
Entropy, Thermostats and
Chaotic Hypothesis

Problem: establish relations between time averages of a few ob-
servables associated with a system of particles subject to work-
performing external forces and to thermostat-forces that keep the
energy from building up (→ stationary state)
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References: see Archive

1



Stationary state = probability distribution µ on phase space F

1

τ

τ−1∑

j=0

F (Sjx)−−−→τ→∞

∫

F

F (y)µ(dy) (map)

1

τ

∫ τ

0

F (Stx) dt−−−→τ→∞

∫

F

F (y)µ(dy) (flow)

a.a. x. Flow: differential equation on F :

ẋ = fE(x)

with fE internal, external and thermostats forces. Divergence

σ(x) = −
∑

j

∂xj
fE,j(x) 6= 0
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T1

T2

T3

C0

X0: N0 part. in C0 Xi,X
′
i: Ni,N

′
i part in Ci and C′

i, i = 1, . . . , n,
Equations of motion are, for i = 0 and i > 0 respectively,

Ẍ0 = −∂X0

(
U0(X0) +

∑
i>0

W0i(X0,Xi)
)

+ E(X0)

Ẍi = −∂Xi

(
Ui(Xi) + W0i(X0,Xi) + Wi,i′(Xi,Xi′)

)

Ẍ′
i = −∂X′

i

(
U ′

i(X
′
i) + Wi,i′(Xi,X

′
i)

)
− αi Ẋ

′
i
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Thermostat condition (“fixed temperatures”)

1

2
Ẋ

′2
i =

3

2
N ′

ikBTi ⇒ αi =
Li − U̇ ′

i

3N ′
i kBTi

Li = work on X′
i ∈ C′

i , i.e. on thermostats.

Li = −Ẋ′
i · ∂X′

i

Wi,i′

Other thermostats: structure no influence on statistics in C0.

E.g. C′
i could be infinite in equilibrium at temperature Ti.

T1

T2

T3

C0
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Divergence of the equations easily is −σ(x) with

σ(x) =
∑

i>0

( Li

kBTi

−
U̇ ′

i

kBTi

)3N ′
i − 1

3N ′
i

def
=

∑

i>0

Li

kBTi

+ Φ̇

But Li = −Ẋ ′
i · ∂X′

i
Wi,i′ ≡ +Ẋi · ∂Xi

Wi,i′ − Ẇi,i′ = −L′
i − Ẇi,i′

Energy conservation and L0i
def
= − Ẋi · ∂Xi

W0i →

L′
i ≡ −L0i +

d

dt

(1

2
Ẋ2

i + Ui

)
= −Qi + Φ̇′

L0i ≡ Qi work C0 on Ci: ≡ heat from C0 → Ci → thermostats C′
i.

ε(x)
def
=

∑

i>0

Qi

kBTi

⇒ σ(x) = ε(x) + Ṙ

where R(x) = −
∑

i

(Wi,i′+U ′

i+Ui+
1

2
Ẋi

2
)

kBTi
.
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σ(x) is entropy creation: large time same as ε(x) =
∑

i>0
Qi

kBTi

Difference 1
τ
(R(Sτx) − R(x))−−−→τ→∞ , IF R is bounded.

Strong assumption.
“Efficiency”; violation interesting, [CvZ02,BGGZ05,Ga06,GG06].

Chaotic Hypothesis: Motions developing on the attracting set

of a chaotic system can be regarded as a transitive hyperbolic sys-

tem.

General: statistics µ uniquely determined probability.
Entropy creation rate to be

ε+ = lim
τ→∞

1

τ

∫ τ

0

σ(Stx) dt = lim
τ→∞

1

τ

∫ τ

0

ε(Stx) dt

Assume dissipativity: ε+ > 0
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p
def
=

1

τ

∫ τ

0

ε(Stx)

ε+
dt

“dim.less phase space contraction”.

A general property a = 1
τ

∫ τ

0
F (Stx) dt

Pµ(a ∈ ∆) = exp(τ max
a∈∆

ζF (a) + O(1))

for ∆ ⊂ (a−, a+), where ζF (a) defined, analytic and convex.
ζF (a) = −∞ naturally for a 6∈ [a−, a+]: large deviations rate

Reversible ⇒ isometry I s.t. ISt = S−tI or IS = S−1I.
F odd, i.e. F (Ix) = −F (x): fluctuation interval [−a∗, a∗].

Fluctuation σ(x)/ε+ and of ε(x)/ε+ is same and, [CG95],[Ge98],

Fluctuation theorem: ζ(−p) = ζ(p) − pσ+, |p| < p∗.
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By CH FT holds for dimless contraction of any reversible chaotic
motion with a dense attractor (call FR)

In particular to the model: where ε(x)
def
=

∑
a>0

Qa

kBTa
has a phys-

ical meaning and can be measured in experiments even without
equations of motion

The quantity ε(x) is local; depends only on the microscopic conf.
of C0 and of the walls Ci. One can also imagine FR remains valid
with ∞-thermostats

Quite a few tests of CH and FR [BGGZ06] (granular materials).

Extending Onsager-Machlup’s theory and Reciprocity +

Green-Kubo

Fluctuation patterns: probability that the successive F (Stx) fol-
low, for t ∈ [−τ, τ ], a preassigned pattern ϕ(t), [Ga97].
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In a reversible hyperbolic and transitive system consider n observ-
ables F1, . . . , Fn with Fj(Ix) = ±Fj(x). Given n functions ϕj(t),
t ∈ [− τ

2 , τ
2 ]:

probability that Fj(Stx) ∼ ϕj(t) for t ∈ [− τ
2 , τ

2 ]? FPT theorem:

Fluctuation Patterns Theorem: Under assumptions of FT

given Fj , ϕj, and given ε > 0 and an interval ∆ ⊂ (−p∗, p∗)
SRB-probability

Pµ(|Fj(Stx) − ϕj(t)|j=1,...,n < ε, p ∈ ∆)

Pµ(|Fj(Stx) ∓ ϕj(−t)|j=1,...,n < ε,−p ∈ ∆)
=

= exp(τ max
p∈∆

pσ+ + O(1))

FPT means “all that has to be done to change the time arrow is
to change the sign of the entropy production”, i.e. the time re-

versed processes occur with equal likelyhood as the direct processes

if conditioned to the opposite entropy creation.
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Application, [Ga96a,Ga96] with jj(x) = ∂Ej
σ(x) is Green–Kubo

formulae hence Onsager recip.

Jarzinsky, Bonetto and Fluctuation relations

Bonetto’s forml., BF, [Ga00]: FT or FR imply 〈e
−

∫
τ

0

ε(Stx) dt
〉SRB

bounded as τ → ∞: would be exactly 1 if FR true finite τ .

Jarzinsky’s forml., JF: Let γ be a function H(, p, q, t) interpolating
between H0(p, q) and H1(p, q), called a “protocol γ”. Let S0,t(p, q)
be the time evolution of (p, q) under the time dependent protocol.
Let (p′, q′) = S0,1(p, q) and W (p′, q′) = H1(S0,1(p, q)) − H0(p, q):

Z0

Z1
e−βW (p′,q′) e

−βH0(p,q)

Z0
dpdq ≡

e−βH1(p′,q′)dp′dq′

Z1
, hence

〈e−βW 〉µ0
=

Z1

Z0
= e−β∆F (β)

∆F = free energy variation between equilibria H1 and H0.
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JF is exact, an instance of the Monte Carlo method. It can be
implemented without actually knowing neither H0 nor H1 nor the
protocol H(p, q, t) to evaluate ∆F . But BF and JF quite different:

(1)
∫ τ

0
σ(Stx) dt is entropy creation not energy variation W (W

“work done by the machines implementing the protocol”).

(2) average is SRB of a stationary state, out of equilibrium, not a
canonical equilibrium state.

(3) the BF says that 〈e
−

∫
τ

0

ε(Stx) dt
〉SRB is bounded as τ → ∞

rather than being 1 exactly.

JF: very useful in equilibrium problems.

In a steady state with entropy at rate ε+ (e.g. a living organism

peacefully feeding on a background) CH → FR → BF gives
informations on heat produced: could check that all relevant heat
transfers have been properly taken into account.
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Def Irreversibility time scale for process Π

ε(X)
def
= σ0(X) −N V̇t

Vt

Quasi static Π : F(t) = F0 + (1 − e−γt)(F∞ − F0)

Stationary µ0 evolves to µt and to µ∞.

µsrb,t = SRB parameters “frozen” at value taken at time t. Let
irreversibility time scale for Π

1
τ(Π)

def
= 1

N2

∫ ∞

0

(
〈εt〉µt

− 〈ε0
t 〉µsrb,t

)2
dt
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If quasi static τ(Π) = O(γ−1 log γ−1)−−−→
γ→0

∞ (i.e. → reversible)

If “Joule-Thomson” with vol. doubling at speed w it is τ(Π) =
O( L

w
)

If “Joule-Thomson” with volume suddenly larger τ(Π) = 0

If “Joule-Thomson” with volume side from L to L(1+ δ) at speed
w: τ(Π) = L

wδ
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Is the definition of Entropy consistent with Nonequilibrium Ther-
modynamics?

ε(x) =
∑

i>0

Qi

kBTi

⇒

∫

∂C0

Q(ξ)

kBT (ξ)
dsξ

〈ε〉 = −

∫

∂C0

κ
n(ξ) · ∂T(ξ)

kBT(ξ)
dsξ

The fluid equations are

(1) ∂ · u = 0

(2) ∂tu + u
˜
· ∂
˜

u = −
1

ρ
∂p + ν∆u + g

(3) ρ c (∂tT + u · ∂T ) = η τ
˜

′∂u
˜

+ κ∆T

Classical entropy production:

kB〈ε〉µ =

∫

C0

(
κ

(∂T

T

)2
+ η

1

T
τ
˜

′ ∂u
˜

)
dx

By integration by parts and use of the first and third kB〈ε〉µ
becomes the previous expression.
Entropy is created at the contact with the thermostats.
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∫

C0

(
− κ∂T · ∂T−1 + η

1

T
τ
˜

′ ∂u
˜

)
dx =

−

∫

∂C0

κ
n · ∂T

T
dsξ +

∫

C0

1

T
(κ∆T + η τ

˜
′∂u

˜
)dx =

−

∫

∂C0

κ
n · ∂T

T
dsξ +

∫

C0

u · ∂T

T c ρ
dx =

−

∫

∂C0

κ
∂T · n

T
dsξ −

∫

∂C0

u · n
log T

c ρ
dsξ
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