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Time evolution observed at “timing events”: map
S of phase space.

Question: Statistics of motion? (probability distr.
yielding averages for random data chosen with
volume distribution)
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Statistics µ:

1

N

N−1
∑

t=0

F (Stx) =

∫

phase space

F (y)µ(dy)

Problem:
Equations of motion ẋ = f(x) do not conserve
volume (dissipation is unavoidable) ⇒

divergence
def
= −

∑

i

∂

∂xi

fi(x) 6= 0

⇒ if σ+ > 0 (dissipation) then µ is on a set of
zero volume: SRB statistics is singular.
Is there analogue of the Hamonic oscillators for
chaotic systems? i.e. systems very well under-
stood?
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Hyperbolic systems

x Sx

u

us
s

Ws(x)
Ws(Sx)Wu(x)

Wu(Sx)
(1) Continuous in x

(2) Contracting or (resp.) expanding by ≤ λ < 1
(3) One dense orbit (to exclude trivially discon-
nected systems)

Hyperb. syst. admit a statistics SRB: singular
but with formal expression. Can be used to write
averages; not to compute them! as in equilibrium
one can write but not compute microcanonical
averages! but formal expressions can be used to
derive relations: e.g. exhibit symmetries.
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A fundamental symmetry: time reversal T or PCT e:
operation I with I2 = 1 and IS = S−1I.

Reflected in hyperb. syst. ⇒ Fluctuation theorem

Be F1(x), . . . , Fn(x) even/odd: Fi(Ix) = ±Fi(x)

Let σ(x) = −divergence(x) and σ+
def
= 〈σ〉SRB

Given τ and “patterns” t → ϕi(t), t ∈ (− τ
2 , τ

2 )

p = 1
τ

∫ τ
2

−
τ
2

σ(Stx)
σ+

dt

“dimensionless phase space contraction”

Pτ ( Fj(Stx) ∼ ϕj(t), p)

Pτ ( Fj(Stx) ∼ ±ϕj(−t),−p)
= epσ+τ+O(1)

Pτ = SRB probability, for |p| < p∗
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Special case

Pτ (p)

Pτ (−p)
= eζ(p)τ+O(1)

and ζ(−p) = ζ(p) − pσ+

(Cohen,Evans,Morriss (exp) Cohen,G (theory)

What about real systems: like the ergodic hy-
pothesis not sastisfied. But behavior is neverthe-
less chaotic. So

Chaotic Hypothesis: Motion on the attractor
can be regarded as “hyperbolic” (Anosov)
(Ruelle 73, Cohen-G 95)

(Ambitious → identification btwnn
Equilibrium and Nonequilibrium ⇒ ergodic)
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+ reversibility, i.e. I2 = 1, ISt = S−tI → FT

What about reversibility? we are not used to
think of dissipating systems as reversible (Drude’s
model of electrical conductivity, friction, Navier
Stokes fluids...).

Nevertheless microscopic revers. implies that any
macrosc. model which is irreversible must be
equivalent to a reversible one. Remarkably taking
this seriously leads to identify phase space con-
traction with entropy creation rate. Discovered
in the ’980s in special cases and recently becom-
ing more and more clear (Hoover, Evas, Morriss
et al).
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This is a really fundamental remark that might
turn out comparable to the identification of tem-
perature with average kinetic energy. Exemplified
in this paradigmatic example.

X0,X1, . . . ,Xn

Ẍ0i=−∂iU0(X0)−
∑

a
∂iUa(X0,Xi)+Fi

Ẍai=−∂iUa(Xa)−∂iUa(X0,Xi)−αaẊa

T1

T2

T3

C0

αa = Gauss for Ka = 1
2

∑

i Ẋ
2
ia = 3

2kBTa Na

αa = (exercise) = Wa−U̇a

3NakBTa

Wa = −
∑

Ẋa ·∂Xa
Ua(X0,Xa), Wa = Q̇a = heat

Divergence = σ(X) = (exercize) = σ0(X) + U̇(X)
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σ(X) = (exercize) = σ0(X) + U̇(X)

σ0(X) =
∑n

a=1
Q̇a

kBTa
, U(X) =

∑n
a=1

U̇a

kBTa

If volume V N × R3N changes

σΓ(X) = σ0(X) + U̇ − N V̇t

Vt

Assume Ua bounded and thermostats efficient
limt→∞

1
t

∫ t

0
F (StX) =

∫

F
F (Y) µ(dY), then

σ+ = 〈σ〉µ ≡ 〈σ0〉 + limt→∞

U(t)−U(0)
t

≡ 〈σ0〉

CH → FT : ζ(−p) = ζ(p) − pσ+

p = p0 + U(t)−U(0)
tσ+

⇒ FT for p0!
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p0 = entropy increase of thermostats: measurable

U(t)−U(0)
t

→ 0 is very large ! (CvZ,BGGZ) but
σ+ and p0 bear no more reference to thermostats
and have time scale of O(surface)

In simuations the FR can be tested well (neces-
sary because systems are not hyperbolic) and has
always been confirmed.

In experiments this is more difficult because the
fluctuations are very large and therefore it is nec-
essary to look at small parts.

This leads to interpretation problems. Ideas:
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1) SRB distributions equivalence: as in equilib-
rium there shall be equivalence of ensembles. Re-
versible models can be ∼ irreversible ones.

2) look at small subsystems: IF well defined then
they can be regarded as special cases of the paradig-
matic case: in this way one can for instance check
that in the Navier-Stokes equations the micro-
scopic phase space contraction equals the classical
entropy creation rate (“up to a total derivative”)

3) FR ⇒ 〈e

∫

t

0
σ(Stx)dt

〉 = eO(1): similar to Jarzyn-
ski’s inequality. But very different as it applies to
stationary nonequilibria. Could be used in exper-
iments.
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Def Irreversibility time scale for process Π

ε(X)
def
= σ0(X) − N V̇t

Vt

Quasi static Π : F(t) = F0+(1−e−γt)(F∞−F0)

Stationary µ0 evolves to µt and to µ∞.

µsrb,t = SRB parameters “frozen” at value taken
at time t. Let irreversibility time scale for Π

1
τ(Π)

def
= 1

N2

∫ ∞

0

(

〈εt〉µt
− 〈ε0

t 〉µsrb,t

)2
dt

If quasi static τ (Π) = O(γ−1 log γ−1)−−−→
γ→0 ∞ (i.e.

→ reversible)

If “Joule-Thomson” with vol. doubling at speed
w it is τ (Π) = O( L

w
)
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If “Joule-Thomson” with volume suddenly larger
τ (Π) = 0

If “Joule-Thomson” with volume side from L to
L(1 + δ) at speed w: τ (Π) = L

wδ

References: see Statistical Mechanics and Fluid
mechanics books, (Springer–Verlag) freely down-

loadable and

http://ipparco.roma1.infn.it

http://math.rutgers.edu/ giovanni
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