
Chaotic motions and developed turbulence

Non equilibrium: Chaotic hypothesis

The attractor of a chaotic evolution can be regarded as an Anosov system

F = phase space

x
flow

u

s

covariant decomposition

⇒ ∃ SRB distribution,i.e. the “statistics”

1

T

∫ T

0

F (Stx)dt−−−−→
T→∞

〈F 〉 ≡
∫

µ(dy)F (y) a.e.

µ is singular (in general): ṡ = f(x), x ∈ F

σ(x)
def
= − divergencef(x), σ+

def
= 〈σ〉µ (≥ 0 Ruelle)

Idea: Chaotic hypothesis + symmetries → “predictions”

Symmetries: time reversal, symplectic, . . .

Time rev. = isometry, I2 = 1 and anticommuting: ISt = S−tI or IS = S−1I

For time reversible Anosov maps or flows:

Fluctuation theorem (Cohen,G, Gentile) if σ+ > 0

p
def
=

1

τ

∫ τ

0

σ(Stx)

σ+
dt, probab.(p ∈ ∆) = c eτ max∆ ζ(p)+O(1) and

ζ(−p) = ζ(p) − pσ+, for all |p| < p∗, p∗ ≥ 1

with no free parameters (symmetry relation).

Symplectic symmetry ⇒ pairing rule (Dettman, Morriss).

8/gennaio/2005; 20:58 1



Applications

(1) Not transitive, (attractor not dense)

(2) Not reversible, (viscosity models)

(3) No pairing, (lack of symplectic structure)

Not transitive: Chaotic hypothesis → attracting set is a manifold.

> R = IA 6= A

A R

A
E=0

E . E 0

Unstable manifold of a point on A is in A

Stable mnf “sticks out” reaching repeller R

If transversal: line from R to A is defines λ defines ix = x′ commuting with S

and I∗ def
= I i is local time reversal on A (Bonetto, G.).

Ix

x

x’

x

IA = R

A

*

FT holds for the phase space contraction on the attractor (quite useless but . . .)

Pairing symmetry: (if holding) implies

ζ(−p) = ζ(p) − σ+
M

N

2M = dimension of attractor, 2N dimension of phase space.

Lack of reversibility?

Idea: an irreversible dynamics can be equivalent to a reversible one:

same statistics (G.)
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Example (Drude’s theory of conductivity)

L

R2 vi

R1

q̈i =Eu + collisions − ϑi: and

speed renormalized to
√

3kBΘ

or keep constant speed: ϑi = α(q̇)q̇i

or use viscosity: ϑi = −νq̇i

If F (p,q) > 0 is a local observable:
µν(F )

µE(F )
−−−−−−−−−−→
L→∞, N/L=ρ

E= 3
2
NkT

1

provided ν is tuned so that 〈E〉µn
= E0.

This is “equivalence of ensembles”: analogy

ν= canonical temperature and E = microcanonical energy.

Application to NS (incompressible ∂ · u = 0)

u̇ + u
˜
· ∂

˜
u = ν∆u − ∂ p + fg, R =

√
fL

ν

Actually think of : cut off at |k| ≤ Kk = L1R
3
4 , N ' R

9
4 , i.e. OK41 is assumed.

To apply the chaotic hyp. need

(1) chaos (yes, if R large).

(2) reversibility

(3) pairing (because the attractor is very small)

(1) Equivalence with reversible equations “Gaussian NS eq.”

u̇ + u
˜
· u
˜

= α(u)∆u− ∂ p + fg, α =

∫
u · f g∫
(∂ u)2

⇒
∫

u2 = E = const

Same statistics for “local observables”: F local ⇒ F depends on finitely many

Fourier components of u. Same statistics as R → ∞ if E is chosen = 〈
∫

u2〉
µν

(equivalence)

Consequence 〈α〉/ν → 1: only numerical tests in strongly cut off equations

and d = 2 (Rondoni, Segre).

Earlier She, Jackson: large numerical simulations (different reversible equation)
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Other tests: are Lyapunov spectra also identical? (Rondoni, Segre, G.). Here are

a few graphs in highly truncated equations (d = 2)

Also the linear FR relation comes out within the precision: the approximate pairing

that can be observed leads to test the slope (1 − 2M
2N )σ+ in the GNS equations:

from the theory it is expected a slope < σ+ by the ratio of the number of negative

pairs to the nuber of total pairs.

Barometric formula:

Consider the equations (incompressible NS and ED)

u̇ + u
˜
· ∂
˜
u = ν∆u − ∂ p + fg, u̇ + u

˜
· ∂
˜
u = −χu − ∂ p + fg,

here u =
∑

k
γk eik·x, E = L3

∑
k
|γk|2.

The equivalence idea leads to think that although the statistics of the two equations

are certainly different nevertheless they might coincide on an appropriate scale.

The friction in NS varies with the scale k and at some scale it might match that

of ED.

By OK41 v3
kk = constant = ην in NS: OK41 does not hold for ED: to fix ideas

asume that at fixed cut off kχ there is equipartition between the modes. Then

〈|γk|2〉 ≡ γ2

4π

3
γ2 (kχ

L

2π
)3 = ε, energy density at equipartition

KE(k) =
3ε

4π

k2

k3
χ

, energy density between k and k + dk

v3
κ

(
(kL)3γ2

) 3
2 k = ε

3
2 kχ

( k

kχ

) 11

2 , dimensionless dissipation on scale k

If ε
3
2 kχ

(
k
kχ

) 11

2 = ην then NS equation and ED equations have the same statistics

on scale k: doubling the dissipation in NS the statistics of the two equations agree

on scale 1.3 higher.

The k, or better log k
kχ

, is the analog of the height and the dim.less dissipation is

tyhe analogue of the pressure.
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R2 δQ0/〈Q0〉NS 4α 4Q1 o(M)/M
800 0.005 0.030 0.053 0.068
1250 0.020 0.018 0.062 0.057
2222 0.002 0.039 0.058 0.077
4444 0.050 0.021 0.093 0.059
5000 0.010 0.008 0.058 0.033

Equivalence NS-GNS dynamics at different Reynolds numbers,

column ∆α to be compared with 1, cfr. [RS99]).
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0.624+0.616/τ

0.624

2
R =686

Evolution towards limiting slope as τ increases
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