
1: Reservoirs and entropy creation

miẍi = −∂xi
V (X) + Fi(X;Φ)− ϑi, i = 1, . . . , n

Reservoirs occupy infinite regions e.g. sectors Ca ⊂ R3,

a = 1, 2 . . .. Their particles are in a configuration typical

of an equilibrium state at temperature Ta. The empirical

probability of configurations in each Ca is Gibbsian with

some temperature Ta.
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In finite thermostats temperature is enforced by a constraint, e.g. Gaussian

Ka = constant =
3

2
NakBTa ≡

3

2
Naβ

−1
a

Amount of heat Q̇ produced while in a stationary state identified with the work

that the thermostat forces ϑ perform per unit time

Q̇ =
∑

i

ϑi · ẋi

Often ϑ =
∑m

a=1 ϑ
(a)(Ẋ,X) ⇒ σ(a)(Ẋ,X)

def
=

∑
j ∂ẋj

· ϑ(a)
j (Ẋ,X) then

σ
(a)
+

def
= 〈σ(a)(Ẋ,X)〉, Q̇a

def
=

∑
i ϑ

(a)
i · ẋi

Temperature defined by Ta = 〈Q̇a〉

kBσ
(a)
+

. Is it > 0?

A class of thermostats with Ta > 0
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N particles in C0 interact via a potential V0 =
∑

i<j ϕ(qi − qj) +
∑

j V
′(qj) (V

′

models external conservative forces like obstacles, walls, gravity, . . .) and interact

with M systems Σa, of Na particles of mass ma, in containers Ca contiguous to

C0: “the M parts of the system in contact with thermostats at Ta, a = 1, . . . ,M”.

m q̈j = −∂qj

(
V0(Q) +

Na∑

a=1

Wa(Q,xa)
)
(“conservative”)

ma ẍ
a
j = −∂xa

j

(
Va(x

a) +Wa(Q,xa)
)
− ϑa

j “(non conservative)”

ϑa via Gauss’ principle: ⇒ ϑa
j = La−V̇a

3NakBTa
ẋa
j

def
= αa ẋa

j where La is the work per

unit time done by the particles in C0 on the particles of Σa and Va is their potential.

Partial divergence σa = 3Naα
a = La

kBTa
− V̇a

kBTa
⇒ Ta > 0 because La can be

naturally interpreted as heat Qa ceded, per unit time, by the particles in C0 to

the subsystem Σa (hence to the a-th thermostat because the temperature of Σa is

constant), while the derivative of Va will not contribute to the value of σa
+. Apart

from the total derivative terms, (“true” ←→ “up to an additive total derivative”)

σtrue(Ẋ,X) =

Na∑

a=1

Q̇a

kBTa

→ interpretation of σ as entropy creation rate.

Another viewpoint: the system only consist of N particles in C0 and the Σa are

thermostats ⇒ model of system subject to thermostats.

This is a conservative system interacting with thermostats. Instead of the diver-

gence interesting is σtrue ⇒ general “entropy creation” in a subsystem ≡ amounts

of work done on the external particles divided by the temperatures.

Note that σtrue will satisfy FR: the large deviations of p
def
= 1

T

∫ T

0
σtrue(t)

〈σtrue〉SRB
have

rate function

ζ(−p) = ζ(p)− pσ+
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2. How irreversibile is an irreversible trasformation?

Let E(t) be a parameter varying from E0 to E∞ = E + 0 +∆E.

System initially in SRB state µ0 and equations of motion

Ẋ = FE(t)(X, Ẋ)

(thermostatted system under variable forcing).

Let µt be the distribution into which µ0 evolves. Let µE(t) be the SRB distribution

corresponding to a “frozen” value E(t). The quantity (τ=time scale of E(t))

I = τ

∫ ∞

0

(
〈σt〉µt

− 〈σt〉µE(t)

)2
dt

can be regarded a quantitative indicator of irreversibility degree. If E(t) = E0 +

(1 − e−γκt)∆E then I(γ)−−−→
γ→0

0: quasi static evolution (τ = (γκ)−1) does not

create entropy and has 0 “irreversibility”.
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3. Navier Stokes: equivalence and barometric formula

Application to NS (incompressible ∂ · u = 0)

u̇+ u
˜
· ∂
˜
u = ν∆u− ∂ p+ fg, R =

√
fL

ν

Actually think of : cut off at |k| ≤ Kk = L1R
3
4 , N ≃ R

9
4 , i.e. OK41 is assumed.

To apply the chaotic hyp. need

(1) chaos (yes, if R large).

(2) reversibility (no)

(3) pairing (mechanism to recover reversibility when the attractor is very small)

(1) Equivalence with reversible equations “Gaussian NS eq.”

u̇+ u
˜
· ∂
˜
u = α(u)∆u− ∂ p+ fg, α =

∫
u · f g∫
(∂ u)2

⇒
∫

u2 = E = const

Same statistics for “local observables”: F local ⇒ F depends on finitely many

Fourier components of u. Same statistics as R → ∞ if E is chosen = 〈
∫
u2〉

µν

(equivalence)

Consequence 〈α〉/ν → 1: only numerical tests in strongly cut off equations

and d = 2 (Rondoni, Segre).

Earlier She, Jackson: large numerical simulations (different reversible equation)
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Other tests: are Lyapunov spectra also identical? (Rondoni, Segre, G.). Here are

a few graphs in highly truncated equations (d = 2)

Also the linear FR relation comes out within the precision: the approximate pairing

that can be observed leads to test the slope (1 − 2M
2N )σ+ in the GNS equations:

from the theory it is expected a slope < σ+ by the ratio of the number of negative

pairs to the nuber of total pairs.

Barometric formula:

Consider the equations (incompressible NS and ED)

u̇+ u
˜
· ∂
˜
u = ν∆u − ∂ p+ fg, u̇+ u

˜
· ∂
˜
u = −χu − ∂ p+ fg,

here u =
∑

k γk e
ik·x, E = L3

∑
k |γk|2.

The equivalence idea leads to think that although the statistics of the two equations

are certainly different nevertheless they might coincide on an appropriate scale.

The friction in NS varies with the scale k and at some scale it might match that

of ED.

By OK41 v3kk = constant = ην in NS: OK41 does not hold for ED: to fix ideas

asume that at fixed cut off kχ there is equipartition between the modes. Then

〈|γk|2〉 ≡ γ2

4π

3
γ2 (kχ

L

2π
)3 = ε, energy density at equipartition

KE(k) =
3ε

4π

k2

k3χ
, energy density between k and k + dk

v3k k =
(
(kL)3γ2

) 3
2 k = ε

3
2 kχ

( k

kχ

) 11

2 , dimensionless dissipation on scale k

If ε
3
2 kχ

(
k
kχ

) 11

2 = ην then NS equation and ED equations have the same statistics

on scale k: doubling the dissipation in NS the statistics of the two equations agree

on scale 1.3 higher.

The k, or better log k
kχ

, is the analog of the height and the dim.less dissipation is

the analogue of the pressure.
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R2 δQ0/〈Q0〉NS △α △Q1 o(M)/M
800 0.005 0.030 0.053 0.068
1250 0.020 0.018 0.062 0.057
2222 0.002 0.039 0.058 0.077
4444 0.050 0.021 0.093 0.059
5000 0.010 0.008 0.058 0.033

Equivalence NS-GNS dynamics at different Reynolds numbers,

column ∆α to be compared with 1, cfr. [RS99]).
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