂ϕξ2 ,

S1
ξ1,ξ2

def
= ∂ϕξ1 − ∂ϕξ2 − (ξ1 − ξ2) · ∂∂ϕξ2 ,

Sξ1,ξ2
def
= ϕξ1 − ϕξ2 − (ξ1 − ξ2) · ∂ϕξ2 , (17.9)

Tξ1,ξ2
def
= ϕξ1 − ϕξ2 − (ξ1 − ξ2) · ∂ϕξ2−

− 1

2
(ξ2 − ξ1)2 × ∂2ϕξ2 ,

where δ2 × ∂2 means, if δ is a vector in R
d,

d∑

i,j=1

δiδj
∂2

∂ξj∂ξj
,

then the contributions from the unframed tree in Fig.

(47) to the effective potential V
(k)
2 due to V1 + V2,N at

fixed h, α1, α2 are, if ϕ ≡ ϕ(≤k),

1

2
µ2

(
2

1

)2

: ϕξ1Tξ1ξ1 : C
(h)
ξ2ξ1

, α1, α2 = 2, (17.10)

µα

(
2

1

)2

: ϕξ1S
1
ξ2ξ1 : ∂ξ1C

(h)
ξ2ξ1

, α1 = 2.α2 = 2′, (17.11)

µλ

(
2

1

)(
4

1

)
: ϕ3

ξ1Dξ2ξ1 : C
(h)
ξ2ξ1

, α1, α2 = 4, (17.12)

1

2
α2

(
2

1

)2

: ∂ϕξ1D
1
ξ2ξ1 : ∂ξ1ξ2C

(h)
ξ2ξ1

, α1, α2 = 2′,(17.13)

αλ

(
2

1

)(
4

1

)
: ∂ϕξ1ϕ

3
ξ2 : ∂ξ1C

(h)
ξ2ξ1

, (17.14)

α1 = 2′, α2 = 4(unchanged), and for α1, α2 = 4 :

λ2

2

[(4

1

)2

1! : ϕ3
ξ1ϕ

3
ξ2 : C

(h)
ξ2ξ1

+

+

(
4

2

)2

2! : ϕ2
ξ1(ϕξ1 + ϕξ2)Dξ1ξ2 : (C

(≤h) 2
ξ2ξ1

− C(<h) 2
ξ2ξ1

)+

+

(
4

3

)2

3! : ϕξ1Tξ1ξ2 : (C
(≤h) 3
ξ2ξ1

− C(<h) 3
ξ2ξ1

)
]
, (17.15)

A simple way to describe the construction of (17.10)–
(17.15), i.e. to interpret the R over the vertex of the tree
in Fig. (47), is to think that the tree in Fig. (47) is
computed from the values of the same tree without the
R followed by the replacement of P by RP in the result.

It is also easy to compute the meaning of the most gen-
eral tree dressed to order 2 (see Sec. 8 for the notation),
as with the example in Fig. (48) below:

α1

α2

ξ α

ξ3

ξ4

ξ5

ξ6

ξ7

α3

α4

α5

α6

α7

γ =
k h

p

q

t

R

(48)

According to the general theory of Sec. 8 the first
act will be to “trim” the tree γ of the frame and of its
contents (if there are more frames one trims all of them),
obtaining a simpler tree γ; e.g. in the case of Fig. (48)
the result would be

ξ α

ξ3

ξ4

ξ5

ξ6

ξ7

α3

α4

α5

α6

α7

γ
_

=
k h

p

q

t

R

(49)

Then one proceeds to write the truncated expectation
formula for the evaluation of the contribution to V (k) of
the tree γ, ignoring the presence of the R superscript (see
comments in Sec. 7 after Fig. (13)). The vertex bearing
the R contributes

ETt
(
v(α6)(ϕ

(≤t)
ξ6

), v(α7)(ϕ
(≤t)
ξ7

)
)

(17.16)

in the above above example
and a similar expression in general; then one just replaces
in (17.16) the Wick monomials P by RP according to
(17.4). Finally one replaces the factor λ(α contributed to
the effective potential by the end point (ξ, α) with the
factor r(α)(σ, q), σ being the shape

α1
α2

, framed
according to (17.8).

This completes the analysis of the second-order renor-
malization. It justifies calling (17.8) form factors with
structure σ.

It will be clear that a detailed check of all the above
formulae is the heart of renormalization theory and there-
fore the inexperienced reader should proceed only after
having well understood the details of the above calcula-
tions.

As an exercise the reader can consider the theory of
renormalization to second order of the following prob-
lems.

(1) Let IN be

−λ
∫

Λ

: ϕ
(≤N) 4
ξ : dξ (17.17)

and show that if d = 2 one can take L(σ)
k ≡ 0, i.e. no

renormalization is necessary.
(2) Let IN be
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∫

Λ

(−λ : ϕ
(≤N) 4
ξ : −µ : ϕ

(≤N) 2
ξ : −ν) dξ (17.18)

and work put the renormalization to second order in the
case d = 3, proving that one could use as a definition of
Lk, instead of (17.6), the following

L1 = 1, L : ϕξ1ϕξ2 : = : ϕ
(≤N) 2
ξ : (17.19)

(3) Let IN be

∫

Λ

(−µ : ϕ
(≤N) 2
ξ : −α : (∂ ϕ

(≤N)
ξ )2 :) dξ (17.20)

and work out in detail renormalization theory showing
that, unless α = 0, one still needs nontrivial renormal-
ization. However the theory can be rigorously built if
µ, α are small or non negative.

(4) Show that the theory with interaction (17.18) is
not renormalizable if d = 4, not even to second order, in
the sense of Secs. 6–8 (not identical, although trivially
related, to the one usual in the literature).

xviii. Renormalization and ultraviolet
stability to any order for ϕ4 fields

Section ]sec(17) has shown that renormalization to sec-
ond order suggests a representation of the effective po-
tential in terms of Wick monomials more general that the
ones used in Sec. 16, (16.4), and precisely as a sum of
contributions like

∑

P

∫
V (γ;P )

n(γ)
P dξ (18.1)

where P has the form (here ϕ ≡ ϕ(≤k) and the symbols
in (17.9) are used)

P = :
(∏

j

ϕnj
ρj

)
·
( ∏

j

D
mj

ηjη′j

)
·
(∏

j

D
1n′

j

θjθ′j

)
· (18.2)

·
( ∏

j

∂ϕ
pj

ξj

)
·
(∏

j

S
qj

ξjξ′j

)
·
(∏

j

S
1 rj

ζjζ′j

)
·
( ∏

j

T
tj
µjµ′

j

)
:

with nj ≤ 4, ρj ,mj , nj, qj , rj , tj ≤ 2.
The most naive way to proceed is to define recur-

sively the localization operations L(σ)
k associated with

tree shapes of degree p+1 (i.e. with p+1 end points) par-
tially dressed to order p simply by using again the local-
ization prescription (17.6) and the corresponding renor-
malization prescriptions for the interpretation of the ver-
tices with R-superscripts (17.4): the idea being that,
as suggested by (16.18) and (16.19), the divergences are
caused by the contributions to V (γ;P )P from the ver-
tices v of |g describing a Wick monomial of degree ≤ 4.

However if P is given a general form (18.2) it is clear
that there will be plenty of monomials of order ≤ 4 which
do not appear in (17.4) and for which the operations R
and L are not defined yet. The first task is to classify
them.

One assumes inductively that the renormalized effec-
tive potential corresponding to an interaction renormal-
ized to order p:

VP = V1 + V2,N + V3,N + . . .+ Vp,N (18.3)

is still described in terms of Decorated Feynman graphs
S as

∞∑

n=1

∫ ∑

γ;degree γ=n

∑

S

V (γ;S)

n(γ)
(18.4)

where now the graphs S will bear more decorations (com-
pared to the cases treated in Sec. 16 to describe the
“effects” of the renormalization.

One checks this inductive assumption in the case p = 2
first, where it can be checked, because V2,N has already
been studied in Sec. 17.

Let γ be any tree dressed to order 2, e.g. see fig.
48. Trim γ of the endframes and consider one decorated
Feynman graph S corresponding to the evaluation of the
effective potential due to the trimmed tree γ but ignoring
the superscripts R.

Draw a box Bv around the cluster of position labels of
γ corresponding to the vertex v of γ: the box Bv will be
drawn so that the lines of S with frequency index hv are
inner to Bv but not inner to v′ if v′ > v, as in Sec. 16.

Therefore, out of each box Bv emerge lines of S possi-
bly carrying ∂ labels, as in Sec. 16 will be systematically
used below; for instance, ne1,v and ne0,v will be. respec-
tively, the number of lines emerging fromBv and carrying
or not carrying a ∂ label; nev will be defined to be the sum
of the above two numbers.

So each box Bv represents a Wick monomial Pv, as in
Sec. 16. Consider the vertices v bearing in γ an R: note
that they must correspond to some innermost nontrivial
clusters and precisely to those with two points in them.

Let one such v represent, in the given S, a Wick mono-
mial Pv: one replaces it by RPv, see (17.4).

If RPv = Pv nothing has to be said; but if RPv 6= Pv
one has to interpret that the vertex v contributes, via
the graph S, RPv rather than Pv to the evaluation of
the truncated expectations corresponding to γ.

If RPv is a Wick monomial in the fields ϕ, ∂ϕ,D,D1,
S, S1, T , see (17.9), then one denotes this operation of
substitution of Pv by RPv by simply adding an index
0 to the box Bv; but in some cases, actually only in
one case among those so far considered, RPv may not
be a Wick monomial in the above fields. In fact the
R : ϕ2

ξϕ
2
η : is, by (17.4), : ϕ2

ξ(ϕ
2
η −ϕ2

ξ) :=: ϕ3
ξ Dηξ : + :

ϕ2
ξϕηDηξ) :, i.e. a sum of two monomials rather than a

single monomial.
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If RPv is a Wick polynomial, sum of various monomials
numbered from 0 to m, then one attaches to the box Bv a
label bv = 0, 1, . . . ,m to indicate which term in RPv one
selects in the evaluation of the truncated expectations as
a contribution from v.

One takes into account this index βv by changing ac-
cordingly the meaning of the lines of S emerging from
the box Bv, e.g. the line representing ϕ2 in : ϕ1ϕ2 is
replaced by T21, that representing ∂ϕ2 in : ϕ1∂ϕ2 : is
replaced by S1

21 that representing ∂ϕ2 in : ∂ϕ1∂ϕ2 : is
replaced by D1

21, the one representing one of the two ϕ2’s
in : ϕ2

1ϕ
2
2 : is replaces by D21 if the index βv appended

to the box Bv (which now takes values 0 or 1) is βv = 1
while, if βv = 0 then one of the two lines representing
|f2

2 is replaced by a line representing ϕ1 and the other by
one representing D21 (which one is replaced by which is
irrelevant, e.g. one can decide on the basis of the identity
indices appended to the lines emerging from a point, say
lexicographically); in the : ϕ1ϕ

3
2 : case the line repre-

senting ϕ1 is replaced by by D12.

Then the evaluation of V (γ;S) proceeds as before with
the consequent change of meaning of the covariances as-
sociated with the contracted lines (when two lines are
contracted, they give rise to the covariance between the
two fields that they represent, of course).

Clearly at the end of the computation one still has to
replace the λ(α) contributed by the end points of γ (com-
ing from the trimmed end frames bearing inside the shape
σ =

α1
α2

, and attached to a vertex of frequency

h) by new factors r(α)(σ;h) as explained in Sec. 17, see
(17.8) and the related discussion.

The result of the above procedure is a formula like

(18.4) for the effective potential V
(k)
2 due to V2 + V2,N .

Hence the inductive assumption is satisfied for p = 2.

Assume (18.4) for p = 2, 3, . . . , p0 and let γ be a tree
dressed to order p0 and of degree p0 + 1; assume to have

already defined operations L(σ)
k for all the shapes of de-

gree ≤ p0.

Assume also that the result of the action of such op-
erations leads to a rule of evaluation of the trees with
no frames (and possibly some R indices) which consists
in examining successively the boxes Bv corresponding to
the vertices of a tree, starting from the innermost ones,
and changing successively the monomials Pv, which each
of them represents, into a new monomial in the fields
ϕ, ∂ϕ,D,D1, S, S1, T appearing in the polynomial RPv
defined as follows.

If P has one of the forms contemplated in (17.4), then

RP is defined as in (17.4), i.e. if ϕj = ϕ
(≤k)
ξj

, δij = ξi−ξj ,

R 1 = 0

R : ϕ1ϕ2 : = : ϕ1T21 :

R : ϕ1∂ϕ2 : = : ϕ1S
1
21 :

R : ∂ϕ1∂ϕ2 : = : ∂ϕ1D
1
21 :

R : ϕ2
1ϕ

2
2 : = : ϕ3

1D21+ : ϕ2
1ϕ2D21 :

R : ϕ1ϕ
3
2 : = : D12ϕ

3
2 :,

(18.5)

where (18.5) is just a way of rewriting (17.4) in the new
notations (17.9) and theD,S, T.D1, S1 fields have indices
j which mean ξ1, ξ2 and have also frequency indices which
are the same as those of |f and which are not explicitly
written.

With the same notations the action of R on other
monomials of degree ≤ 4 is defined by

R : ϕ2D12 : = : ϕ2T12 :

R : ϕ2S12 : = : ϕ2T12 :

R : ϕ1S23 : = : D12S23 : +R : ϕ2S21 :

R : ϕ1S12 : = : D12S12 : + : D21T12 : + : ϕ1T12 :

R : ϕ1D32 : = : R : D12D32 : +R : ϕ2D23 :=

= − : S12S32 : + : S12D32 : + : D12S32 : +

+ : D21T32 : + : ϕ1T32 :,

R : D12D32 : = − : S12S32 : + : S12D32 : +

+ : D12S32 :

R : D12D34 := − : S12 δ34D
1
34 : + : D12 δ34D

1
24 : +

− : S12S34 : + : S12D34 : + : D12S34 :

R : ∂ϕ1∂ϕ2 : = : ∂ϕ1D
1
21 :

R : ϕ1∂ϕ2 : = : ϕ1S
1
21 : (18.6)

R : ∂ϕ1D21 : = : ∂ϕ1S21 :

R : ϕ1D
1
21 : = : ∂ϕ1S

1
21 :

R : ϕ3D
1
21 : = : D31D

1
21 : + : D13S

1
2 : + : ϕ3S

1
21 :

R : ∂ϕ1D23 : = : D1
13D23 : + : ∂3S23 :

R : ϕ1ϕ
2
2ϕ3 : = : D12ϕ

2
2D32 : + : ϕ1ϕ

2
2D32 :

R : ϕ1ϕ2ϕ3ϕ4 : = : ϕ1D21ϕ3ϕ4 : + : ϕ1D12D31ϕ4 : +

: ϕ1ϕ2D31ϕ4 : + : ϕ1D12D13D41 : +

: ϕ1ϕ2D13D41 : + : ϕ1ϕ2ϕ3D41 : +

: ϕ1ϕ
2
2ϕ3D41 : .

The action of R on the monomials which differ from the
ones listed above by a sign (e.g. ϕ2D21) is that R acts
by changing the

sign of the r.h.s. ; for the remaining monomials one
puts RP = P .

The basic idea informing the definitions (18.5) and
(18.5) is to subtract from each monomial P its “value
at coinciding points” (defined below by the L operation)
to an order such that RP contains a zero of order

1 if degree of P = 4 and ne1,v = 1
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3 if degree of P = 2 and ne1,v = 1
2 if degree of P = 2 and ne1,v = 1
1 if degree of P = 2 and ne1,v = 1
∞ if degree of P = 0 and ne1,v = 1

In other words if we call ρ̃v the above order of zero
then ρ̃v is defined, see (16.23), as the smallest integer for
which ρ̃v + ρ′v > 0.

Furthermore, the definition of R is such that each of
the monomials on the r.h.s. can be thought of as obtained
by substituting for one of the factors in P an “improved”
factor climbing the chains ϕ → D → S → T or D →
S → T or D → D1 → S1 or ∂ϕ→ D1 → S1 or D1 → S1

or S → T .
In analogy with the second order case of Sec. 17 it is

natural to try to define the operation L(σ)
k on the contri-

bution of the tree γ with shape |s to the effective potential

V
(k)
p0 , assuming that the tree has degree p0 + 1 but that

it is dressed to order p0 only (this is the situation that
has to be considered according to the general theory of
Sec. 8). If this contribution is denoted

∑

S

∫
V (γ;S)PS dξ, (18.7)

then, in analogy with Sec. 17, L(σ)
k should act on (18.7)

by just changing PS into LPS and L should be defined so
that for any kernel w verifying the translation invariance
and rotation covariance (for rotations of π2 around the co-
ordinate axes only, since Λ is taken with periodic bound-
ary conditions) it should be

∫
w (1−L)P dξ =

∫
wRP dξ.

After some thought one realizes that this aim can be
achieved by defining the action of L to be that of replac-
ing a non local Wick monomial P by its Taylor expansion
truncated to an order ρ̃v − 1.

Since P is nonlocal it will have to be decided around
which of the points appearing as indices of the fields in
P the Taylor expansion will be made. For instance one
could choose any of them and then symmetrize the result
over the choices; however it is notationally and practi-
cally simpler to choose one among them giving the sim-
plest form to the result; sometimes this may still leave
some ambiguity; the ambiguity will be resolved by arbi-
trary choices guided by the labels j on the points ξj . Of
course this implies that one has to be careful in imagining
to draw the trees on the plane always in a standard way
(a precaution ignored so far), i.e. picking up systemati-
cally one representative from each equivalence class and
numbering the end points also in a standard way (e.g.
from top to bottom).

In the expression below the indices of the fields in
P are always supposed to be ξj1 , ξj2 , ξj3 , ξj4 but the

shortened notation ϕj = ϕ
(≤k)
ξj

will be used as well as

δij = (ξji − ξjj ). Also if θ, θ′ are component indices we

set δ2ij × ∂ 2ϕj
def
=

∑d
θ,θ′=1

∂2

∂ξθ ∂ξ′
θ

. Then with the above

conventions

L 1 = 1

L : ϕ1ϕ2 : = : ϕ1(ϕ1 + δ21∂ϕ1 +
1

2
δ221 × ∂ 2ϕ1) :

L : ∂ϕ1∂ϕ2 : = : ∂ϕ1∂ϕ1 :

L : ϕ1∂ϕ2 : = : ϕ1(∂ϕ1 + δ21 · ∂ ∂ϕ1) :

L : ϕ1D21 : = : ϕ1(δ21 · ∂ ϕ1 +
1

2
δ221 · ∂ ϕ2) :

L : D13D23 : = : δ13 · ∂ ϕ3 δ23 · ∂ ϕ3 :

L : ϕ1D23 : = : δ13 · ∂ ϕ3 δ23 · ∂ ϕ3 : +

+ : ϕ3(δ23 · ∂ ϕ3 +
1

2
δ223 × ∂ 2ϕ3) :

L : D12D34 : = : δ12 · ∂ ϕ2 δ34 · ∂ϕ2 :

L : ϕ1S21 : =
1

2
: ϕ1δ21 × ∂ 2ϕ1 :, (18.8)

L : ϕ1S12 : =
1

2
: ϕ2δ12 × ∂ 2ϕ2 :,

L : ϕ1S23 : =
1

2
: ϕ3δ23 × ∂ 2ϕ3 :,

L : ϕ1D
1
21 : = : ϕ1δ21 · ∂ ∂ϕ1 :,

L : ϕ1D
1
23 : = : ϕ3δ23 · ∂ ∂ϕ3 :,

L : ∂ϕ1D
1
21 : = : ∂ϕ1δ21 · ∂ ϕ1 :,

L : ∂ϕ1D
1
23 : = : ∂ϕ3δ23 · ∂ ϕ3 :,

L : ϕ1ϕ
3
2 : = : ϕ4

2 :, L : ϕ2
1ϕ

2
2 : = : ϕ4

1 :,

L : ϕ1ϕ
2
2ϕ3 : = : ϕ4

1 :,

L : ϕ1ϕ2ϕ3ϕ4 : = : ϕ4
1 :,

and LP = 0 if P does not differ by just a sign from
one of the above monomials, LP = −L(−P ) if P differs
by a sign from one of the above monomials.

If the above is taken as definition of L one can find
L(σ)
k and hence, by the general algorithm of Sec. 8, the

counterterms of order p0 + 1 as well as the meaning of
the tree σ

k ξ,α
.

Recall that one is proceeding inductively and the def-
inition of the counterterms (and the meaning of the
dressed trees) is supposed known for trees of degree ≤ p0.

Of course one has first to check that the operation L(σ)
k

has range in the space of the interactions (see Secs. 7
and 8). This follows, as in the case of second order renor-
malization, by studying the integrals of expressione like
(18.8) times kernels satisfying the translation invariance
and rotation covariance mentioned above (and possibly
integrating by parts to obtain expressions of the appro-
priate form).

It is perhaps worth saying why L(σ)
k bears an index σ:

in fact L is defined independently of σ. However L(σ)
k

acts on the functions of the form (18.7) and a function
F can be written in several ways in the form (18.7). As

discussed in Sec. 17 the operation L(σ)
k acts on the ef-

fective potential written in the form (18.7) as it arises
from the prescriptions of the calculation to be followed
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in evaluating the contribution of the graph S to the effec-
tivepotential once the tree γ is given (such prescriptions
are the ones discussed in detail in Sec. 16): the prescrip-

tion depends on the shape σ of γ; hence so does L(σ)
k .

To be more precise in Sec. 16 the prescriptions for the
evaluation of the effective potential in terms of decorated
Feynman graphs were given in the absence of renormal-
ization: but renormalization just allows more complex
Wick monomials and therefore a possibility of giving to
the graphs lines the meaning of more complex fields and
can still use the same graphical rule to build the evalua-
tion of the expectations via the Wick rules.

Therefore it will be decided to choose as definition of
L(σ)
k on the expressions (18.7) the action of the operations

L on the integrands. Then, by the above construction,
the action of (1 − L) generates an interpretation of the
R superscripts on the trees dressed to order po + 1 as
meaning that the Wick monomial represented in a given
graph S by a vertex v of order p0 + 1 has to be replaced
by RP defined by (18.5), (18.6).

This means that the inductive assumption is indeed
verified for p = p0 + 1 and hece for all p. It also means

that L(σ)
k depends on σ only through the tree shape τσ

obtained by deleting the frames σ as well as their con-
tents, a necessary property in order to apply the resum-
mation theory of Sec. 9 to the present problem.

For later use it is convenient to recall the meaning of
the tree σ

k ξ,α
: it is obtained by the rules of 16; see

Fig. 18 and 19 and Eq. (8.5).

One starts by erasing the frame around the shape s and
its labels ξ, α. Then one attributes frequency indices to
the vertices of σ which are outside the remaining frames,
and one also attributes position indices to the unframed
end points of |s and to the endframes of σ: in this way one

builds a partially dressed tree γ
def
= (σh, ξ), because the

first vertex of γ bears no superscript R (because before
erasing the frame it was enclosed inside it and therefore
had no R superscript).

Suppose that the indices h are such that the root fre-
quency is −1: hr = −1.

One proceeds by computing, with the rules explained
above, the effective potential V (γ;S), where S is a deco-
rated Feynman graph,

−1 h

no R here σ1

σ2

σs

(50)

with enough decorations on every box Bv to allow rec-
ognizing which choice among the monomials of RPv is
made at that vertex: as explained above, this is done by
adding an index βv corresponding to a vertex v bearing
a superscript R and βv can take only a few values (from
(18.5) and (18.6) one sees that βv = 0, 1, 2, 3, 4, 5, 6 are
enough in the mostcomplex cases).

Since the r.h.s. of (18.8) is made up of local expressions
in the fields and the coefficients are kernels with trans-
lation invariance and rotation covariance (in the sense

considered above), it follows that the integrals over the
position labels of V (γ;S)PS summed over S can be cast
in the form “of an interaction”:

∫

Λ

(I(4)(σh) : ϕ
(−1) 4
ξ : +

+ I(2)(σh) : (∂ϕ
(−1)
ξ )2 : +I(0)(σh)) dξ,

(18.9)

and this means that (see (8.5)) the form factor corre-
sponding to σ

k ξ,α
: is

r(α)(σ, k) =

k∑

h=0

∑

h′

I(α)(σh)

n(σ)
(18.10)

where h denotes the frequency index of the first vertex
of σh after the root and h′ are the frequency indices on
the higher vertices (and the root frequency is supposed
to be −1).

Naturally the N dependence of (18.10) is in the fact
that the summation indices over h′ run with upper
bounds equal to N ; nevertheless, it will appear that
r(α)(σ, k) admits a limit as N →∞, at fixed k.

This completes the inductive description of the coun-
terterms and of their effects on the tree representation of
the effective potentials.

The final result is that after complete renormalization

V (k) =

∞∑

n=1

∫ ∑

γ : k(γ)=k
degree γ=n,ξ(γ)=ξ

γ dressed

∑

S

V (γ;S)

n(γ)
PS dξ,

(18.11)
where the sum runs over the Feynman graphs S asso-
ciated with the trimmed tree γ (i.e. γ deprived of the
outer frames and of their contents), decorated by boxes
(defining the clusters associated with the vertices v of γ)
bearing indices βv explaining the selection to be made in
evaluating RPv (the index βv can take at most seven val-
ues). Furthermore the graph S bears all the other dec-
orations already possible in the nonrenormalized cases
(i.e. frequency, character, identity and ∂ indices, see Sec.
16).

It remains for s to check that, with the above defi-
nitions of the subtraction operations, the new theory is
ultraviolet finite.

Given a dressed tree γ with no frames (i.e. with every
vertex of γ bearing an index R) one has to study, given
ϕ(≤k) verifying (3.20) (with n = 3), the expression (see
the analog (16.12))

MS(∆1, . . . ,∆p) =

∫

∆1×...×∆p×Λn−p

·

· |V (γ;S)| sup |PS | dξ, ∆j ∈ Qk, p ≤ n,
(18.12)

where S is a given decorated Feynman graph: n is the
degree of γ, k is the root frequency.
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Clearly the integral (18.12) is evaluated by just the
same type of analysis leading to the bounds (16.18) in
the case of no renormalization. One has only to re-
place some covariances with new covariances due to the
fact that some lines have the meaning of new fields
(D,S, T,D1, S1).

However a few remarkable improvements are generated
by such changes.

Call a line of S representing fields like (17.9) a “renor-
malized line”. Below γ and S will be fixed.

Looking at the graph S one can see which is the vertex
v “causing” the change of meaning of a renormalized line
compared to the meaning that the line would have in the
graph S0 obtained from S by erasing all the decorations
which allow one to interpret it as a renormalized graph.
It must be a vertex v corresponding to a box Bv , which in
S0 would determine a monomial Pv on which R acts non-
trivially (RPv 6= Pv, see (17.4),(18.5) and (18.6)). The
actual meaning of a renormalized line cannot be deter-
mined by v alone. In fact, as (18.6) shows, it may happen
that its meaning is changed again in correspondence of a
vertex v′ < v such that Rv′ contains two external lines.

But the change of meaning cannot take place more
than four times, because the meaning of the line “keeps
improving” (i.e. the corresponding order of zero in the
RP polynomial keeps increasing): a ϕ line can become a
D or S or T line, a D line can become an S or T line,
and S line can become a T line, a ∂ϕ line can become a
D1 or S1 line, a D1 line can become an S1 line; and R is
the identity when acting on monomials containing S1 or
T fields.

So, given γ, S and a renormalized line of S once can
define the first vertex responsible for its change of mean-
ing with respect to the meaning it would have in S0; one
can also define the vertices v1, v2, . . . following v where
the line again changes meaning before acquiring its final
meaning; from (18.6) and (18.5) one sees that this change
of meaning cannot take place more than a fixed number
of times (four). Finally one can define the vertex w where
the line becomes internal to a box Bw for the first time:
w = r = root of γ if the line is external.

Call ρv the parameter associated with the vertex v (see
(16.18),(16.19)) in the graph S0. Then it is clear that the
fact that the line has changed meaning introduces in the
basic bound (16.7) an extra factor given, at least, by

B2 (γhwd(ξv))
δv ≡ B2 γ

−(hv−hw)δv (γhvd(ξv))
δv ,
(18.13)

where B2 is suitable and δv is the variation of the order of
zero, as d(ξv)→ 0, introduced in Pv by the R operation
via the change of meaning of the line under consideration.

Therefore every time a given line changes meaning at
vertices v1 > v2 > . . . new factors like (18.13) arise in
the bounds on MS(∆1, . . . ,∆p), and by construction the
sum over the lines λ that change meaning and over the
vertices v of the quantities δv is such that

∑

λ

∑

v

δv (hv − hw) ≥
∑

v

ρ̃v (hv − hv′), (18.14)

if v′ is the vertex immediately preceding v in γ, and ρ̃v =
−ρv + 1 if ρv ≤ 0 and ρ̃v = 0 otherwise. Eventually the
bound on MS(∆1, . . . ,∆p) becomes

[ ∫

∆1×...×∆p

( ∏

λ

e−κγ
hλ |λ|

)(∏

v

γ−(hv−hv′ ) ρ̃v

)
·

·
(∏

v

(γhvd(ξv))
θ̃
)
dξ

]
· (18.15)

· εnNBneB̃ne

2 B4n
2 γ

d−2
2 k ne

0,v0γ
d
2 k n

e
1,v0 ·

·
∏

v>r

(
γhv

d−2
2 ninner

0,v γhv
d
2n

inner
0,v

)

where B̃2 is defined by a formula like (16.13) in which PS
has the new meaning (and the r.h.s. is changed accord-
ingly in the natural way: note that the new r.h.s. will
contain, in general factors like (18.13) when PS contains
renormalized fields and use is made of (3.20) to exhibit
the order of zero in the D,S, T,D1, S1 fields; the con-

stant θ̃v can, in principle, be read by comparing (18.13)
and (18.15)).

The exponents θ̃v can be bounded by the maximum
of ρ̃v (i.e. three) times the number of times a line can
change meaning (i.e. four at most) times the number of
lines that do change meaning at the vertex v (by (18.5)
and (18.6)): actually this happens only when Pv looks
like ϕ1ϕ2ϕ3ϕ4, see (18.5). Call T th above bound (T =
32 4).

Hence for all ζ > 0 it is, if d(ξ) is the graph distance
between the points of ξ = (ξ1, . . . , ξn)

∏

v

(γhvd(ξv))
θ̃v ≤

(T !

ζ

)4n
e
ζT

∑
v>r

γhvd(ξv)
(18.16)

where the 4n arises from the fact that the lines changing
meaning at v can become internal at different vertices w:
at most four.

This is used to choose ζ so that ζT < 1
4κ (−γ−1), which

can be used together with the inequality

∑

λ

γhλ |λ| ≥ (1− γ−1)
∑

v>r

γhvd(ξv), (18.17)

a consequence of γh ≥ (1 − γ−1)(1 + γ−1 + γ−2 + . . . +
γ−h)γh and of elementary geometry, to bound (18.15) by
(see Appendix D for the bound (16.14) on the integral)

∫

∆1×...×∆p

e−κ
∑

λ
γhλ |λ|

∏

v

(γhvd(ξv)) ≤

≤ e−κ
4 γ

kd(∆1×...×∆p)
(T !

ζ

)4n· (18.18)

·
∫

Λn−1

γ−kde−
κ
4

∑
λ
γhλ |λ|dξ2 . . . dξn
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which, inserted in (18.15) and after appropriate power
counting, becomes

Ms(∆1 × . . .×∆p) ≤ εNBn
e

B̃n3 e
−κ

4 γ
kd(∆1×...×∆p)·

· γ−k(2m2+(4−d)m4)
∏

v>r

γ−(ρv+ρ̃v)(hv−hv′ ) (18.19)

for a suitable B̃3, if v′ denotes the vertex immediately be-
fore v in γ and with ρv defined in (16.19), using the graph
S0 obtained from S by erasing all the labels referring to
the renormalization, and

ρv + ρ̃v = −d+ 2m2,v + (4− d)m4,v+

+
d− 2

2
ne0,v +

d

2
ne1,v + δne

0,v
,4δne

1,v
,0 + 3δne

0,v
,2δne

1,v
,0+

+ 2δne
0,v
,1δne

1,v
,1 + 1δne

0,v
,0δne

1,v
,2 ≥

1

2

def
= ρ (18.20)

(here nev, n
e
1,v, n

e
0,v are counted as they appear in S0).

Actually, for later use, one can remark that if 2m2,v +
(4− d)m4,v is replaced by 0 in (18.20) one obtains a new
expression ρ′v+ρv which, nevertheless, is still larger than
ρ = 1

2 , see (16.20)–(16.23).
Expressions (18.19) and (18.20) prove the ultraviolet

finiteness for the trees which are dressed but contain no
frames.

If γ bears frames enclosing shapes σ1, . . . , σm, m ≤ n =
degree of γ, attached to the trimmed tree γ, obtained
from |g by trimming it at the vertices of frequency
h1, . . . , hm (allow here the convention that the unframed
end points are regarded as frames by a frame containing
the trivial shape, as already done in the previous sec-
tions), then the bound (18.17) is obviously replaced by

Ms(∆1 × . . .×∆p) ≤ NBn
e

B̃n3 e
−κ

2 γ
kd(∆1×...×∆p)·

· γ−(2m2+(4−d)m4)k ·
∏

v>r

γ−(ρv+ρ̃v)(hv−hv′)·

·
m∏

j=1

|r(αj)(σj ;hj)|, (18.21)

where the factors r(α)(σ;h) are the form factors associ-
ated with the shapes σ (see Secs. 8,17 and (17.8)) defined
by (18.10), r(α)(σ, h) ≡ λ(α) if the shape σ enclosed in
the frame is trivial.

Consider d = 4 and suppose that one could prove that

|r(α)(σ;h)| ≤ γ2hδα,2γ4hδα,0hsεsCs (18.22)

where s is the degree of the shape σ and

ε = max(|λ|, |µ|, |α|, |ν|) = max
α
|λ(α)|.

Then, as already noted in Sec.16 and after (18.20) above,
the factors γ2hδα,2 would affect the bounds (18.19) and
(18.20) by replacing ρ̃v + ρv by ρ′v + ρv and 2m2,v by 0,
so that (18.19) becomes

Ms(∆1 × . . .×∆p) ≤ NBn
e

B̃n3 e
−κ

2 γ
kd(∆1×...×∆p)·

·
∑

h

∏

v>r

γ−ρ (hv−hv′) ·
m∏

i=1

hsi

i Csi , (18.23)

and the ultraviolet finiteness would follow also for the
frame bearing dressed trees.

It is convenient to remark that the bound (18.23) can
be considerably improved at no cost if one notes that, by
the nature of the bounds leading to the d(∆1× . . .×∆p)
in the exponential, one could have obtained instead the
quantity dS(∆1 × . . .×∆p), where this is defined as the
sum of the distances between the cubes ∆ joined in S by
a hard line. It is clear that this is a much better bound
for very structured graphs.

It remains for us to prove (18.22); however in Sec. 19 a
much stronger bound, compared to (18.22) (easy as it will
appear) will be proved. Therefore the proof of (18.22) is
postponed to Sec. 19.

The results of this section basically contain the “Hepp
theorem” ((Hepp, 1966, 1969)): this theorem provided
the first completely rigorous proof of ultraviolet stabil-
ity (see also (Eckmann and Epstein, 1979; Speer, 1974;
Zimmermann, 1969)).

xix. “n! bounds” on the effective potential

It is now possible to find concrete bounds on the coef-
ficients of the effective potentials. In this section we take
d = 4, for simplicity (the cases d < 4 are similar and
slightly easier).

From the preceding analysis emerges the following or-
ganization of the contributions to V (k) of the trees of
degree n.

A dressed tree γ will be described by its trimmed part
γ. obtained by cutting out of γ all frames and their con-
tents, and by the actual contents of the external frames
of γ: one per end point of γ which bears a frame; for
uniformity of notation one imagines here that all the
end points of the dressed trees are framed so that if

k ξ,α; is an endbranch of γ which bears no

frames one imagines to transform it into σ
k ξ,α .

The degree of γ will in general be larger than or equal
to the degree m of γ, which will be called the “renormal-
ization degree” of γ.

So a dressed tree γ will be described by γ andm shapes
σ1, σ2, . . . , σm, which have to be enclosed in frames at-
tached to the end points of γ to rebuild γ: if γ has degree
n and σi degree ni it must be n =

∑m
i=1 ni. For instance

the following picture shows a tree γ together with its
trimmed part γ and the shapes σ1, σ2, . . . , σm,
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γ = 
k h

R
p

R R

α1
α2

α3α4

ξ 5,α5
ξ 6,α6

ξ 7,α7

ξ 8,α8

γ = 
_

k h

R
R

R
p

q ξ 7,α7

ξ 6,α6

ξ 5,α5

ξ 8,α8

σ8 = 

α1
α2

α3

α4

R
σ = j α

j
j= 5,6,7.

(51)

The number of shapes of degree s can be easily esti-
mated by Ds

1 for some D1 (one can tale D1 = 24).
Consider the contribution to V (k) from the trees of

degree n:

V (k),n =

∫ ∑

k(γ)=k
degree γ =n

ξ(γ)=ξ

∑

S

V (γ;S)

n(γ)
PS dξ (19.1)

where PS has the form (18.2) and S is a decorated Feyn-
man graph as described in Sec. 18. The aim of this sec-
tion is to show that if ξ1, . . . , ξm are the endframe labels
of γ, then there are γ–independent constants B, κ,D, b
such that if B = sup∆B∆ in (3.20) and ε = maxα |λ(α)|
it is

M(∆1, . . . ,∆p) =

∫

D(∆1,...,∆p)

dξ
∑

k(γ)=k
degree γ =n

ξ(γ)=ξ

∑

S
PS=P

sup |P | ·

· |V (γ;S)|
n(γ)

≤ NBnεne−κγkd(∆1,...,∆p) n!
n−1∑

j=1

(bk)j

j!
,

(19.2)

where D(∆1, . . . ,∆p)
def
= ∆1 × . . .∆p × Λ × . . . × Λ or a

domain obtained by permuting such faactors; ∆j ∈ Qk
and the supremum of P means supremum over the fields

ϕ(≤k) =
∑k
j=0 ϕ

(j) with ϕ(j) satisfying (3.20); N depends

on the degree of P only: N = O((ne)!).
Equation (19.2) will be called the n! bound: this

bound was obtained in a slightly different form (i.e. as a
bound on the Schwinger functions rather than on the
effective potentials, and in “momentum space” rather
than in “position space”) and with a somewhat different
method in the remarkable work (DeCalan and Rivasseau,
1982). The approach presented below follows essentially
(Gallavotti and Nicolò, 1985a,b).

The first problem is to find explicit combinatorial es-
timates on the number of terms in (19.2).

Since S has the interpretation of a decorated Feynman
graph with m vertices, m being the renormalized degree
of γ (i.e. the degree of its trimmed part), and since the
decorations consist of finitely many indices attached to
each line and vertex of the graph (see Sec. 18 for an
explicit description of such indices, each of which can take

a number of values which is finite and graph independent,
except for the frequency indices) it follows that one can
bound the number of terms in

∑
S in (19.2) at fixed γ by a

constant of the form Dm
2 times the number of Feynman

graphs, which can be built by joining pairwise 4m2 +
2m2 + 2m2′ lines emerging from m = m4 + m2 + m2′

vertices out of m4 of which emerge four distinct lines,
while out of the other m2 + m2′ emerge only two lines,
possibly leaving aa few lines unpaired. This number is
clearly boundeb by (2m4 + m2 + m2′)! 42m4+m2+m2′ ≤
(2m)! 24m, and this is therefore an estimate of the number
of terms in the

∑
S .

However the above number is too big, and it can be
replaced by a better bound. This is so because the
(2m)! 24m ways described above come from multiply-
ing the ≤∼ m!24m connectd graphs built with m unla-
beled points (“topologically distinct graphs”) times the
m! ways of labeling such points by ξ1, . . . , ξm. But the
rules of construction of a graph S associated with a tree
γ are such that if a graph S is given and can arise in the
sum (19.2) for a given |g, i.e. γ, then the same graph
with the vertices relabeled dos not necessarily arise.

Given a graph G with no labels, one can consider the
number N of ways of labeling G compatibly with γ and
with given numbers nev of external lines (of any type)
emerging from the subgraph of G associated with the

vertices of γ. Then N is bounded by n(σ)Cnε e
ε
∑

n
ne

v ,
for all ε > 0 and suitable Cε, if σ is the shape of γ
and n(σ) is the corresponding combinatorial factor. This
bound replaces an incorrectone in a previous version, and
I am indebted to G. Felder for pointing out the error and
its correction (see Appendix F, vy G. Felder).he bound
will be combined with the remark that the summation
over γ can in fact be thought of as a sum over the shapes
σ and the frequency labels h assigned to the vertices
of σ. However various frequency assignments h to the
vertices of |s produce the same γ = (σ,h), because of
our convention on the trees equivalence, and the correct
relaton between the sum over γ and that over (σ,h) is∑
γ

1
n(γ) =

∑
σ

∑
h

1
n(σ) .

Let then γ = (σ0,h,σ, ξ) be the dressed tree obtained
by choosing a trimmed shape σ0, labeling its vertices with
frequency indices h, and then choosing m dressed tree
shapes σ1, . . . , σm) of given degrees n1, . . . , nm such that∑
i ni = n, frames inside endframes attached to the end

points of σ0 and bearing position indices ξ = (ξ1, . . . , ξm).
Let S be a decorated Feynman graph, compatible with

γ, such that PS is a given P and such that the number
of external lines nev emerging from the subgraph of S
corresponding to the vertex v of |s0 are given. Then
M(·) in (19.2) can be obviously bounded, by taking into
account the above combinatorial considerations, as

M(∆1, . . . ,∆p) ≤ sup
σ0,σ1,...,σm

S

m!Dn
3

∑

{me
v}

∑

{hv}

eε
∑

v
ne

v ·

·
∫

D(∆1,...,∆p)

dξ |V (k)(ξ;S) sup |P | ≤ (19.3)
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≤ e−κγkd(∆1,...,∆p)N m!Dm
4 γ

−em2,vk
∑

h

·

·
( ∏

v>r

∑

ne
v

eεn
e
vγ−(hv−hv′ )(ρ̃v+ρv)

)(∏

j

|r(dj)(σj , hj)|
)
,

if D3, D4 are suitable constants and the notatios of Sec.
18 are used; furthermore, the summations over nev from
0 to ∞ can be controlled by

∞∑

ne
v=0

eεn
e
vγ−(hv−hv′)(ρ̃v+ρv) ≤ const γ−(hv−hv′ )ρ+2m2,v

(19.4)
because of (18.18) and hv − hv′ ≥ 1, if ε (arbitrary so
far) is chose small enough. Here the notations of Sec. 18
are used: in particular v′ denotes the vertex immediately
preceding v in γ.

Therefore the bound (19.4) reduces the problem to that
of the coefficients r(α)(σ, h) which end up, in this way,
playing the central role in the quantitatiove theory of
renormalization.

The theory of the coefficients r(α)(σ;h), to a degree of
depth allowing the proof of the n! bound, is in fact easy
as soon as one makes the right guess as to what to prove;
the guess has to be made by trial and error methods,
and it is pointless to repeat the search here. The result
is that one should try to prove that there exist constants
b > 0, D5 > 0 such that (always for d = 4)

|r(α)(σ, k)| ≤ εnDn−1
5 (n− 1)!·

·
n−1∑

j=0

(b k)j

j!
γ2kδα,2+4kδα,0

(19.5)

where n is the degree of σ and, as usual, ε = maxα |λ(α)|.
Before proving (19.5) we shall find it reassuring to

check that (19.5) is really what one needs. In fact, in-
serting (19.5) in (19.4) one estimates the r.h.s. of (19.4)
by using the remarks following (18.20) and leading to
(18.21); it follows that

M(∆1, . . . ,∆p) ≤ e−κγ
kd(∆1,...,∆p)m!N Dm

4 ε
nDn−m

5 ·
∑

h

( ∏

v>r

γ−(hv−hv′ )ρ
)( ∏

j

(nj − 1)!

nj−1∑

p=0

(bµhj)
p

p!

)
,(19.6)

where nj is the degre of σj :

m∑

j=1

nj = n (19.7)

This gives immediately (19.2) via the inequality

∑

h

∏

v>r

γ−ρ(hv−hv′ )
m∏

j=1

(
(nj − 1)!

nj−1∑

p=0

(bhj)
p

p!

)
≤

≤ Dm
6 (n−m)!

n−m∑

p=0

(bhj)
p

p!
(19.8)

valid for suitably chosen b,D6. The latter remarkable
inequality can be proved by induction on the number of
vertices, and its (simple) proof is in Appendix E.

Coming back to the proof of (19.5) one shall again
proceed by induction. Consider a shape σ enclosed in a
frame f0 and fix it.

Therefore the shape σ will have no R superscript on
the first nontrivial vertex. Let σ0 be the shape obtained
by trimming σ of the outer frames and their contents; let
m ≥ m be the degrees of σ and σ0: of course no confusion
should arise with the quantities with the same names
used in the first part of this section. It is convenient to
avoid proliferation of the symbols, but the reader should
bear in mind that what follows is the proof of (19.5),
quite independent of the first part of the section.

If f is any frame in σ and if mf denotes the degree of
the trimmed tree inside the frame f , it is

n− 1 =
∑

f

(mf − 1) (19.9)

where the sum runs over the frames of σ and on the frame
f0 enclosingσ (so that mf0 = m), which one imagines to
have erased in setting up the computation of the form
factor r(α)(σ;h) as prescribed in Sect.18 (see (18.10) and
the discussion preceding it). Relation (19.9) is basically
the same relation used several times (see, for instance,
the comments before (16.16) or (12.17)).

As discussed in Sec.18 ((18.9) and (18.10)), it follows
from the general theory of Secs.7 and 8 that r(α)(σ; k)
can be estimated in terms of the coefficients V (γ;S) cor-
responding to the Feynman graphs S such that PS has
degree 4, 2 or 0 and γ = (σh, ξ) is the tree obtained by
attributing to σ frequency labels h and enframe position
labels ξ so that the root of γ receives frequency index −1
and the first nontrivial vertex of γ receives frequency in-
dex h ≤ k. Note that γ is only partially dressed, because
by construction the vertex v0 bears no R superscript,
having been obtained by deleting the frame f0 originally
containing it.

Assuming, inductively, that the r coefficients r(α) ver-
ify bounds (19.5) when the degree of γ is less than n
(trivially true for n = 1), one sees that (19.4) and (18.21)
together with the previous counting estimates imply (if
d = 4 and just applying the definitions)

|r(α)(σ; k)| ≤ D7m!Dm
4

h∑

hv0=0

∑

h′

εmDn−m
5 ·

· (
∏

v>v0

γ−ρv0
hv0 )γ−ρv0hv0

m∏

j=1

(
(nj − 1)!

nj−1∑

p=0

(bhj)
p

p!

)
(19.10)

where ρ ≤ ρ′v+ρv is fixed and ρv0 ≥ −4+ne0,v0 +2ne1,v0 =
−4δα0 − 2δα 2, see (16.9), because the first vertex v0 has
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no superscript R; hence no improvement on ρv0 is pro-
vided by the renormalization (“no renormalization is op-
erating on v0”); in (19.10) hj denotes the frequency of
the vertex at which the j–th endline of σ0 is attached to
σh

0 .
Using the inequality (19.8) one can easily estimate the

sum over h′ = {hv}v>v0 . Suppose that at v0 bifurcate m
branches, each of degree n1, . . . , nm so that

∑
nj = n;

then by (19.8) being applied to each branch

|r(α)(σ; k)| ≤ D7m!Dm
4

k∑

h=0

γ4hδα0+2hδα2εmDn−m
5 ·

·
m∏

s=1

(
(ns −ms)!

ns−ms∑

p=0

(bh)p

p!
Dms

6

)
(19.11)

where mm is the number of end points of the s-th branch,
after trimming it of its endframes:

∑
sms = m.

Then one can use the following bound valid for all non-
negative integers a1, . . . , aq:

q∏

s=1

(
as!

aj∑

j=0

(bh)j

j!

)
≡

≡

∑
as∑

r=0

(bh)r

r!

( a1,...,aq∑

j1,...,jq=0

j+1+...+jq=r

r!

j1! · · · jq!
a1! · · · aq!

)
≤

≤ (
∑

s

as)!

∑
as∑

r=0

(bh)r

r!
(19.12)

following from the fact that the large parentheses in the
intermediate step arebounded by the square bracket on
the r.h.s. ; a proof of this elementary combinatorial in-
equality can be found by induction.

The bound (19.12) can be used in (19.11) to infer

|r(α)(σ; k)| ≤ D7m!Dm
4 ε

mDn−m
5 Dm

6 ·

· γ4kδα0+2kδα1 (n−m)!
k∑

h=0

n−m∑

r=0

(bh)r

r!

(19.13)

and using

k∑

h=0

hr ≤ kr +

∫ k

0

hrdh = kr +
kr+

r + 1
(19.14)

implying

k∑

h=0

n−m∑

r=0

(bh)r

r!
≤ b+ 1

b

n−m+1∑

r=0

(bh)r

r!
, (19.15)

one deduces the bound

|r(α)(σ; k)| ≤ D7
b+ 1

b
Dm

5 (εD6D4D
−1
5 )mγ4kδα0+2kδα1 ·

· (n− 1)!m

n−m+1∑

r=0

(bh)r

r!
, m > 1 (19.16)

where D7 > 0 is a suitable constant.
Thus if D5 is chosen so large that

D5D7
b + 1

b
(D6D4D

−1
5 )mm < 1, ∀m > 1 (19.17)

the (19.5) follows by induction: in fact the bound (19.5),
as already remarked, holds for m = 1 (trivial shape of
s), and the above chain of inequalities proves that the
bound holds for trees of degree n, if it holds for trees of
lower degree. The constant b is not arbitrary because it
must be such that (19.8) holds. The constant D5 can be
take ε-independent.

By repeating the same argument and taking into ac-
count that n −m + 1 can be considerably smaller than
n− 1, one could improve (19.6) as

|r(α)(σ; k)| ≤ε (εD)n−1(n− 1)!·

·
f∑

j=0

(bk)j

j!
γ4kδα0+2kδα1 , (19.18)

where f − 1 is the number of frames in σ: this bound
shows that the number of frames in |s measures the rate
of growth ofr(α)(σ; k) with k, or at least bounds it.

xx. An application: planar graphs
and convergence problems. A heuristic

approach

Consider the power series for the effective potentials
and, given a dressed tree γ, consider the contribution∫
V (γ;S)PSdξ, associated with γ, to the effective po-

tential coming from a decorated Feynman graph S, as
explained in the previous sections.

Most of the graphs S have a complicated topological
structure and i will be impossible to draw them on a plane
(without causing line intersections which are not, actu-
ally, graph vertices or without enclosing one of the exter-
nal lines inside a region surrounded by internal lines).

For instance the graphs in Fig. (52) are nonplanar (if
the bumpy crossings are not graph vertices)

(52)

The planar ϕ4 theory is the set of power series for the
effective potentials (as well as for Schwinger functions)
obtained by restricting the summation
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∫ ∑

γ

∑

G

V (γ;G)

n(γ)
PG dξ (20.1)

to the planar graphs G only; of course such a restric-
tion also applies in the graphs arising in the evaluation
of the counterterms and of the “form factors” r(α)(σ;h)
(otherwise one would lose ultraviolet stability).

For what concerns the physical as well as the mathe-
matical meaning of such a planar theory perhaps the best
interpretation id that of “leading order” in a N−1 expan-
sion in a vector (ϕ2)2 theory, where ϕ is a N × N ma-

trix with (ϕ2)2
def
= Tr (ϕ∗ϕ)2 (see (’t Hooft, 1982b, 1983,

1984; Rivasseau, 1985)).
Therefore in this paper the pplanar field theory for ϕ4

will be considered only as a set of formal power series and
as a prototype of a situation in which the resummation
ideas of Sec.]sec(9) can be applied.

The main property of the planar graphs is that the
unlabeled planar graphs, “topological planar graphs”, are
not too many and their number can be bounded by Nn

0

where N0 is some constant and n = m4 +m2 +m2′ is the
number of vertices. One can take N0 = 36 (see (Koplik
et al., 1977)).

Without our entering one more into the details, it
should be quite clear, or at least reasonable, that the
whole theory of the preceding sections for the shape form
factors r(α)(σ; k) remains essentially unchanged, except
that facotrs like n!n(γ) estimating the number of graphs
relevant for a tree γ with n endframes are now replaced
by factors Nn

0 n(γ).
The basic bound (19.5), proved in the same way, be-

comes

r
(α)
planar(σ; k) ≤≤ ε (εD)n−1

f∑

j=0

(bk)j

j!
(20.2)

where (f − 1) is the number of frames inside σ: in other
words, instead of (n − 1)! one finds f ! (note that f ≤
n− 1); compare this with the improved bound (19.18) to
understand a little howthis is possible.

The improvement over (19.5) and (19.18) is clearly
very string when f ≪ n. However f can be as large as
n− 1, and therefore the sums (20.1) still present conver-
gence problems of a major nature being a power series in
the renormalized couplings λ = (−λ,−α,−µ,−ν) with
factorially growing coefficients coming from the trees γ
with f of order of the number of vertices of γ, e.g. see
Fig.(53)

(53)

To understand better the problem of convergence one can
consider the resummation procedures outlined in Sec.9.
Precisely consider the pruning oparation τ (see Sec.9)
cutting out od a tree all the frames. The resulting re-
summation equation (9.9) for the fully summed coeffi-
cient r(α)(k) (called in Sec.9 λ(α)(k)) becomes

r(α)(k) = λ(α) +

∞∑

r=2

k∑

h=0

∑

h1,...,hr≥h
α1,...,αr

·

·B(α)

α1,...,αr

r∏

i=1

r(αi)(hi)

(20.3)

The simplest, rigorously correct, interpretation of (20.3)
is that it can be used to generate recirsively a power series
expansion for the functions r(α)(k) in the renormalized
coupling constants.

It is convenient to recall that in the previous sections
this expansion was studied in some detail and led to the
representation

r(α)(k) = λ(α) +
∑

σ

r(α)(σ; k) (20.4)

where σ are all the possible shapes of trees (see Fig.(24)).
Clearlym (20.4) is a power series in λ and r(α)(σ; k) is

part of the polynomial of degree equal to thedegree of σ
in the expansion of r(α)(k).

From the general theory of Sec.9 it follows that (20.4)
must verify, if thought of as a formal power series, the
relation (20.3) and therefore (20.4) can be generated by
solving recursively (20.3) as an expansion for r(k) with
λ as inoput. It is not surpprising that once the coeffi-
cients B in (20.3) are known one can reduce the problem

of computing
∑

degree σ=m r
(α)(k) ≡ r

(α)
m (k) to a sim-

ple “algebraic” problem; i.e. that of iterating m times
(20.3)., retaining only the m–th order monomial in λ.

From the definitions it is clear that the computation
of the coefficients B is a necessary prerequisite for the
computation of r(α)(σ;h), since computing the B factors
amounts precisely to computingthe dressed trees with no
frames. In fact, recall that the computation of r(α)(σ; k)
for general σ is reduced inductively to the no-frame case;
on this fact are based the n! estimates of Sec.19. But it
is quite evident that (20.3) provides a very economic and
systematic way of reorganizing the calculations of the fac-
tors r(α)(σ; k). Equation (20.3) is similar to the Callan-
Symanzik equations (Callan, 1970; Symanzik, 1966).

From the work of Secs. 16–19 the coefficients B can
be easily computed for small r and estimated for large r,
uniformly in the ultraviolet cut–off N (in fact they are
N -independent, as the reader should eventually realize,
but they depend on the regularization chosen, as it will
be pointed out later).

The coefficients B can be bounded following the same
procedures used in Secs.18 and 19; one just has to take
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into account that only planar graphs will ever be consid-
ered. The work is a repetition of what was done there,
and it will not be reproduced here. The coefficients B
arise from the computation of trimmed trees, i.e. from
trees with no frames so that f = 1, by keeping only the
planar graphs, so that the factorials m!n(γ) are replaced
by Nm

0 n(γ). And no factorials arise inthe estimates of B.
It is, see also (Gallavotti and Nicolò, 1985a,b), for some
C1

∑

hi≥h

h fixed

|B(α)
α1,...,αr

(h;h1, . . . , hr)·

· γ
∑

i
(δα22+4δαi0

)hi γ−(δα22+4δαi0
)h ≤ Cr−1

1

(20.5)
For r = 2 one can perform some explicit easy calculations

starting from (17.7): the coefficients B
(2)
α1α2(h;h, h) are

given by the h-independent constants β
(α)
α1α2 with an error

bounded by O(hpγ−2h) for some p:

β
(2)
22 = − γ2h 1

2

(
2

1

)2 ∫
C

(≤h)
12 dξ2,

β
(2)
42 = − 2!

2

(
4

2

)2 ∫
(C

(≤h) 2
12 − C(<h) 2

12 )dξ2,

β
(2)
42′ = − γ−2h 2!

2

(
4

2

) ∫
((∂C

(≤h)
12 )2 − (∂C

(<h)
12 )2)dξ2,

β
(2)
44 = − γ−2h 3!

2

(
4

3

)2 ∫
(C

(≤h) 3
12 − C(<h) 3

12 )dξ2,

β
(2)
22′ = − γ2h 1

2

(
2

1

)2 ∫
(ξ2 − ξ1)

d
· ∂2C

(h)
12 dξ2,

β
(2′)
22 =γ4h 1

2

(
2

1

)2 ∫
(ξ2 − ξ1)

2

2d
C

(h)
12 dξ2,

β
(2′)
44 =γ4h 3!

2

(
4

3

)2 ∫
(ξ2 − ξ1)

2

2d
(C

(≤h) 3
12 − C(<h) 3

12 )dξ2,

β
(4)
24 = − γ2h 1

2

(
2

1

)(
4

1

) ∫
C

(≤h)
12 dξ2,

β
(4)
44 = − 2!

2

(
4

2

)2 ∫
(C

(≤h) 2
12 − C(<h) 2

12 )dξ2, (20.6)

β
(0)
22 = − 1

2
2!

∫
(C

(≤h) 2
12 − C(<h) 2

12 )dξ2,

β
(0)
22′ = − γ−2h 1

2
2!

∫
((∂C

(≤h)
12 )2 − (∂C

(<h)
12 )2)dξ2,

β
(0)
2′2′ = − γ−4h 1

2
2!

∫
((∂2C

(≤h)
12 )2 − (∂2C

(<h)
12 )2)dξ2,

β
(0)
44 = − γ−4h 1

2

(
4

4

)2

4!

∫
(C

(≤h) 4
12 − C(<h) 4

12 )dξ2,

all other B’s with r = 2 vanish or reduce to the above
by B

(α)
α1α2 = B

(α)
α2α1 . It is convenient to introduce new

form factors, more naturally depending on k; they are
“adimensional form factors” defined by

r(α)(k) = λ(α)(k)γ(2δα2+4δα4) k (20.7)

and one can rewrite (20.3) in terms of new functions

β
(α)
α1,...,αr (h;h1, . . . , hr)

λ(α)(k) = λ(α)γ−(2δα2+4δα4) k +

∞∑

r=2

k∑

h=0

∑

h1,...,hr≥h
α1,...,αr

·(20.8)

· β(α)
α1,...,αr

(h;h1, . . . , hr)γ
(h−k)(2δα2+4δα4)

r∏

i=1

λ(αi)(hi)

and it can be checked that

lim
h→∞

β(α)
α1,...,αr

(h;h1, . . . , hr)
def
=

def
= β

(α)

α1,...,αr
(h1 − h, . . . , hr − h)

(20.9)

exist if hi − h are kept constant and the basic bounds of
Sec.18 imply, via (20.5)

∑

hi≥h

h fixed

|β(α)

α1,...,αr
(h1 − h, . . . , hr − h) ≤ Cr−1

1 (20.10)

therefore if we define

λ(k)
def
= − λ(4)(k), µ(k)

def
= − λ(2)(k),

α(k) = −λ(2′)(k), ν(k) = −λ(0)(k)

the (20.8) can be written explicitly:

λ(k) =λ+

k∑

h=0

(β
(4)
44 λ(h)

2 + 3β
(2)
24 λ(h)µ(h)) + . . .

α(k) =α−
k∑

h=0

(β
(2′)
44 λ(h)2 − 2β

(2′)
24 µ(h)α(h)+

+ β
(2′)
22 µ(h)2) + . . . (20.11)

µ(k) =µγ−2k +

k∑

h=0

γ2(h−k)(β
(2)
22 µ(h)2 + 2β

(2)
42 λ(h)µ(h)+

+ 2β
(2)
42′λ(h)α(h) + β

(2)
44 λ(h)

2) + . . .

ν(k) =νγ−4k +

k∑

h=0

γ4(h−k)(β
(0)
22 µ(h)2 + 2β

(0)
22′µ(h)α(h)+

+ β
(0)
2′2′α(h)2) + β

(0)
44 λ(h)

2 + . . .

and the functions β
(α)
α1α2 ≡ β

(α)
α1α2(h;h, h) will have a

well defined positive limit as h → ∞, as follows from
(20.6); the dots denote the “higher order terms”, r > 2.
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The limits β
(α)

α1α2
(0, 0) of β

(α)
α1α2 are reached exponen-

tially fast (O(γ−2h)) and are not all independent (e.g.

β
(4)

44 = 8β
(0)

22 = 3β
(2)

42 , . . .).

Obviously, because of the meaning of the truncated
expectations of the trees vertices, it follows that no ν(k)
appears in the first three of (20.11). this means that the
fourth equation in (20.11) decouples from the first three
and determines ν(k) completely as soon as λ(α)(h) are
known for α = 4, 2, 2′ (because, also, no ν(k) appears in
the r.h.s. of the fourth term in (20.11)). For this reason
the fourth equation is not too important in setting up
the theory of renormalization.

The power series in (20.11) (in the variables λ(k)) can
be used, as already mentioned, to generate expressions
of λ(k) as power series in λ.

As proved in Secs.18 and 19, this power series has co-
efficients which are uniformly bounded in the ultraviolet
cut-off and this also follows directly (but not indepen-
dently of the theory of Secs. 18 and 19) from the bounds
(20.10).

However it is clear that the coefficients one gets must
coincide with the ones estimated in Sec.19, and which
grow with the order n as O(n!), even in the planar
case being considered here (because of the contributions
that these coefficients receive from the trees with many
frames, see (20.10)). One can convince himself that such
estimates are not pessimistic unless some cancellations
take place.

In fact the bounds are reasonable and “optimal” on
each individual graph, as one can easily identify graphs
(planar) and trees giving contributions to the n–th order
coefficients of λ(k) which are of the order of n!; this was
pointed out in (Lautrup, 1977).

However cancellations between several big terms can
take place and in various possible senses. A way
of exhibiting such cancellations is to find a sequence
{λ(k)}∞k=0 ≡ λ verifying (20.11). This sequence could
then be taken as a definition of the sum of he power se-
ries in the ϕλ’s which define perturbatively λ(k) as a
(probably divergent) power series in λ.

To make sense of the r.h.s. of (20.11) it seems natural
to impose on the sequence λ a decay condition at k =∞,
in apparent contradiction with the bounds (20.2) which
are strongly growing with k. So one introduces

|λ|q def= sup
k≥0

(1 + k)q|ϕλ(k)| (20.12)

The bounds (20.10) allow one to define an operator B on
the λ’s with |λ|q <∞ for some q ≥ 0; in fact the bounds
(20.10) imply (recall that they hold in the planar case
only) that the operator B,

(Bλ)(α)(h)
def
=

∞∑

r=2

∑

h1,...,hr
α1,...,αr

·

· β(α)
α1,...,αr

(h;h1, . . . , hr)

r∏

i=1

λ(αi)(hi)

(20.13)
has the property

|Bλ|q ≤ C−1
1 (C1|λ|q)2, q = 0, 1, . . . (20.14)

and therefore B is well defined on the space (20.12) if for
some η > 0, B > 0 and a suitably chosen Kη,B and δ

|λ|η < B, and sup
k≤Kη,B

|λ(k)| < δ (20.15)

as follows from (20.10). Equation (20.11) becomes

λ(α)(k) =λ(α)γ−(2δα,2+4δα,0)k+

+

k∑

h=0

γ(h−k)(2δα,2+4δα,0)(Bλ)(α)(h)
(20.16)

i.e. if λ(α)(−1)
def
= λ(α)γ(2δα,2+4δα,0):

λ(α)(k + 1) =λ(α)γ−(2δα,2+4δα,0)λ(α)(k)+

+ (Bλ)(α)(k + 1), k ≥ −1
(20.17)

and one looks for a solution λ such that, say, |λ|1 < 1
and supk≤K1,1

|λ(k)| < δ.

In studying (20.17) one is thus interested in solutions
λ(k)−−−→

k→∞
0; therefore it is natural to replace B by its

second order part B2 for the purpose of getting first an
approximate solution.

(B2λ)
(α)(h) =

∑

α1,α2

β(α)
α1α2

(h)λ(α1)(h)λ(α2)(h) (20.18)

(see (20.11)). In turn, since β
(α)
α1α2(k)−−−→k→∞

β
(α)

α1α2
, it is

convenient to study first the relation, k ≥ 0,

λ(α)(k+1) = λ(α)(k)γ−(2δα2+4δα0)+(B2λ)
(α)(k) (20.19)

with B2 defined as (20.18) with β
(α)
α1α2(h) replaced by

their limits β
(α)

α1α2
as h→∞. Explicitly the last equation

is

λ(k + 1) =λ(k) + β
(4)

44 λ(k)
2 + 2β

(4)

24 λ(k)µ(k), (20.20)

α(k + 1) =α(k)− β(2′)

22 µ(k)2 − β(2′)

44 λ(k)2+
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+ 2β
(2′)

22′ µ(k)α(k),

µ(k + 1) =γ−2µ(k) + β
(2)

22 µ(k)2+

+ 2β
(2)

42 λ(k)µ(k) + β
(2)

44 λ(k)
2,

ν(k + 1) =γ−4ν(k) + β
(0)

22 µ(k)2 + 2β
(0)

22′µ(k)α(k)+

+ β
(0)

2′2′α(k)2 + β
(0)

44 λ(k)
2.

This relation cab be regarded as an iteration of a map T
on R

4, or R
3 if one disregards the last (decoupled) equa-

tion. One can therefore apply the techniques developed
in the general theory of maps to analyze (20.20).

One looks for data λ, α, µ, ν for λ(0) such that λ(k)
−−−→
k→∞

0. Their existence can be proved by using the gen-
eral theory of the central manifold, (see (Lanford, 1973)
and (Gallavotti, 1983b), Chap.5, Secs.6 and 8 and the
related problems). There exists a surface Σ, in general
nonunique,

µ =µ(α, λ) = Aα2 + Lλ2 + Iαλ+ . . .

ν =ν(α, λ) = A′α2 + L′λ2 + I ′αλ+ . . .
(20.21)

where the dots represent terms of higher order, which is
invariant under the map T defined by (20.20) and such
that the T –images of any point λ close enough to the ori-
gin evolves under repeated iterations of T by approaching
exponentially fast the surface Σ as long as they stay close
enough to the origin.

A simple exercise (“substitute (20.21) in (20.20) to find
A,A′ . . .”) yields

I =
2β

(2)

42

1− γ−2
, A =

−β(2)

2′2′

1− γ−2

L =
−β(2)

44

1− γ−2
, I ′ = 0,

A′ =
−β(0)

2′2′

1− γ−4
, L′ =

−β(0)

44

1− γ−4

(20.22)

and the map (20.20) becomes on Σ

λ(k + 1) =λ(k) + β
(4)

44 λ(k)
2 + . . .

α(k + 1) =α(k) − β(2′)

44 λ(k)2 + . . .
(20.23)

where the dots represent terms of higher order. Neglect-
ing the higher order corrections once more, and setting

β
def
= β

(4)

44 > 0 β′ def= β
(2′)

44 > 0, one considers the relations

λ(k + 1) =λ(k) + β λ(k)λ(k + 1),

α(k + 1) =α(k)− β′ λ(k)λ(k + 1),
(20.24)

which admit solutions with data λ and α = −β;β−1λ,
with λ < 0:

λ(k) =
λ

1− β k λ
, α(k) = −β;β−1λ(k). (20.25)

From general considerations of stability theory it fol-
lows that (20.23) also admits a solution behaving as
k → ∞ as (20.25) with initial data λ < 0 and α =

−β′β−1λ+O(λ
2
) and such that λ(k)−−−→

k→∞
0 at fixed k.

This means, via (20.21), that (20.20) admits a solution

with data λ < 0, α = −β′β−1λ + O(λ
2
), µ = O(λ

2
),

ν = O(λ
2
) which is such that λ(k), α(k) = O(k−1) and

µ(k), ν(k) = O(k−2) as k → ∞ and such that λ(k) → 0
at fixed k when λ→ 0.

Hence one finds a solution to (20.20) depending on one
parameter λ such that ||λ||1 ≤ O((β−1)) for −λ small
and such that λ(k) is as small as one wishes for any fixed
number of k’s, say k ≤ K1.

Hence such λ is in the domain of the “beta function”
B defined in (20.13) and by some more efforts of abstract
perturbation theory it could be proved that there is a so-
lution to (20.17) depending on one parameter λ < 0, with
λ(k), α(k), µ(k), ν(k) given approximately by (20.25) and
(20.21).

Such a solution will not be such that |λ|1 is small

(rather the above discussion suggests |λ|1 = O(β−1)),
although λ(k) at fixed k will be small for small λ(0) or
for small values of the parameter −λ on which the solu-
tion depends. This “nonuniform smallness” is related to
the fact that λ cannot be found perturbatively, although

it has by construction the correct asymptotic series in λ.
Note also that (20.25) shows that (at least the approx-

imating) λ has singularities at points accumulating at

λ = 0, as a function of λ.
The renormalized couplings are defined by the (con-

vergent) series, if −λ is small,

λ(α) = −
∞∑

k=0

(Bλ)(α)(k) (20.26)

obtained by setting λ(α)(+∞) = 0 in (20.16). Alterna-
tively one can use

λ(α)(0) =λ(α) + (Bλ)(α)(0)⇒
⇒ λ(α) = λ(α)(0)− (Bλ)(α)(0)

(20.27)
The family of solutions to (20.17) constructed above is a
one parameter family; however one could alter the coeffi-
cients in front of the few covariances or their mass terms
so that one has built a many parameter family of field
theories “like ϕ4

4 planar”; however, it does not seem pos-
sible to choose α = 0 nor, by (20.27), µ = 0, because
A 6= 0 in (20.22) if one wishes that α(k), µ(k) → 0 as
k →∞.

The meaning of the statement that one has built pla-
nar ϕ4

4 theory is explained below and is summarized in
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the statement “the resummed tree expansions for the ef-
fective planar potentials converge for small negative cou-
pling”.

The solution to Eq.(20.17) discussed above is roughly
like (20.25) and (20.23), i.e. such that

|λ|0 = sup
k
|λ(k)| = ε̃−−−→

λ→0
0. (20.28)

Therefore the effective potential of the planar theory cor-
responding to the above definition of λ(k) will be de-
scribed by dressed trees with no frames but with “heavy
end points” contributing to the effective potential the
form factor r(α)(h) = λ(α)(h)γ(2δα2+4δα0)h when they are
attached to vertices of the tree bearing a frequency label
h.

Furthermore, since one is considering only the pla-
nar theory, one evaluates the contributions of a tree γ
to the effective potential by using the “few” Nn

0 M ≡
Nn

0 Mn(γ)Cnε e
ε
∑

v
ne

v planar graphs compatible with γ
(see Sec.19).

This means that, by the theory of Secs.18 and 19, the
bound (19.2) is replaced, if D0 is a suitable constant, by

NBne

ε̃nDn
0 e

−κγkd(∆1,...,∆n)Nn
0 (20.29)

with no n!, because n! arose for two reasons: one was
that the number of Feynman graphs associated with a
treeγ were bounded by M n!, where n is the number of
end points in the trimmed tree γ, and the other was the
n! in the form factors r(α)(σ;h), see (19.5), due to the
endframes of σ.

However in the planar theory the graphs are far fewer,
and the form factors, still badly dependent on the degree
of the shapes (as pointed out at the beginning of this
section), are “resummed” to yield new form factors:

r(α)(h) = λ(α)(h)γ(4δα0+2δα2)h, (20.30)

with λ(α)(h)−−−→
h→∞

0 (this quantity was not only not
small in perturbation theory, but even divergent with h
as h→∞). And at the same time the resummation lead-
ing to the form factors (20.30) eliminates the necessity of
considering contributions from trees with frames to V (k),
hence (20.29) is really a simple consequence of the esti-
mates of Secs.19 (Eq. (19.18)) and 18 (Eq. (18.21)).

Since for ε̃ small the (20.29) can be summed over n,
one gets the effect, in the above considered planar the-
ory, that the resummed series for the effective potentials
is really convergent for small −λ > 0 (i.e. small negative
λ(0), i.e. small negative renormalized coupling). There-
fore, in the planar theory the effective potentials can be
defined beyond perturbation theory.

The series defining the effective potential is a power se-
ries in the resummed form factors (20.30): the form fac-
tors being non analytic near λ = 0 (in the sense roughly
expressed by approximation (20.25)) it is clear that one

cannot expect that the effective potentials be analytic in
the renormalized coupling constant near zero.

The resummation procedure induced by the beta func-
tion allows one to express the effective coupling constants
or “form factors”, (20.30), and provides a well defined re-
summation prescription. It seems highly plausible there
is one which is the Borel sum of its perturbative nonre-
summed series; this was proved in the case α = µ = ν = 0
(not covered here because I have chosen for simplicity the
initial α, µ so that λ(k) → 0 as k → ∞, see (’t Hooft,
1983, 1984) and (Rivasseau, 1985)).

Another interesting possibility is that the series may
converge even for some λ > 0: the formula (20.25) al-
lows the possibility that for λ > 0 the effective poten-
tials are defined for “most” values of λ. The resem-
blance with the situation arising in classical mechanics
in the Hamiltonian stability problems in connection with
the appearance of small denominators seems interesting:
maybe here one needs some imagination.

xxi. Constructing ϕ4 fields in d = 2, 3

The theory of renormalization in dimension d = 2, 3
can be done in a much simpler way, compared to the
d = 4 case. Of course there is no problem in repeating
word by word the four-dimensional theory in dimension 2
or 3 (and in fact in Secs.16–20 one had never really used
that d = 4 but only that d < 5).

The real simplification arises when one remarks that
if d = 2, 3 one can study much simper theories which
lead, or may lead, to nontrivial fields (i.e. fields with
nonquadratic effective potentials V (k)) of ϕ4 type.

What is more important is that the simpler theories
(which would not make sense if d − 4) can be treated
rigorously for “small couplings” and really shown to exist
beyond the level of formal perturbation theory.

The theories which make sense if d = 2 and that are
simpler than the ones considered so far are those gener-
ated by the interaction IN

V1 = −λ
∫

Λ

: ϕ(≤N) 4
x : d2x (21.1)

while if d = 3 a theory simpler than the one arising from
(16.1) is provided by the interaction IN

V1 =

∫

Λ

(−λ : ϕ(≤N) 4
x : −µ : ϕ(≤N) 2

x : −ν) d2x (21.2)

The main reason (21.1),(21.2) are much simper than
(16.1) is that no resummations have to be devised to
organize the corresponding renormalized perturbative se-
ries, because only finitely many trees lead to divergences.

The renormalizability in the above case with d = 2
follows immediately from the formulae and estimates of
Sec.16 setting ne1,v = m2,v = m2′,v = 0 so that (16.19)
becomes, for all m4,v > 1
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ρv = −2 + 2m > 0 (21.3)

and this not only shows renormalizability of the “pure
ϕ4 field” but also shows that no renormalization is ever
necessary (this same remarkable conclusion would hold,
when d = 2, for the most general Wick-ordered polyno-
mial interaction).

If d = 3 and (21.2) is considered, one can still use the
general bounds of Sec.16 setting ne1,v = m2],v = 0 so that

ρv = −3 + 3m2,v +
1

2
ne0,v > 0 (21.4)

unless (recall thatm2,v+m4,v ≥ 2 in the nontrivial cases)

m4,v = 1 m2,v = 1 nev = 0 impossible

m4,v = 2 m2,v = 0 nev = 0, 2 possible

m4,v = 3 m2,v = 0 nev = 0 possible

(21.5)

So only trees of degree 2 or 3 need the definition of the
L(σ) localization operations, and the only nontrivial case
is m4,v = 2, nev = 2 (“mass diagrams”) yielding ρv = 0.
and therefore it can be cured by a simple subtraction

V2,N =

∫
r
(2)
N : ϕ(≤N) 2

x : d3x (21.6)

Formally L(σ) is defined in terms of the action L on
Wick monomials, as in Secs.17 and 18:

L1 = 1 if degree γ ≤ 3

L : ϕxϕy : = : ϕ2
x : if degree γ = 2

(21.7)

which leads to a simple expression for V2,N , V3,N , i.e. for
the Counterterms (note that V3,N is a constant and that
the nonconstant part of V2,N must have the form (21.6)):

V2,N =− λ2

2

(
4

1

)2

3!

∫
C

(≤N) 3
ξ1ξ2

: ϕ
(≤N) 2
ξ : dξ1dξ2−

− λ2

2
4!

∫
C

(≤N) 4
ξ1ξ2

dξ1dξ2,

V3,N =− λ3

3!

∫
dξ1dξ2· (21.8)

ET(≤N)

(
: ϕ

(≤N) 4
ξ1

: · : ϕ(≤N) 4
ξ2

: · : ϕ(≤N) 4
ξ3

:
)

The theory of Secs.16–18 now becomes much simpler
and one can prove that the effective potential has the
form

∫ ∑

γ

∑

S

V (γ;S)

n(γ)
PS dξ (21.9)

where S represents the decorated Feynman graphs and
PS has the form (if ϕ ≡ ϕ(≤k), D ≡ D(≤k)):

:
∏

i

ϕni
ηi

∏

j

D
mj

ξjξj′
, (21.10)

where, as in Sec.17, Dξη = ϕξ − ϕη.
The same techniques of Secs.16–19 (easier now, in

practice) yield the bound

M(∆1, . . . ,∆p) ≤ N n! ε (εD)n−1 k2·
· e−κγkd(∆1,...,∆p)γ−nkBn

e (21.11)

with the same notations as in Secs.16–19, i.e. n = degree
of γ, ε = max(|λ|, |µ|, |n|), k = (root frequency of the
tree),

M(∆1, . . . ,∆p) ≡
∫

∆1×...×∆p×Λ×...×Λ

dξ ·

·
∑

γ
degree γ=n

∑

G
PG=P

|V (γ;G)|
n(γ)

sup |P |
(21.12)

where the supremum, of |PG| = |P | is over the fields
ϕ(≤k) verifying ϕ(≤k) = ϕ(0)+ϕ(1)+ . . .+ϕ(k) and (3.15),
(3.16) and B = supB∆. Finally N is the “adimensional

bound” on p: sup |P | ≤ Bn
e( ∏

j(γ
k|ζj − ζj′ |) 1

4 γ
1
2n

ek
)

and N depends om ne only because there are only a
finite number of Wick monomials P of degree ne of the
type (21.10), apart from the values of the position labels.

The presence of the factor γ−nk in (21.11) proves that
the theory is asymptotically free. In the case d = 2 one
replaces, basically, γ−nk by γ−2nk.

The above bounds were found in special cases and by
using the techniques of the previous sections in (Benfatto
et al., 1978, 1980a,b); for the Schwinger functions expan-
sions analogous bounds hold and were well known; see
for instance (Glimm and Jaffe, 1968, 1970a, 1981).

Since in the approach presented here there is little dif-
ference between : ϕ4 :2 and : ϕ4 :3, I shall focus on the
d = 3 case, (21.2), in this section.

The actual construction of the theory can be easily per-
formed by taking advantage of the asymptotic freedom
just pointed out (see the factor γ−nk in (20.11)) and fol-
lowing, basically word by word, the procedure adopted in
the cosine interaction case (which is, in fact, equivalently
hard). For simplicity of exposition it is convenient to
choose the values of the renormalized coupling constants
µ and ν equal to 0; of course this does not mean that the
three dimensional parameter space in (21.2) is replaced
by the one dimensional space in (21.1) but only that the
theory has only one renormalized coupling, namely λ, but
still the counterterms can generate nonzero constant and
mass terms (which will be of higher order in λ).

The strength of the asymptotic freedom shows that if
the integrals over the “small fields” are computed via the
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cumulant expansion, i.e. via expressions like (13.22), (see
also (5.13)), the expansion must be carried out at least
to third order, since only the remainders of order, in λ,
larger or equal to four give rise to an error of controllable
size; such remainders at order t + 1 are now estimated
by a bound analogous to (13.25) |Λ|∑∞

p=0

(
λγ−kp(1 +

p)a log(e+p+λ−1)
)t+1

γ3p convergent for t ≥ 3 (if d = 2
one could control errors of order≥ 2 so that the cumulant
expansion could be carried out stopping only at order
t = 1, in practice a good simplification).

The other hard problem is that of the “large devia-
tions” or “large fields”. The D factors (Dξη = ϕξ − ϕη)
are dangerous much as the (1 − cos(ϕξ − ϕη)) factors
were in the cosine field case: they are treated exactly in
the same way, because they appear with the right sign
(i.e. the corresponding defective potentials tend to −∞
when the field ϕ becomes so rough that Dξη is too large
compared to its covariance).

In this case there are also other dangerous terms in the
third order effective potential, namely all the others. In
fact, the field ϕ can be very large and make P itself very
large; this was not a problem in the case of the cosine
interaction, because there the fields appeared only in-
side trigonometric functions and therefore in a “bounded
form”.

The large fields have to be treated by positivity argu-
ments. The positivity properties needed in the theory
are that the effective interaction contains the sum W of
the following two terms:

− λ
∫

Λ

: ϕ
(≤k) 4
ξ dξ (21.13)

− λ2

2

(
4

1

)2

3!

∫

Λ2

(C
(≤N) 3
ξη − C(≤k) 3

ξη ) : D
(≤k) 2
ξη : dξdη

corresponding to contributions from the trees

k ξ
and

k h

ξ

η
due to the Feynman graphs

ξ ξ η
and

The first term being very negative when ϕξ is large and
the second being very negative when Dξη is large com-

pared to (γk|ξ− η|) 1
4 ; here one uses λ > 0, λ2 > 0 (which

must be a further restriction, although no restriction on
the size of λ is necessary).

The details are essentially identical to those explained
in the cosine case and they will not be repeated here;
and the reader is referred to the literature, see (Benfatto
et al., 1978, 1980a,b). It is, however, important to stress
once more that nothing is really different from the case
of the cosine field treated in detail in Secs.13 and 14, as
the reader can check by a glance at the above references.

The result of the analysis is the existence of a constant
E > 0 such that for all f ∈ C∞ with support in a set Λf
it is

∫
eV3,N (ϕ(≤N))+ϕ(≤N)(f)P (dϕ(≤N)) ≤ e|Λ|E+||f ||2∞|Λf |

(21.14)
which proves, up to technicalities, the existence of the
limit of the “interaction measure” at least on subse-
quences as N → ∞: i.e. it proves the “nonperturbative
ultraviolet stability”.

With some extra work and using the same ideas plus
abstract arguments one could prove the actual existence
of the ultraviolet limit (with no subsequences involved);
this is not written explicitly in the literature but, at least
for λ small, the result is known also by other methods.

As in the case of the cosine interaction the other limit,
Λ→∞, the “infrared limit” has to be treated under ex-
tra assumptions (like λ small), because contrary to the
ultraviolet limit, in the cases considered so far, it may be
affected by nonuniqueness phenomena: “(infrared) phase
transitions” corresponding to the ordinary phase transi-
tions of statistical mechanics. Such transitions have to
be expected here, too, as the main idea of the multiscale
approach is that field theory can be reduced to the the-
ory of a spin system on a lattice of scale 1. And such
systems are known to exhibit phase transitions in the in-
frared limit (also called thermodynamic limit) Λ → ∞,
(Federbush and Battle, 1982; Feldman, 1974; Feldman
and Ostervalder, 1976; Glimm et al., 1975, 1976; Mag-
nen and Seneor, 1976).

Finally let me mention that in some cases with d = 2, 3
the theory can be performed completely, i.e. up to the
extent of really constructing a field theory verifying the
Wightman axioms, hence with the proper interpretation
of a physical quantum theory, describing in some of its
states, interacting relativistic quantum particles, (Glimm
et al., 1973, 1975, 1976; Koch, 1980; Ma, 1976), however
this kind of questions go beyond the scopes of the present
review.

xxii. Comments on resummations.
Triviality and nontriviality.
Some apologies.

The reason one cannot perform the resummations, de-
scribed in the preceding section, in a rigorous way is sim-
ply that the coefficients β of the “beta function” (20.13),
formally defining the resummed “adimensional form fac-
tors” λ(α)(k), α = 4, 2, 2′.0

(Bλ)(α)(k)
def
=

∞∑

r=2

∑

h1,...,hr
α1,...,αr

·

· β(α)
α1,...,αr

(h;h1, . . . , hr)

r∏

i=1

γ−ρ(h−hi)λ(αi)(hi)

(22.1)
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are badly behaved in r as r →∞: i.e. they are bounded
by r!Cr (unless one restricts oneself to the planar theory
where (20.10) holds, see Sec21). This is in conflict with
the fact that the idea of using the equation (of “Callan-
Symanzik)

λ(α)(k + 1) = λ(α)(k) + (Bλ)(α)(k + 1) (22.2)

to define the adimensional form factors in a nonpertur-
bative way requires the existence of a sequence λ =

{λ(α)(k)}α,k of form factors for which Bλ makes sense
and verifies (22.2).

Because of the bad bounds on the β coefficients and
because, as emerges from considering only the second
order part of (22.2), a solution to (22.2) cannot tend to
zero too fast as k → ∞ (see (20.25)), the only way in
which Bλ could make sense for interesting sequences λ is
that there are cancellations in the β’s (which are sums
of many terms of uncontrolled signs) and, possibly, the
existence of such cancellations might depend upon the
sequences λ(k) chosen in (22.1) and not just on the β
coefficients.

In this section I elaborate on what could happen if
(22.2) admitted a solution verifying λ(k)−−−→

k→∞
0 and

providing the necessary cancellations needed to make
sense of the r.h.s. of (22.1) and, consequently, of (22.2).

In this situation one should reasonably expect that the
solution of (22.2) behaves as h → ∞ exactly as the so-
lution to an equation like (22.2) but with B replaced by
its second order part (i.e. by the terms with r = 2 in
(22.1)), see (Coleman and Weinberg, 1973).

Such an equation was the basis for the theory of
the adimensional form factors in the “planar theory” of
Sec.20 and, as discussed there, one expects that it has a
solution in which −λ(4)(h) behaves as, see (20.23),

≃k→∞
λ

1− β hλ
(22.3)

and similarly should behave α(h), while µ(h), ν(h) ought
to go to zero as the square of (22.3). Then the following
remarks can be made.
(1) In itself a solution to (22.2) behaving like (22.3) does
not yet yield a solution to the problem of showing that
the effective potentials V (k) are well defined as sums of re-
summed perturbation series (see (’t Hooft, 1983, 1984)).

In fact, the resummation operation just permits one to
describe the effective potentials in terms of dressed trees
“with no frames” and with end points (ξ, α) providing an
adimensional form factor λ(α)(h) rather than λ(α), if h is
the frequency index of the tree vertex to which they are
joined by a branch of the tree.

Although this is a big improvement, as far as the k de-
pendence of V (k) is concerned (it suffices to recall that the
non resummed adimensional form factors were diverging
with h as powers of an order depending on their degree of
complexity and with no a priori bounds, see (19.5) and

(19.18), while the resummed adimensional form factors
even go to zero with the frequency h as h → ∞) one is
still confronted with the problem of summing the con-
tributions to V (k) of the above “simple”, i.e. frameless,
trees.

One finds, in doing so, a power series in the resummed
adimensional form factors (coming from the trees of or-
der n) whose n-th terms can still be bounded only by n!.
If we use the bounds of Sec.19, the effective potential is
now given by an expression like (19.1) with a sum running
only over the trees with no frames and such that the con-
tributions from the trees of degree n can be bounded as
in (19.2) with the last sum (divergent, a priori ) replaced
by k−n, a rather minor gain as far as the n dependence
is concerned.

The structures of the beta-function coefficients and
those of the V (γ;S) are obviously related, and “basically
the same”, so that if one is willing to accept the exis-
tence of cancellations allowing giving a meaning to Bλ
one should also accept that the very same mechanism
might produce cancellations in the expression of the ef-
fective potential in terms of the resummed form factors
λ.

However this cancellation mechanism is totally unclear
(as this time the beta function cannot help, as it did in
the planar case of Sec.21, to exhibit such cancellations)
and it can only be hoped to exist.
(2) It might be that the parameter γ plays an important
role in the theory: for instance, in (22.3) the singular-
ities in λ are located at γ–dependent positions (in fact

one could check that β
log γ −−−→γ→1 β0 > 0, by explicit calcu-

lation).
This leads to the possibility that the theory could be

defined for many but not for all λ’s near zero, e.g. for the
values of the renormalized coupling constant which avoid
a suitable set of small measure (union of small neighbor-
hoods of the points (β h)−1 in the case (22.3)) where the
form factors could be singular functions of λ. Such a situ-
ation is not uncommon in perturbation theory in classical
mechanics and it might appear also in field theory.
(3) The possibility of the existence of cancellations men-
tioned in remark (1) above is hinted at also by the “triv-
iality proofs” where, via some very special assumptions
on the regularization and the form of the counterterms,
one shows that the adimensional form factors λ(α)(k;N)
defined in the presence of an ultraviolet cut-off at length
γ−N vanish as N →∞: λ(α)(k;N)−−−−→

N→∞
0.

The fact that λ(α)(k;∞) = 0 is a property that can
be proved nonperturbatively under very special assump-
tions, (Aizenman, 1982; Frölich, 1982), hints at the exis-
tence of nontrivial cancellations mechanisms in the sum-
mations involved in the construction of the effective po-
tentials and of the beta function. Paradoxically the “triv-
iality arguments” might be interpreted as nontriviality
arguments.

If we go back to a slightly more concrete frame of mind,
some comments on the cut-off dependence of the above
discussion, brought up in the last remark, as well as on
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the classical triviality arguments of Landau, (Landau,
1955; Landau and Pomeranchuck, 1955), (Thirring, 1958)
p. 198, (Boboliubov and Shirkov, 1959), p. 528, seem ap-
propriate here. In fact, they hinge upon the just brought
up question of the cut-off and of the regularization de-
pendence of the whole theory.

The form factor resummations can be studied with no
formal change in the presence of an ultraviolet cut off
γN . In the previous sections the N dependence of the
form factors was seldom made explicit because one was
interested in properties which were uniform in N .

Contrary to what is sometimes stated, fixing N does
not make the theory well defined; in fact one can eas-
ily see that there is a simple relation between the form
factors of the theory with ultraviolet cut off N , denoted
λ(α)(k;N), and the bare coupling constants. Precisely,
the bare couplings are λ(α)(N ;N)γ(2δα,2+4δα,0)N . The
reason the bare coupling constants are undefined even in
a theory with cut-off is simply that λN ≡ λ(N ;N) are
still power series in the renormalized couplings with only
n! bounds on their coefficients, i.e. they are formal power
series, probably divergent.

One can use the resummation ideas of Secs.9 and 19
to try to say something about the bare couplings λN ; in
fact, λ(h;N) is formally defined by the same recursion
relation as λ(h) ≡ λ(h;∞):

k
=

ξ,α ξ,αk
+

ξ,α

α1

α2
k

+ ... (54)

(see also Fig.31) the difference being that k ≤ N and
that everywhere only some tree shapes can appear. Thus
if one fixes a frame and deletes all the inner frames and
their contents, the tree shape left inside the selected
frame has to be a shape which can arise in computing
the effective potentials in the presence of a cut off γN ;
for instance

possible if M≤N+1

possible if M≤N+1

σM

σM

1 2 M
=σM impossible if M>N+1

(55)

In fig.(55) the first tree is impossible if M > N + 1,
because one cannot attach allowed frequency labels hi
to the vertices of σM with hi < hi+1 and root at −1
(as should have been the case has σM been a tree which
could have arisen in the presence of a cut off γN ).

Note that λ(N ;N) is a (probably) divergent series, be-
cause there are infinitely many trees compatible, even
with a finite cut off N , e.g.

k h

1

2

M

and M ≥ h. The equation in Fig.(54) is very similar to
the equation discussed in Secs.19 and 20, and in fact it
coincides with them if one restricts the k and h indices
in (22.1) and (22.2) to be ≤ N .

It is therefore clear that in hte theory of (22.2) per-
formed in the approximation in which the second order
“dominates”, i.e. in which (22.2) becomes equivalent to
(20.19). and hence eventually to (20.20)and (20.24), on
e can manage to find a solution to (20.2) with

λ(4)(h;N) ≃ λ

1− β λ h
for large h (22.4)

which would lead to (setting λ(4)(N ;N) = λN = bare
coupling) the following surprising relation

Λ =
λN

1 + β N λN
, (22.5)

where λ ≡ λ(0;N) is a “renormalized coupling” ex-
pressed in terms of the bare coupling λN .

Triviality follows from (22.5) which implies

λ−−−−→
N→∞

0 ⇒ λ(h;∞) ≡ 0 (22.6)

no matter how λN behaves provided λN ≥ 0.
On the other hand λN < 0 is obviously not allowed

as this would make the theory in presence of a cut off
undefined. Of course the above argument is based on the
identification of λ(N ;N) with λ(N ;∞) which, to say the
least, is not proved (even in an approximate sense).

To understand better the structure of (22.5) one can
remark that the bare couplings λ(N ;N) are a formal
power series in the renormalized couplings (for simplicity
take µ = ν = α = 0 so that there is only one renormalized
coupling),. The coefficients diverge with N as N → ∞
like powers of N : precisely as Nn−1 to order n.

The latter statement can be proved by going back to
(19.18) which tells us that the bare couplings λ(N ;N)
can receive the “most divergent contribution” from the
trees γ containing the largest number of frames. Such a
number is, if n is the degree of γ, f−1 < n. Furthermore
the trees which contain the maximal number of frames,
f = n, really give a contribution to the form factors like
λ (λD)n−1(bN)n−1 to leading order in N .

This can easily be seen by observing that f = n im-
plies that each vertex of σ is framed and gives rise to
a bifurcation in just two branches (otherwise f < n).
In other words the resummation of the most divergent
contributions is obtained simply by considering what in
Sec.9 was called the resummation of the most divergent
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graphs. In the language of Sec.20 and of this section this
means replacing B by B2 in the beta function (so that
one also finds the interpretation of the approximation in
which B is replaced by B2: it just means that counting
only trees simplest in structure and completely framed,
i.e. with no renormalization vertex (i.e. no unframed
vertex) allowed).

Since, as was explained in Sec.20, one knows that the
well behaved solutions to

λ(k + 1) = λ(k) + (Bλ)(k + 1) (22.7)

behave like (22.4), one sees another interpretation of Lan-
dau’s result: it leads to triviality if one neglects every-
thing except the most divergent contributions to the adi-
mensional form factors.

At the same time it also allows one to compute rigor-
ously the most divergent contributions to the coefficients
of the expansion of the bare couplings in terms of the
renormalized ones. For example λN has, to order n in
the renormalized coupling, a most divergent contribution
exactly equal to

λn(βN)n−1 (22.8)

while αN has the contribution

−β′β−1λn(βN)n−1 (22.9)

with the notations of Sec.20, see (20.4).
A more detailed analysis allows one easily to select the

Feynman graphs which, in the evaluation of the most di-
vergent trees contributions really give the leading behav-
ior in N : in the language of classical perturbation theory
they are the so called “parquet graphs” and one could
find (22.8) and (22.9). This involves quite hard work
(see the appendix by Rivasseau in the paper (Gallavotti
and Rivasseau, 1983)). This point will not be discussed
further here because it involves too many new definitions
necessary to establish contact between the formalism de-
veloped here and the classical language of the Feynman
graphs.

I collect now a few concluding comments to stress some
of the ideas and problems already foreshadowed in all the
sections of this work.
(a) The assumption that the form factors λ(h;N) ver-
ify essentially the same equation as the λ(k;∞) seems
hard to accept (at least if one wishes to claim from this
that λ(k;N) and λ(k;∞) have the “same” properties)
if one accepts that perturbation theory gives correctly
the asymptotic expansion for the beta function when the
renormalized couplings λ, α, µ, ν are suitably chosen (say
as functions of λ).

In fact in order that this could be true some impor-
tant cancellation effects must be present (to compensate
the factorially growing coefficients) and the recursion re-
lation for λ(k;N) being “slightly different” from those of
λ(k;∞) may just miss the cancellations.

(b) It is clear that, once an ultraviolet cut off is speci-
fied together with the bare Lagrangian, the coefficients
λ(h;N) are well defined and can be expressed in terms
of the bare coupling constants λ(N ;N) both as formal
power series or as true functions (of the bare couplings)
or as formal power series in the renormalized form factors
λ(0;N) or in the renormalized coupling constants.

On the other hand the functions λ(h;∞) are pertur-
batively well defined as formal power series in the renor-
malized constants and, thought as formal power series,
are completely independent of the regularization used.

The approach in which one prescribes the bare con-
stants λ(N ;N) and tries to study the renormalized con-
stants λ(0;N) looks conceptually clearer; however it suf-
fers from the drawback of necessarily replying on special
assumptions on the cut off and on the regularization and
on the bare Lagrangian.

For instance the well-known “lattice approximation”
in which ∂ϕ is the nearest neighbor difference and the
Lagrangian is is taken to be

γ−4N
∑

ξ

(−λN : ϕ4
ξ : −µN : ϕ2

ξ : −νN)dξ (22.10)

with the free field distribution defined by

const e
−γ−4N

∑
ξ
((∂ϕξ)2+ϕ2

ξ)
∏

ξ

dϕξ (22.11)

has the drawback of making “indistinguishable” the
“main” (∂ϕ)2 term from the similar “counterterm”:
whether this point is relevant or not is not known but
it is certainly one of the main properties necessary in the
existing triviality proofs of the lattice regularization of
ϕ4

4 (in the sense of (22.10) and (22.11)).
A sign that something might be wrong with the lattice

regularization, with respect to the old problem of finding
a meaning for the perturbation theory formal series, is
that the most divergent contributions to the expansion
of the bare couplings λN , αN in a series of the renor-
malized couplings λ, α, µ, ν are (when µ = α = ν = 0
for simplicity) all positive for λN and all negative for
αN , (Gallavotti and Rivasseau, 1983, 1985), hinting at
the possibility that in the bare theory the countert-
erms in (∂ϕ)2 might be antiferromagnetic and therefore
a detailed description of their form might be essential
(e.g. whether αN (∂ϕ)2 contains the square of the near-
est neighbor difference or a many neighbor version of it).

This also hints at the possibility that the convergence
of the fields ϕξ on the lattice to the continuum fields
might be more complicated than the naive pointwise
convergence of the Schwinger functions, even at distinct
points.
(c) Expression (22.4) hints at the possibility that λ(k;N)
could be defined for some values of λ which accumulate
to 0 together with other values of λ for which λ(k;N)
cannot be defined. Such regular and singular values of λ
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may depend on γ: i.e. the parameter γ itself may play a
nontrivial role in defining the theory. The existence of an-
other relevant parameter is somewhat necessary if one be-
lieves that the antiferromagnetic effects discussed above
may have some importance: such a parameter should de-
scribe on which scale such effects are smoothed out (an
event that should happen since the final Schwinger func-
tions, as defined order by order by perturbation theory,
are smooth except at coinciding points).

(d) Of course one cannot even exclude the possibility
that λ could be negative (which might eliminate the sin-
gularities in λ for λ small, as shown in the approximate
formulae (22.4)).

In fact from the observation that λ(N ;N) 6= λ(N ;∞)
there seems to be little (or no) relation between the signs
of λ(N ;N) = (bare coupling) and those of the effective
form factors λ(0;∞) (which for small renormalized cou-
pling should have the same sign as the renormalized cou-
pling itself, called above λ): at least unless special as-
sumptions on the bare Lagrangian are made, see (Cole-
man and Weinberg, 1973) who prove that λ(0;N) < 0
implies λ(N ;N) < 0 in a class of nonperturbative lattice
regularized ϕ4 models with a ferromagnetic kinetic term;
see also (Aizenman, 1982; Frölich, 1982) for a rigorous
version of the same result.

(e) If d = 2 or 3 one could still perform the (mostly
unnecessary if d = 3 and totally unnecessary if d = 2)
subtractions that one would perform in the case d = 4, as
described in Secs.17 and 18. Contrary to what is some-
times stated, the problem is far from being easy in spite
of the strength of the asymptotic freedom.

The bare couplings are still given by a priori noncon-
vergent series and the same happens for the form factors.
The only gain is that the dimensionless form factors are
bounded or grow with a power of the frequency index at
any fixed order of perturbation theory and the power is a
number independent on n However the dependence of the
perturbation series coefficients is, at order n, bounded by
n!.

Understanding whether, in spite of this, one can make
sense, beyond perturbation theory, of : ϕ4 : fields in di-
mension d = 2, 3 with the subtractions of : ϕ4 :4 would
help in understanding the role of asymptotic freedom in
constructive field theory. By “subtractions of : ϕ4 :4” one
means here essentially the usual zero-momentum sub-
tractions “to first order for the four-external-lines dia-
grams and to second order for the two-external-lines di-
agrams”. This problem, surprisingly, does not seem to
have been considered in the literature.

I apologize for this section, which has a somewhat dif-
ferent character from the rest of the work, mostly dealing
with open or ill-defined problems. The main reason for
including it is to stress a fact that I think is a rather
important one, namely that the problem of the construc-
tion of a nontrivial : ϕ4 :4 field theory, or a proof of its

triviality is still wide one and hard.
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Appendix A1. Free fields covariance:
hints

Let Hquantum = − 1
2A∆ + V where ∆ is the Laplace

operator on the space L2(R
(L/a)d

)
def
= H, A = h̄2

µ aD , see

(1.14). The operator Hquantum ≡ H has a simple lowest
eigenvalue, because V →∞ at infinity, see (1.14): there-
fore if ϕx denotes also the multiplication operator on H
by ϕx it is

Cξη = (e0, ϕxTtϕye0) ≡ (e0, TτϕxTtϕyTτ−te0) =

= lim
τ→∞

Tr (TτϕxTtϕyTτ−t) = lim
τ→∞

∫
· (A1.1)

· Tτ (ϕ−τ ,ϕ0) (ϕ0)x Tt(ϕ0,ϕt) (ϕt)y ·
· Tτ−t(ϕτ ,ϕ−τ ) dϕ−τdϕ0dϕt

where ϕ = (ϕx)x∈Λ∩ZDa and ξ = (x, 0), η = (y, t). Using
Trotter’s formula, see comments before (2.7), one finds
(if b > 0 and 2τ/b = N is an integer)

Cξη = lim
τ→∞

lim
b→0

e
2E0τ

h̄

∫
(e

bA
2 ∆ebV )

τ
b (ϕ−τ ,ϕ0)·

· (ϕ0)x(e
bA
2 ∆ebV )

τ
b (ϕ0,ϕt)· (A1.2)

· (ϕt)y(e
bA
2 ∆ebV )

(t−τ)
b (ϕt,ϕ−τ )dϕ−τdϕ0dϕt = lim

τ,b

∫ ∏N
j=0

(
e

bA
2 ∆(ϕtj ,ϕtj+1)e

bV (ϕtj
)ϕ(x,0)ϕ(y,t) dϕtj

)

∫ ∏N
j=0

(
e

bA
2 ∆(ϕtj ,ϕtj+1 )e

bV (ϕtj
) dϕtj

)

where tj = −τ + b j and one assumes that τ/b is also an
integer and the fields in the kernels have been denoted,
for reasons which will be soon clear, with a “time index”
tj rather than by j itself. Also one writes (ϕθ)x = ϕ(x,θ)

and ϕ = (ϕx)x∈Zda∪Λ. The denominator within the last

limit is essentially e−2E0τh̄
−1

being, after the limit b→ 0,
equal to the trace of e−

2τ
h̄ Hquantum . Using the explicit

form of the heat equation kernel
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N∏

j=0

e
bA
2 ∆(ϕtj ,ϕtj+1) =

= e
− 1

2
1

Ab

∑N

j=0

∑
x∈Λ

(ϕx,tj
−ϕx,tj+1

)2

(A1.3)

and including the factor
∏N
j=0 e

bV (ϕtj
) one gets

e
− 1

2
baDµ

h̄

∑
x∈Λ

∑
N

j=0

∑
D

i=1
(ϕx+aei,tj

−ϕx+aei,tj+1
)2 ·

· e−
1
2

baDµ
h̄

(
m0c2

h̄2

)2 ∑
x∈Λ

∑
N

j=0
(ϕx,tj

)2

(A1.4)

If ξ denotes a point on the d = D+ 1 dimensional lattice
with spacing a in the first D directions and b in the last
one, and if ej , j = 1, . . . , D, 0 are unit vectors in the
lattice directions, one finds that the integral in (A1.2)
has the form

lim
τ,b

const

∫
e−

1
2 (Qϕ,ϕ)ϕξϕη

∏

ω

fϕω (A1.5)

where the constant is a normalization constant and Q =

(Qξη)ξ,η∈Λ̃
, where Λ̃ is (Λ ∩ Z

da) × ((−τ, τ) ∩ Zb) with

“periodic boundary conditions” and ξ = (x, 0), η = (y, t)
is given by

(Qϕ,ϕ)
def
=
µ

h̄
baD

∑

ξ∈Λ̃

(( (ϕξ+edb − ϕξ)2
b2

+

+ c2
D∑

j=1

(ϕξ+eja − ϕξ)2
a2

)
+

(m0c
2)2

h̄2 ϕ2
ξ

) (A1.6)

But the integral (A1.5) is simply Q−1
ξη and Q−1 can be

easily found by explicit diagonalization: because of the
periodic boundary conditions the eigenvectors of Q are
complex exponentials. In the limit Λ → ∞, τ → ∞ the
eigenvalues fill the Brillouin zone and Q−2 becomes, if

p = (p, p0) ∈ R
D+1,

Q−1
ξη =

h̄

(2π)dµ

∫ π
a

−π
a

dp

∫ π
b

−π
b

dp0· (A1.7)

· eip(ξ−η)

(m0c2)2

h̄2 + 2
(

1−cos bp0
b2 + c2

∑D
j=1

1−cosapj

a2

)

and (2.8) follows from (A1.7) by letting b→ 0.

Appendix A2. Hint for (2.1)

For the proof of (2.10) one proceeds as in Appendix A.
Everything is the same up to (A1.4) where, in the present
case, an extra term appears:

e
− baDµ

2h̄

∑
ξ
I(ϕξ)

(A2.1)

Setting T = τ one sees that the proof of (2.10) is the
proof of admissibility of the interchange of two limits.
This problem should be studied by the reader as a test
of understanding of the theory of Brownian motion. On
a heuristic level the reader can accept (2.10) and proceed
to see what is done with it. The identity of the P in
(2.10) and (2.11) is a byproduct of the above discussion.

Appendix A3. Wick monomials and
their integrals

Let x1, . . . , xp be Gaussian random variables with co-
variance matrix

Cij = E(xixj) (A3.1)

One defines, for any of the above variables x,

: xp :
def
= (2E(x2))

p
2Hp(

x

(2E(x2))
1
2

) (A3.2)

where Hp is the p-th Hermite polynomial defined by the
generating function

∞∑

p=1

αp

p!
Hp(ξ) = e−

1
4α

2+αξ (A3.3)

More generally one defines inductively

: xn1+1
1 xn2

2 . . . xnp
p := x1 : xn1

1 xn2
2 . . . xnp

p : −

−
p∑

j=0

C1j nj : xn1
1 . . . x

nj−1
j . . . xnp

p :,
(A3.4)

interpreting the last term as 0 if nj = 0 and setting

: x0
1 . . . x

0
p := 1, : x0

1 . . . xk . . . x
0
p := xk. (A3.5)

Expressions (A3.4) and (A3.5) are a natural extension of
the recursion relations for Hermite polynomials expressed
by (if C = E(x2)

xn+1 := x : xn : −mC : xn−1 : . (A3.6)

Note that if x1 = x2 = x it is xn1
1 xn2

2 :=: xn1+n2 :. The
expression (A3.4) implies by induction

: (

p∑

i=1

ωixi)
q :=

∑

q1+...qp=q

q!

q1! . . . qp!
·

ωq11 . . . ωqp
p : xq11 . . . xqp

p :

(A3.7)
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which id the “Leibnitz rule” for Wick monomials.
The basic property of the Wick-ordered monomials is

the “Wick rule” for the expectations of products of Wick
monomials. Let D1, . . . , Ds be s subsets of (1, 2, . . . , n)
and let

: xDj := :
∏

α∈Dj

xα :, (A3.8)

then the integral E(∏s
j=1 : xdj :) is computed as follows.

Draw, say on a plane, s clusters of |D1|, . . . , |Ds| points
each and arbitrarily label the points in the cluster Dj .

Draw one line out of each of the vertices α ∈ Dj and
think of it as representing the variable xα.

Let I be the set of the graphs obtained by joining
pairwise alla such lines in all possible ways so that no
lines constituting a pair emerging from the same cluster
are ever joined together. Denote (α, β) the elements of
π ∈ I obtained by “joining” (or “contracting”) a line
emerging from the vertex α with a line emerging from
the vertex β. Then denoting (α, β) the lines in π joining
α and β, we have

E(
s∏

j=1

: xDj :) =
∑

π∈I

∏

(α,β)∈π

Cαβ (A3.9)

Equation (A3.9) id the “Wick rule” and it is easily proved
by induction from (A3.4) and its special case when Dj

contains one point for each j.
The latter case is treated directly from the relation

E(
∞∑

q=0

1

q!
(
∑

i

ωixi)
q) =

=
∑

n1+...+nq

ωn1
1 · · ·ω

nq
q

n1! · · ·nq!
E(xn1

1 · · ·xnq
q ) =

= E(e
∑

i
ωixi) = e

1
2

∑
i,j
ωiωjCij

(A3.10)

where the last integration is the general integration for-
mula for the exponential of a Gaussian variablex: namely

E(ex) = e
1
2E(x2).

The formula that one is seeking follows from (A3.10)
by developing the last exponential in powers and by iden-
tifying the coefficients of equal powers in the second and
fourth terms of (A3.10) and then interpreting the result
graphically.

But the most remarkable property of the Wick mono-
mials is related to the possibility of simple formulae for
the truncated expectations. In fact

ET (: xD1 :, . . . , : xDp :; s1, . . . , sp) (A3.11)

can be computed via the following rule: draw s1 clus-
ters of |D1| points each, s2 clusters of |D2| points each,

etcand label the points in in them by the elements of
D1, D2, . . . , Dp respectively plus another index identify-
ing which cluster is being considered among the sj clus-
ters of |Dj | points.

Then consider all the possible graphs π obtained by
joining pairs of such points, avoiding drawing lines join-
ing points belonging to the same cluster and with the
property that each graph π would be connected if all the
points inside each cluster were considered identical or,
the same thing, connected (i.e. π should be connected
“modulo the clusters”).

Then, if λ is a line in π joining the pair of points
(α, β) = λ, it is

ET (: xD1 :, . . . , : xDp :; s1, . . . , sp) =
∑

π

∏

λ∈π

Cαβ

(A3.12)
In particular it is remarkable that ET (·) ≥ 0 if Cαβ ≥ 0
(which, however, is a property not necessarily rue because
C is constrained only to be a positive definite matrix).

The (A3.12) can be generalized to the case where xi =
yi + zi with yi and zi, i = 1, . . . , p, being two sets of
independent Gaussian random variables with covariances
C0
ij and C1

ij , and one considers

ET1 (: xD1 :, . . . , : xDp :; s1, . . . , sp) (A3.13)

where E1 means expectation (i.e. integration) with re-
spect to the z variables at fixed y.

Let I denote now the set of the graphs obtained by
joining pairs of points of different clusters as before but
now allowing that some points stay disconnected from
the others provided the set of lines joining the points
still makes the set of clusters connected (if each of them
is regarded as connected), let : xπ : denote |∏∗

α xα :
where the product is over the points which in π ∈ I are
left unconnected with other points. Then

ET1 (: xD1 :, . . . , : xDp :; s1, . . . , sp) =

=
∑

π∈I

: yπ :
∑

τ∈π
τ∈I

(
∏

λ∈τ

C1
αβ)(

∏

λ6∈π/τ

C0
αβ) (A3.14)

where the second sum runs over the subgraphs of π which
are still elements of I (i.e. which still form a graph con-
nected modulo the identification of the points in each
cluster).

One first checks that (A3.14) is an immediate conse-
quence of (A3.12) by writing xi = yi + zi and developing
the sums using the Leibnitz rule: actually it is convenient
to note from the beginning that (A3.14) is true in general
if it is true for s1 = s2 = . . . = sp = 1. This is seen by
using the identity valid for the truncated expectations:

ET (x1, . . . , x1, . . . , xp, . . . , xp; 1, 1, . . . , 1) =

ET (: xD1 :, . . . , : xDp :; s1, . . . , sp)
(A3.15)
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if xj is repeated sj times in the l.h.s. of (A3.15). Then one
checks that (A3.14) follows from (A3.12) by developing
the summations mentioned above in the case s1 = . . . =
sp = 1.

Finally one checks (A3.12) as a consequence of another
remarkable formula (in the case s1 = . . . = sp = 1, which
is not restrictive as noted above):

ET (: eω1x1 :, . . . , eiωpxp : ; 1, 1, . . . , 1) =

=
∑

π∈I∗

∑

λ∈τ
λ=(α,β)

(eωαωβCαβ − 1) (A3.16)

where I∗ is the set of graphs with lines joining p points
and forming a connected set in which there are never two
lines joining the same pair of vertices. Below the notation
λ = (α, β) is used to identify a line with its end points;
and one also defines

: eωx :=

∞∑

p=0

ωp

p!
: xk := e−

1
2ω

2 C eωx (A3.17)

where the latter equality follows from (A3.2) and (A3.3).
More generally, if xi = yi+zi and y, z are independent

with covariances C0, C1, respectively,

ET1 (: eω1x1 :, . . . , eiωpxp : ; 1, 1, . . . , 1) =

( p∏

j=1

: eωiyi :
) ∑

π∈I∗

∏

λ∈π

(eωαωβC
1
αβ − 1)

(A3.18)

as a consequence of (A3.16) and, see (A3.17), of

: eαx :=: eαy : : eαz : (A3.19)

Equation (A3.12) follows from (A3.16) by expanding
both sides in powers of ω and identifying equal powers
of ω. Therefor the only formula that one must prove is
(A3.16). One possible proof of (A3.16) can be given as
follows. Consider

Z =

∫
e

∑p

j=1
λj :e

iωjxj :
P (dx) (A3.20)

where P (dx) is the Gaussian distribution of x and λj > 0

ωj ∈ R and i =
√
−1. Then expanding in powers of λ

one finds:

Z =

∞∑

n=0

∫
(
∑p

j=1 λj : eiωjxj :)n

n!
P (dx) =

∞∑

n=0

1

n!
·

·
∑

n1+...+np=n

n!

n1! · · ·np!
λn1

1 . . . λnp
p ·

E((: eiω1x1 :)n1 . . . (: eiωpxp :)np) =

=
∑

n1,...,np

λn1
1 . . . λ

np
p

n1! · · ·np!

∫
E(ei

∑
j
ωjxj )· (A3.21)

· e
1
2

∑
j
njω

2
jCjjPd(x) =

=
∑

nj

( p∏

j=1

λ
nj

j

nj !
e−

ω2
j
2 (n2

j−nj)
)
e
−

∑
i<j

ninjωiωjCij .

Therefore one has to study

∂p

∂λ1 . . . ∂λp
logZ =

= ET (: eiω1x1 : . . . : eiωpxp :, 1, . . . , 1)

(A3.22)

and one realizes that, for this purpose, one can replace
Z by Z ′ defined as by Z ′ defined as

∑

nj=0,1

∏

j

jnje
−

∑
i<j

ωiωjninjCij =

=
∑

X⊂{1,...,p}

(
∏

ξ∈X

λξ) e
−

∑
(ξ,η)∈X

Cξηωξωη
,

(A3.23)

where the last sum is over the pairs (ξ, η) in X =
(x1, . . . , xp); this fact follows from the last expression of
(A3.21) (because n2

j − nj = 0 if nj = 0, 1).
One realizes that Z ′ defined by (A3.23) is the grand

canonical partition function for a system of particles with
variable activity λξ sitting on a finite set (1, 2, . . . , p) and
interacting with a pair potential Cξη ωξωη.

The theory of the Mayer expansion teaches that the
logarithm of Z ′ can be expanded in a series of the ac-
tivities and the coefficients of this series are well known
and can be obtained via a graphical algorithm: the coef-
ficient of λ1 · · ·λp (which in any event is easy to compute
independently of the theory of the Mayer expansion) is
precisely

∑

π∈I∗

∏

λ∈π

(e−ωαωβCαβ − 1) (A3.24)

which proves (A3.16) replacing ωα by iωα (the imaginary
unit has been introduces in (A3.20) to avoid convergence
problems in the definition of Z as an integral).

Appendix A4. Proof of (16.14)

One has to show that

I(γ0) =

∫

Λn

∏

λ

e−
κ
4 γ

hλ |λ|dξ1 . . . dξn ≤

≤ |Λ|Bn−1
1

∏

v>r

γ−dhv (sv−1), n > 1
(A4.1)

which is clearly equivalent to (16.14). Here one imagines
to have fixed a tree (with no decorations or frames but
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just frequency indices n and position labels ξ1, . . . , ξn at
the end points). The vertices v of he tree organize the
end points into a hierarchy of clusters ξv.

The lines λ are drawn so that the ones which join pairs
ξ, η ∈ ξv which are not both located inside any smaller
clusters (i.e. imagining that the points inside the smaller
clusters are connected): for such lines λ it is hλ = hv =
frequency index of the vertex.

Define I(γ0) = |Λ| if n = 1, ]ie if the tree is trivial.
Assume that the tree γ0 has root frequency k and has a
first nontrivial vertex v0 where it bifurcates into s sub-
trees γ1, . . . , γs, s > 1.

Clearly in proving (A4.1) it is not restrictive to suppose
that the lines connecting the clusters ξv1 , . . . , ξvs associ-
ated with the vertices immediately following v0 in γ0 do
the connection in a simply connected way; otherwise one
just deletes the extra factors in (A4.1).

Once this is supposed it is clear that one can perform
the integrals in (A4.1) by keeping first all the points in
ξv2 . . . . , ξvs fixed and the positions of the points in the
first cluster fixed relative to the point ξ which is linked
by a lineλ to the other clusters; here one is supposing
that ξv1 is one of the (at least two) clusters connected to
only one other cluster (which is no loss of generality).

The result of the integration, followed by the integra-
tion over the remaining coordinates, yields the inequality

I(γ0) =
( ∫

e−
κ
4 γ

h|p|dp
)
I(γ′)

I(γ1)

|Λ| ≤

≤ B1
I(γ1)I(γ

′)

|Λ| γ−dh
(A4.2)

where γ′ is the tree obtained from γ0 by deleting the
branch γ1 and B1γ

−dh is a Λ-independent bound on the
integral in (A4.2); in deducing (A4.2) the translation in-
variance of the problem has been used; furthermore the
above inequality holds even if one of the trees in the r.h.s.
is trivial provided one defines, as above, I = |Λ| for the
trivial tree. Hence by iteration

I(γ0) ≤ Bs−1
1

I(γ1) . . . I(γs)

|Λ|s−1
(A4.3)

Obviously (A4.3) implies (A4.1) for γ0 if (A4.1) is sup-
posed valid for γ1, . . . , γs; hence the theorem follows by
induction being true, by definition, for n = 1: note that
here the relation used several times

∑
v′>v(sv′ − 1) =

nv − 1, is useful, see (12.17).

Appendix A5. Proof of (19.8)

Given a tree shape σ without any frames and with
m ≥ 2 final lines each carrying an index nj , so that∑

j nj = n, nj >, consider the sum

∑

h

( ∏

v>r

γ−ρ (hv−hv)
)( m∏

j=1

(
(nj − 1)!

nj−1∑

p=0

(b hj)
p

p!

))

(A5.1)
where m is the degree of σ and h is a frequency assign-
ment to the vertices of σ with root frequency k. Consider
first the case in which σ is as in Fig.(56):

r

n1

n2

nm

(56)

In this case one has to study, changing for convenience
of notation nj to nj + 1,

∑

h>k

γ−ρ(h−k)
m∏

j=1

(
nj!

nj∑

p=0

(b h)p

p!

)
=

=

∞∑

t=1

γ−ρt
m∏

j=1

(
nj!

nj∑

p=0

(b (t+ k))p

p!

)
=

=
∞∑

t=1

γ−ρt
( m∏

j=1

nj!
) ∑

j1,...,jm

bj1+...+jm
(
∑
ji)!∏
ji!
·

·
j1+...+jm∑

r=0

tj1+...+jm−rkr

r!(j1 + . . .+ jm − r)!
≤

( m∏

j=1

nj !
) n1,...,nm∑

j1,...,jm

bj1+...+jm
(
∑
ji)!∏
ji!
·

·
∞∑

t=1

j1+...+jm∑

r=0

γ−ρt tj1+...+jm−rkr

r!(j1 + . . .+ jm − r)!

(A5.2)

and for all θ > 0 the r.h.s. of (A5.2) is bounded by

≤
( m∏

j=1

nj !
) n1,...,nm∑

j1,...,jm

( b
θ

)j1+...+jm (
∑
ji)!∏
ji!
·

·
∞∑

t=1

γ−ρ teθt
j1+...+jm∑

r=0

(θk)r

| r!

(A5.3)

so that if γ−ρeθ < 1 and b < θ,

Eq.(A5.3) ≤ γ−ρeθ (
∑

i ni)!

1− γ−ρeθ
n1+...+nm∑

r=0

(θk)r

r!
·

·
∏
i ni!

(
∑

i ni)!

∑

q≥r

( b
θ

)q( n1,...,nm∑

j1,...,jm∑
ji=q

(
∑
ji)!∏
ji|

)
(A5.4)

≤ (
∑
ni)!γ

−ρeθ

1− γ−ρeθ
n1+...+nm∑

r=0

(θk)r

r!

( b
θ

)r 1

1− bθ−1
≤

≤ γ−ρeθ

1− γ−ρeθ
(
∑
ni)!

1− bθ−1

n1+...+nm∑

r=0

(b k)r

r!
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where we have used the inequality (to be proved by in-
duction)

n1! · · ·nm!

(n1 + . . .+ nm)!

n1,...,nm∑

j1,...,jm=0
j1+···+jm=q

q!

j1! · · · jm!
≤ 1 (A5.5)

∀ni, q. Finally let

D6
def
=

γ−ρeθ

1− γ−ρeθ
1

1− bθ−1
(A5.6)

and (9.8) follows with b = θ
2 suitably chosen (e.g. b =

ρ
4 log γ) and with D6 replacing Dm

6 , which is correct in
the special case just considered.

Consider next a general tree,

h

h1

h2

h3

n1

n2

n3

n4

n5

n6

n7

n8

(57)

Using recursively the bound found in the case of Fig.(56),
one reduces the problem of estimating (19.8) to the prob-
lem of a similar estimate for a simpler tree. In fact sum-
ming over hv, where v is one f the highest vertices of the
tree, and if mv ≥ 2 is the number of branches emerging
out of v, we find the estimate (19.8) to be reduced to that
relative to the tree σ′ without the vertex v and with the
line v′v joining v to the preceding vertex v′ being a final
line bearing an index

∑
i ni, where the sum is over the

end points indices (of σ) of the end points linked to v by
a final branch of σ. For instance in the case of Fig.(57)
one gets, if v is taken to be the vertex with frequency h2,
the tree in Fig.(58):

n1 + n2 + n3 + n4

n5

n6
n7

n8

(58)

Every time the procedure is repeated one gets a factor
D6 and an expression similar to the one to be bounded
but for a simpler tree. Since in m− 1 steps at most one
reaches the trivial tree (19.8) is proved.

Appendix A6. Estimate of the number
of Feynman graphs
compatible with a tree

This appendix is due to Giovanni Felder, Zürich, who
proves the following

Lemma: Let G be an unlabeled Feynman graph with n
vertices and let ]g be a tree with n end points. Then the
number N(G, γ, {nev}v∈γ) of labelings of G compatible
with ]g and such that for all vertices v the subgraph of
G corresponding toMv has nev external lines, is bounded

above by Cnv n(σ)eε
∑

v
ne

v , for all ε > 0 and some constant
Cε, if σ is the shape of the tree γ.

Proof: ConsiderG, γ, {nev}v∈γ fixed. Let γv be the sub-
tree of γ with root v, and Nv(j) the number of ways of
choosing and labeling a subgraph of G compatible with
γv and having an external line connected to the vertex
j of G. Furthermore, let v1, . . . , vsv be the vertices fol-
lowing v in γ. Since the subgraphs Gv1 , . . . , Gvsv

cor-
responding to v1, . . . , vsv have to be connected together,
there exists at least one tree diagram Tv with vertices
v1, . . . , vsv whose lines correspond to propagators con-
necting Gv1 , . . . , Gvsv

. Let dvi be the number of lines of
Tv emerging from vi. We have the estimate

Nv(j) ≤
( sv∏

i=1

max
j′∈G

Nvi(j′)

)
· (A6.1)

·
∑

dv1 ,...dvsv
≥1∑

i
(dvi

−1)=sv−2

( sv∏

i=1

(nevi
)dvi

−1
) sv (sv − 2)!∏sv

i=1(dvi − 1)!
,

where the last ration is the Cayley formula for the num-
ber of roted trees Tv with fixed coordination numbers
(see J.W. Moon, Enumerating labelled graphs, in Graph
theory and theoretical Physics, edited by F.Harari, Aca-
demic Press, 1967) and

∏sv

i=1(n
e
vi

)dvi
−1 is a bound on the

number of ways of choosing external lines of Gvi corre-
sponding to the lines of Tv. The sum over dvi can be
performed explicitly:

Nv(j) ≤
( sv∏

i=1

max
j′∈G

Nvi(j′)

)
sv (

∑

i

nevi
)sv−2, (A6.2)

and using xu ≤ k!ε−keεk, ∑
v(sv − 1) = n− 1, we get

N(γ,G, {nev}v∈γ) ≤ Cε (
∏

v∈γ

sv|)eε
∑

v∈γ
ne

v (22.3)

But

∏
v∈G

sv !

n(σ) =
∏
v∈γ

sv !∏
i
ti,v !

(where ti,v are the multi-

plicities of the different tree shapes that start from v)
is just the number of ways of drawing the shape σ by
choosing at each vertex how t order the trees starting
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from it: this number is bounded by the number of ways
of drawing all the trees with n end points, which, by the
same argument used to count the trees, is bounded by
Cn for soome constant C.

Appendix A7. Applications to the
hierarchical model

A very simple and particularly interesting example of
field theory is the ]f4 hhierarchical model.

Tis model is defined by an interaction like (5.6), i.e.
“pure ϕ4”. but with a different interpretation of the free
field ϕ(≤N) and with d being an integer ≤ 4.

In this appendix I discuss the minor changes necessary
to treat this new case; in fact it will be a useful exercise
for the reader to check the statements made below, while
reading various oparts of this paper.

To define the free fields ϕ(≤N) with cutoffs at scales
γ−N one introduces a sequence Q0,Q1, . . . of compatible
pavements of the unit cube Λ: the pavement Qj is built
with cubes of side size γ−j , where γ > 1 is the “scale
parameter” (an integer).

Each point ξ is in one cube ∆ ∈ Qj, for j = 0, 1, . . ..
with the obvious (and trivial) exception of the points in
the boundaries of the cubes. Then one defines

ϕ
(≤k)
ξ =

k∑

j=1

γ
d−2
2 j z∆j ≡

∑

∆∋ξ

|∆|≥γ−h d

|∆| d−2
2d z∆ (A7.1)

where ∆j is the cube in Qj containing ξ and the ζ∆ are
Gaussian independent variables with covariance 1

2 except
forone among them, z∆0 corresponding to ∆≡Λ ∈ Q0,
which will be assumed to have covariance 1

2(1−γ−(d−2))

The fields ϕ(≤N) behave roughly as the Euclidean free
field with cutoff at γ−N .

Hierarchical models in field theory were introduced in
the papers of Wilson, (Wilson, 1971, 1972)3 and (Wilson
and Kogut, 1973), as approximations to the Euclidean
theory and the equations to which they lead are, there-
fore, called “approximate recursion formulae”. In statis-
tical mechanics they were introduced by (Dyson, 1969,
1971) and studied also by (Bleher and Sinai, 1973, 1975)
and by (Collet and Eckmann, 1978).

The mode (A7.1) is not the one studied in the above--
mentioned papers; its relevance and importance for field
theory were pointed out in (Gallavotti, 1978, 1979a,b),

3 See in particular footnote 8. This paper introduces a hierarchi-
cal model and deals mainly with ϕ6

3
; other similar hierarchical

models had been introduced earlier in (Dyson, 1969, 1971) and
later in (Baker, 1973) in statistical mechnaics and in (Gallavotti,
1978) in field theory. A general theory of the recursion relations
associated with certain hierarchical models can be found in (Col-
let and Eckmann, 1978), where the work initiated by (Bleher and
Sinai, 1973, 1975) is extended

and it was applies to constructive field theory for Eu-
clidean fields in (Benfatto et al., 1978, 1980a). It is men-
tioned earlier in (Wilson and Kogut, 1973), p.120, line
11, see (A7.3) below for comparison, without comments
except perhaps the implication that it may be not too
relevant. Many of the results that follow would apply as
well to the hierarchical models considered in the above-
mentioned papers after some obvious changes; for papers
on such “classical” hierarchical models see (Gawedski and
Kupiainen, 1980) and the references therein.

The theory of the ϕ4 fields with interaction given by
(5.6) for d = 4 can be pursued exactly as in Secs. 16-
19 with a few remarkable simplifications: the results, and
the simplifications just mentioned , are listed below. The
reader who has followed Secs.5-9 and 16-20 will find them
very easy to prove; their proof is however very instructive,
as it shows the true nature of the problems of perturba-
tive field theory deprived of most technical complications
which accompany them.
(1) Classifying the divergences leads to the same results
of Sec.16, provided one sets everywherem2′,v = 0, n1,v =
0, thus disregarding the ∂ϕ fields (which are not defined
in this model and which are absent from the interaction).
(2) The renormalization is also done along the same lines.
It is, however, much easier in practice because the effec-
tive interaction (very peculiarly for this model) remains
“purely local” on each scale: i.e. the effective potential
on scale k has the form

V (≤k) =
∞∑

n=1

ω(k, n)

∫

Λ

: ϕ(≤k) 2n : dx
def
=

def
=

∑

∆∈Qk

Ωk(X∆)

(A7.2)

where X∆
def
=

ϕ(≤k)
x

2(Eϕ
(≤k) 2
x )

1
2

if x ∈ ∆, and in the second

step use has been made of the fact that ϕ
(≤k)
x is condtant

over boxes ∆ of side size γ−k The function Ωk(x) and the
coefficients ω(k, n) are defined implicitly by (A7.2). The
normalized field is introduced for convenience.
(3) In fact one can see, indpendently of perturbation the-
ory, that the functions |Ok are related by a recursion
formula; namely it is Ωk = TΩk+1, k > 0, where T is,
(Gallavotti, 1979b), for d > 2

(TΩ)(x) = γd log

∫
eΩ(αz+βx)e−z

2 dz√
π

(A7.3)

with α = (1−β2)
1
2 , β = γ−

d−2
2 . The case d = 2 is slightly

different (and easier) because d − 2 = 0 and the (A7.3)
needs to be reinterpreted appropriately, (Gallavotti, 1978,
1979a): for this reason we do not discuss it.

Therefore Ωk = TN−kΩN if k > 0, and a simple cal-

culation shows that the interaction −
∫
Λ(λN : ϕ

(≤N) 4
x :

+µNϕ
(≤N) 2
x + νN )dx can be written as (A7.2) with
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ΩN (x) =− (λNγ(4−d)NC4H4(x)+

+ µNγ
−2NC2H2(x) + νNγ

−dN),
(A7.4)

where C = (1− γ−d−2
2 . The reason why k = 0 is special

is that z∆, for ∆ ∈ Q), has a slightly different covariance.

If z∆, ∆ ∈ Q0 had been taken with ovariance 1
2 , too, then

(α, β) in (A7.3) would, however, have turned out slightly
k dependent.
(4) Because of remark (2) the L and R operations of
Sec.18 need only to be defined for 1, : ϕ2

1 :, : ϕ4
1 : and are

simply

L1 = 1, L : ϕ2
1 :=: ϕ2

1 :, L : ϕ4
1 :=: ϕ4

1 :

L : ϕn := 0 if n > 4

R1 = 0, R : ϕ2 := 0, R′ : ϕ4 := 0

R : ϕn1 :=: ϕn1 : if n > 4

(A7.5)

No Dxy fields arise: because of the locality remark (2)
above x would be equal to y so that Dxy = 0. Since the
Dxy fields vanish there is no need to increase the order of
subtraction, because Dxy “has clearly a zero of infinite
order”.

Therefore the above theory is renormalizable, in spite
of the absence of (∂ϕ)2 terms in the interaction. This is
a proof of a theorem by Wilson, see (Wilson, 1972) line
26 from bottom at p. 424, who proved this result (just
by stating it)in ϕ6

3 theory (and hence in ϕ4
4 theory also,

the argument being the same in the two cases). It seems
that this deep result went almost unnoticed, probably
because he failed to stress its interest, very high in my
opinion. The difference between the models used here is
irrelevant and the above proof can be repeated verbatim
for the “classical” hierarchical models.
(5) Finally consider the resummations. The equation for
the form factors, see Fig.(32), and formulae (9.9) and
(20.8) can be written in terms of the “beta functional”

(Bλ)(α)(k) =
∑

σ

∑

h, hr,≥k+1

β(α)
σ (k + 1;h,α′)·

·
∏

end point of σ

λ(α′
i)(hi),

(A7.6)

where we have explicitly exhibited the decomposition of
the ]b-coefficients of (20.8) in terms of the contributions
from the various trees. Then as the reader can easily
check, the bounds on β are, if v0 = first vertex of σ,

|β(α)
σ (k + 1;h,α′)| ≤ Cn0 n!γ

−
∑

v>v0
ρ̂

∏

v>v0

γρ̂ (hv−hv′−1) (A7.7)

with the usual notations and with C0 > 0, ρ̂ = −d +
(6 − ε)d−2

2 , ε > 0. The 6 in ρ̂ is explained by the fact

that the vertices of σ carrying a superscript R generate
(because of (A7.5)) only Feynman graphs with at least
six external lines (in fact the R operation just deletes the
contributions from nontrivial Feynman graphs with two
or four external lines emerging out of clusters generated
by the vertices of the tree σ).

Expression (A7.7) suggests that the hierarchical model
may have a “γ−1 expansion” for the beta function B in
(A7.6). One sees that the r.h.s. of (A7.7) is of order
O(1) as γ → ∞ only for the trees which have only one
nontrivial vertex v0, which we can call “simple” trees.
For the other trees the bound (A7.7) contains terms of

order O(γ−ρ̃).

Therefore it might be of some interest to analyze the
equation for the dimensionless form factors (A7.6) in the
approximation in which only “simple” trees are consid-
ered in the r.h.s. of (A7.6). This approximation is not
equivalent to taking an order by order dominant term in
the γ−1 expansion of the βσ for the σ of given order n,
because even for simple trees σ the βσ depend on γ and
have subleading corrections in γ−1.

Hence the approximation has the same character of the
“leading log” or “most divergent graphs” resummations
discussed in Secs.9 and 20. However it in some sense to
be clarified (one hopes) a deeper resummation as, unlike
the case of the “most divergent graphs” or the “planar
graphs” resummations, its beta function has an asymp-
totic expansion which has zero-radius of convergence: the
contribution from the tree with n end points being pro-
portional to n!, see (A7.7) and (A7.8) below.

But the really interesting aspect of the above resum-
mations is that the beta function can be computed “ex-
actly”. In fact from the graphical interpretation of (5.13)
and (5.14) in terms of “simple” trees one can easily recog-
nize that the contribution of the simple trees to the r.h.s.
of (A7.6) is just the power series expansion Bg(λ(k+ 1))

in formal powers of λ(k + 1) and B
(α)
g (λ(4), λ(2)) is

Bθg(λ
(4), λ(2)) = γd

2θ

θ!
C−θ

∫
Hθ(x)e

−x2 dx√
π
·

·
( ∫

e−z
2 dz√

π
e
∑

θ′
λ|θ′|Cθ′Hθ′ (αz+βx)

) (A7.8)

where θ = 2, 4, C = (1 − γ d−2
2 )−

1
2 , α = (1 − ν2)

1
2 , β =

γ−
d−2
2 .

Thus if we setλ = −λ(4)(k+1)C4, µ = −λ(2)(k+1)C2,
λ′ = −λ(4)(k)C4, µ′ = −λ(2)(k)C2, it follows that the
dimensionless form factors of scale k are expressed in
terms of this on scale k + 1 simply by
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λ′ =− γd 24

4!

∫
H4(x)e

−x2 dx√
π

(
log

∫
e−z

2 dz√
π
·

· e−λH4(αz+βx)−µH2(αz+βx)
)

µ′ =− γd 22

2!

∫
H2(x)e

−x2 dx√
π

(
log

∫
e−z

2 dz√
π
·

· e−λH4(αz+βx)−µH2(αz+βx)
)

(A7.9)

This formula (which I derived, with some algebraic errors
later corrected by Nicoló, from the remark that (5.13)
and (5.14) imply that Bg can be summed explicitly) gives
a recursion relation somewhat interesting in itself. But
more interesting would be to see in what sense (if at
all) the above resummation provides a good resumma-
tion rule up to O(γ−1). Such problems have not been
investigated yet.
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, E. Olivieri, E. Presutti, and E. Scacciatelli, 1980a, Ultra-
violet stability in Euclidean scalar field theories, Communi-
cations in Mathematical Physics 71, 95 130.

Benfatto, G., G. Gallavotti, and F. Nicoló, 1980b, Elliptic
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Frölich, J., 1976, Quantum sine Gordon equations and quan-

tum solitons in two space-time dimensions, in Renormal-

ization theory, Erice Lectures, ed. G. Velo, A. Wightman,
Reidel, Dordrecht 23, 371 414.
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