1: Reservoirs and entropy creation

$$m_i \ddot{\mathbf{x}}_i = -\partial_{\mathbf{x}_i} V(\mathbf{X}) + \mathbf{F}_i(\mathbf{X}; \boldsymbol{\Phi}) - \boldsymbol{\vartheta}_i, \qquad i = 1, \dots, n$$

Reservoirs occupy infinite regions e.g. sectors $C_a \subset R^3$, $a = 1, 2 \dots$ Their particles are in a configuration typical of an equilibrium state at temperature T_a . The *empirical* probability of configurations in each C_a is Gibbsian with some temperature T_a .

$$\operatorname{average}_{\mathbf{r}+\Lambda\subset C_a}(f_{\Lambda+\mathbf{r}}[(\dot{\mathbf{Y}},\mathbf{Y}+\mathbf{r});\dot{\mathbf{W}},\mathbf{W}+\mathbf{r}]) = \frac{e^{-\beta_a\left(\frac{1}{2m_a}|\dot{\mathbf{Y}}|^2+V_a(\mathbf{Y}|\mathbf{W})\right)}}{\operatorname{normalization}}$$

In finite thermostats temperature is enforced by a constraint, e.g. Gaussian

$$K_a = constant = \frac{3}{2}N_a k_B T_a \equiv \frac{3}{2}N_a \beta_a^{-1}$$

Amount of heat \dot{Q} produced while in a stationary state identified with the work that the thermostat forces ϑ perform per unit time

$$\dot{Q} = \sum_{i} \boldsymbol{\vartheta}_{i} \cdot \dot{\mathbf{x}}_{i}$$

Often $\boldsymbol{\vartheta} = \sum_{a=1}^{m} \boldsymbol{\vartheta}^{(a)}(\dot{\mathbf{X}}, \mathbf{X}) \Rightarrow \sigma^{(a)}(\dot{\mathbf{X}}, \mathbf{X}) \stackrel{def}{=} \sum_{j} \partial_{\dot{\mathbf{x}}_{j}} \cdot \boldsymbol{\vartheta}_{j}^{(a)}(\dot{\mathbf{X}}, \mathbf{X})$ then

$$\begin{split} \sigma_{+}^{(a)} &\stackrel{def}{=} \langle \sigma^{(a)}(\dot{\mathbf{X}}, \mathbf{X}) \rangle, \qquad \dot{Q}_{a} \stackrel{def}{=} \sum_{i} \vartheta_{i}^{(a)} \cdot \dot{\mathbf{x}}_{i} \\ \text{Temperature defined by } T_{a} &= \frac{\langle \dot{Q}_{a} \rangle}{k_{B} \sigma_{+}^{(a)}}. \text{ Is it } > 0? \end{split}$$

A class of thermostats with $T_a > 0$

N particles in C_0 interact via a potential $V_0 = \sum_{i < j} \varphi(\mathbf{q}_i - \mathbf{q}_j) + \sum_j V'(\mathbf{q}_j)$ (V' models external conservative forces like obstacles, walls, gravity, ...) and interact with M systems Σ_a , of N_a particles of mass m_a , in containers C_a contiguous to C_0 : "the M parts of the system in contact with thermostats at T_a , $a = 1, \ldots, M$ ".

$$m \ddot{\mathbf{q}}_{j} = -\partial_{\mathbf{q}_{j}} \left(V_{0}(\mathbf{Q}) + \sum_{a=1}^{N_{a}} W_{a}(\mathbf{Q}, \mathbf{x}^{a}) \right) (\text{"conservative"})$$
$$m_{a} \ddot{\mathbf{x}}_{j}^{a} = -\partial_{\mathbf{x}_{j}^{a}} \left(V_{a}(\mathbf{x}^{a}) + W_{a}(\mathbf{Q}, \mathbf{x}^{a}) \right) - \boldsymbol{\vartheta}_{j}^{a} \text{ "(non conservative)"}$$

 $\boldsymbol{\vartheta}^{a}$ via Gauss' principle: $\Rightarrow \boldsymbol{\vartheta}_{j}^{a} = \frac{L_{a} - \dot{V}_{a}}{3N_{a}k_{B}T_{a}} \dot{\mathbf{x}}_{j}^{a} \stackrel{def}{=} \alpha^{a} \dot{\mathbf{x}}_{j}^{a}$ where L_{a} is the work per unit time done by the particles in C_{0} on the particles of Σ_{a} and V_{a} is their potential. Partial divergence $\sigma^{a} = 3N_{a}\alpha^{a} = \frac{L_{a}}{k_{B}T_{a}} - \frac{\dot{V}_{a}}{k_{B}T_{a}} \Rightarrow T_{a} > 0$ because L_{a} can be naturally interpreted as heat Q_{a} ceded, per unit time, by the particles in C_{0} to the subsystem Σ_{a} (hence to the *a*-th thermostat because the temperature of Σ_{a} is constant), while the derivative of V_{a} will not contribute to the value of σ_{+}^{a} . Apart from the total derivative terms, ("true" \longleftrightarrow "up to an additive total derivative")

$$\sigma_{true}(\dot{\mathbf{X}}, \mathbf{X}) = \sum_{a=1}^{N_a} \frac{\dot{Q}_a}{k_B T_a}$$

 \rightarrow interpretation of σ as entropy creation rate.

Another viewpoint: the system only consist of N particles in C_0 and the Σ_a are thermostats \Rightarrow model of system subject to thermostats.

This is a conservative system interacting with thermostats. Instead of the divergence interesting is $\sigma_{true} \Rightarrow$ general "entropy creation" in a subsystem \equiv amounts of work done on the external particles divided by the temperatures.

Note that σ_{true} will satisfy FR: the large deviations of $p \stackrel{def}{=} \frac{1}{T} \int_0^T \frac{\sigma_{true}(t)}{\langle \sigma_{true} \rangle_{SRB}}$ have rate function

$$\zeta(-p) = \zeta(p) - p\sigma_+$$

2. How irreversibile is an irreversible trasformation?

Let E(t) be a parameter varying from E_0 to $E_{\infty} = E + 0 + \Delta E$. System initially in SRB state μ_0 and equations of motion

$$\dot{\mathbf{X}} = \mathbf{F}_{E(t)}(\mathbf{X}, \dot{\mathbf{X}})$$

(thermostatted system under variable forcing).

Let μ_t be the distribution into which μ_0 evolves. Let $\mu_{E(t)}$ be the SRB distribution corresponding to a "frozen" value E(t). The quantity (τ =time scale of E(t))

$$I = \tau \int_0^\infty \left(\langle \sigma_t \rangle_{\mu_t} - \langle \sigma_t \rangle_{\mu_{E(t)}} \right)^2 dt$$

can be regarded a quantitative indicator of irreversibility degree. If $E(t) = E_0 + (1 - e^{-\gamma \kappa t})\Delta E$ then $I(\gamma) \xrightarrow{\gamma \to 0} 0$: quasi static evolution ($\tau = (\gamma \kappa)^{-1}$) does not create entropy and has 0 "irreversibility".

3. Navier Stokes: equivalence and barometric formula

Application to **NS** (incompressible $\partial \cdot \mathbf{u} = 0$)

$$\dot{\mathbf{u}} + \underline{\mathbf{u}} \cdot \partial_{\widetilde{\mathbf{u}}} \mathbf{u} = \nu \Delta \mathbf{u} - \partial p + f \mathbf{g}, \qquad R = \frac{\sqrt{fL}}{\nu}$$

Actually think of : cut off at $|\mathbf{k}| \leq K_k = L^1 R^{\frac{3}{4}}$, $N \simeq R^{\frac{9}{4}}$, *i.e.* OK41 is assumed. To apply the chaotic hyp. need

- (1) chaos (yes, if R large).
- (2) reversibility (no)

(3) *pairing* (mechanism to recover reversibility when the attractor is very small)

(1) Equivalence with reversible equations "Gaussian NS eq."

$$\dot{\mathbf{u}} + \underline{\mathbf{u}} \cdot \partial_{\widetilde{\mathbf{u}}} \mathbf{u} = \alpha(\mathbf{u}) \Delta \mathbf{u} - \partial p + f \mathbf{g}, \qquad \alpha = \frac{\int \mathbf{u} \cdot f \mathbf{g}}{\int (\partial \mathbf{u})^2} \Rightarrow \int \mathbf{u}^2 = \mathcal{E} = const$$

Same statistics for "local observables": F local \Rightarrow F depends on finitely many Fourier components of **u**. Same statistics as $R \rightarrow \infty$ if \mathcal{E} is chosen = $\langle \int \mathbf{u}^2 \rangle_{\mu_{\nu}}$ (equivalence)

Consequence $\langle \alpha \rangle / \nu \to 1$: only numerical tests in strongly cut off equations and d = 2 (*Rondoni*, Segre).

Earlier She, Jackson: large numerical simulations (different reversible equation)

30/agosto/2016; 17:59

4

Other tests: are Lyapunov spectra also identical? (Rondoni, Segre, G.). Here are a few graphs in highly truncated equations (d = 2)

Also the linear FR relation comes out within the precision: the approximate pairing that can be observed leads to test the slope $(1 - \frac{2M}{2N})\sigma_+$ in the GNS equations: from the theory it is expected a slope $< \sigma_+$ by the ratio of the number of negative pairs to the nuber of total pairs.

Barometric formula:

Consider the equations (incompressible NS and ED)

$$\dot{\mathbf{u}} + \mathbf{u} \cdot \partial \mathbf{u} = \nu \Delta \mathbf{u} - \partial p + f \mathbf{g}, \qquad \dot{\mathbf{u}} + \mathbf{u} \cdot \partial \mathbf{u} = -\chi \mathbf{u} - \partial p + f \mathbf{g},$$

here $\mathbf{u} = \sum_{\mathbf{k}} \gamma_{\mathbf{k}} e^{i\mathbf{k}\cdot\mathbf{x}}, \ \mathcal{E} = L^3 \sum_{\mathbf{k}} |\gamma_{\mathbf{k}}|^2.$

The equivalence idea leads to think that although the statistics of the two equations are certainly different *nevertheless they might coincide on an appropriate scale*. The friction in NS varies with the scale \mathbf{k} and at some scale it might match that of ED.

By OK41 $v_k^3 k = constant = \eta \nu$ in NS: OK41 does not hold for ED: to fix ideas asume that at fixed cut off k_{χ} there is *equipartition* between the modes. Then $\langle |\boldsymbol{\gamma}_{\mathbf{k}}|^2 \rangle \equiv \gamma^2$

$$\frac{4\pi}{3}\gamma^2 (k_{\chi}\frac{L}{2\pi})^3 = \varepsilon, \qquad energy \ density \ at \ equipartition$$

$$K_E(k) = \frac{3\varepsilon}{4\pi}\frac{k^2}{k_{\chi}^3}, \qquad energy \ density \ between \ k \ and \ k + dk$$

$$v_k^3 k = \left((kL)^3\gamma^2\right)^{\frac{3}{2}}k = \varepsilon^{\frac{3}{2}}k_{\chi}\left(\frac{k}{k_{\chi}}\right)^{\frac{11}{2}}, \qquad dimensionless \ dissipation \ on \ scale \ k$$

If $\varepsilon^{\frac{3}{2}} k_{\chi} \left(\frac{k}{k_{\chi}}\right)^{\frac{11}{2}} = \eta \nu$ then NS equation and ED equations have the same statistics on scale k: doubling the dissipation in NS the statistics of the two equations agree on scale 1.3 higher.

The k, or better $\log \frac{k}{k_{\chi}}$, is the analog of the height and the dim.less dissipation is the analogue of the pressure.

30/agosto/2016; 17:59

6

R^2	$\delta Q_0 / \langle Q_0 \rangle_{NS}$	$\triangle \alpha$	$\triangle Q_1$	o(M)/M
800	0.005	0.030	0.053	0.068
1250	0.020	0.018	0.062	0.057
2222	0.002	0.039	0.058	0.077
4444	0.050	0.021	0.093	0.059
5000	0.010	0.008	0.058	0.033

Equivalence NS-GNS dynamics at different Reynolds numbers, column $\Delta \alpha$ to be compared with 1, cfr. [RS99]).

Evolution towards limiting slope as τ increases

30/agosto/2016; 17:59

7