Entropy, Thermostats and
Chaotic Hypothesis

Problem: establish relations between time averages of a few ob-
servables associated with a system of particles subject to work-
performing external forces and to thermostat-forces that keep the
energy from building up (— stationary state)

mp_arc 06-190; cond-mat/0606690;
http://ipparco.romal.infn.it

References: listed in the notes



Stationary state = probability distribution x on phase space F
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with fg internal, external and thermostats forces. Divergence

o(z) = — ZaxjfE,j(x) # 0



Xo: Ny part. in Cp X;, X!: N;y N/ part in C; and C., i = 1,...,n,
Equations of motion are, for ¢ = 0 and ¢ > 0 respectively,

X = —8X0( Xo ‘|‘ Z WOz Xo, )) + E(XO)
X; = —0x, (Ui(Xz’) + Wi (Xo, X;) + Wi i (X, Xz’))



Thermostat condition (“fixed temperatures”)
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L; = work on X € C/, i.e. on thermostats.
Li = =X} - 0x: Wi
Other thermostats: structure no influence on statistics in Cy.

E.g. C! could be infinite in equilibrium at temperature T;.



Divergence of the equations easily is —o(z) with
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But Li = _Xz/ : 8X£Wi,i’ = —|—X7; : 8X1Wi,i’ - Wi,i’ == —L; - Wi,i’

. d .
Energy conservation and Ly; ef _ X - 0x, Wy —

L= Lo+ $<1X2+U>:—Qi+ci>’

Ly, = Q; work Cy on C;: = heat from Cy — C; — thermostats C;.

kBT = o(x)=¢x)+R
where R(m)z—zﬁ T tbomd i),



Q;
i>0 EpT,

o(x) is entropy creation: large time same as e(x) =

Difference 1 (R(S;z) — R(z)) +==, IF R is bounded.
Strong assumption.
“Efficiency”; violation interesting, [CvZ02,BGGZ05,Ga06,GGO06].

Chaotic Hypothesis: Motions developing on the attracting set
of a chaotic system can be regarded as a transitive hyperbolic sys-
tem.

General: statistics p uniquely determined probability.
Entropy creation rate to be
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Assume dissipativity: €4 >0
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“dim.less phase space contraction”.
A general property a =+ [ F(Sz)dt
P,(a € A) =exp(T HIEEKCCF(CL) +0(1))

for A C (a—, a4 ), where (r(a) defined, analytic and convex.
(r(a) = —oo naturally for a & [a_,ay]: large deviations rate

Reversible = isometry I s.t. 1S, =S_,] or IS = S~ 11I.
F odd, i.e. F(Iz) = —F(z): fluctuation interval [—a*, a*].

Fluctuation o(z)/e4 and of e(x)/e, is same and, [CG95],[Ge98],

Fluctuation theorem: ((—p) = ({(p) — poy, |p| < p*.



By CH FT holds for dimless contraction of any reversible chaotic
motion with a dense attractor (call FR)

. def Q
In particular to the model: where e(z) = >° ., 755 has a phys-
ical meaning and can be measured in experiments even without

equations of motion

The quantity (x) is local; depends only on the microscopic conf.
of Cy and of the walls C;. One can also imagine FR remains valid
with oo-thermostats

Quite a few tests of CH and FR [BGGZ06] (granular materials).

Extending Onsager-Machlup’s theory and Reciprocity +
Green-Kubo

Fluctuation patterns: probability that the successive F'(Six) fol-
low, for t € [—7, 7|, a preassigned pattern ¢(t), [Ga97].



In a reversible hyperbolic and transitive system consider n observ-
ables F, ..., F, with F;(Iz) = £F;(x). Given n functions ¢;(t),

te -3, 5

probability that F;(Six) ~ ¢;(t) fort € [-%,5]? FPT theorem:
Fluctuation Patterns Theorem: Under assumptions of FT
giwen Fj, @, and given € > 0 and an interval A C (—p*,p*)
SRB-probability
Bu(E5(Sex) — i) |j=1,..n <&sp€A)
Py(|F;(Sex) F ¢ (=1)]j=1,.n <&, —p € A)
= exp(Tmax poy + O(1))
pEA

FPT means “all that has to be done to change the time arrow is
to change the sign of the entropy production”, i.e. the time re-
versed processes occur with equal likelyhood as the direct processes
if conditioned to the opposite entropy creation.



Application, [Ga96a,Ga96] with j;(z) = Og,0(x) is Green—Kubo
formulae hence Onsager recip.

Jarzinsky, Bonetto and Fluctuation relations

Bonetto’s forml., BF, [Ga00]: FT or FR imply (e fo e(Sea) dt>SRB
bounded as 7 — oco: would be exactly 1 if FR true finite 7.

Jarzinsky’s forml., JF: Let v be a function H (, p, g, t) interpolating
between Hy(p, q) and Hi(p, q), called a “protocol v”. Let Sp +(p, q)
be the time evolution of (p,q) under the time dependent protocol.

Let (p",q") = So0,1(p,q) and W(p',q") = H1(S0,1(p,q)) — Ho(p, q):

Zo _pwiy q,)e—,@Ho(p,Q) e~ PHLP .4 dp/ dg’

— 1) ————dpdq = h
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AF = free energy variation between equilibria H; and Hy.
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JF is exact, an instance of the Monte Carlo method. It can be
implemented without actually knowing neither Hy nor Hy nor the
protocol H(p,q,t) to evaluate AF. But BF and JF quite different:

fo o(Siz)dt is entropy creation not energy variation W (W
Work done by the machines implementing the protocol”).

(2) average is SRB of a stationary state, out of equilibrium, not a
canonical equilibrium state.

(3) the BF says that (e J =(se) dt>SRB is bounded as 7 — oo
rather than being 1 exactly.

JF: very useful in equilibrium problems.

In a steady state with entropy at rate ¢, (e.g. a living organism
peacefully feeding on a background) CH — FR — BF gives
informations on heat produced: could check that all relevant heat
transfers have been properly taken into account.
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