
Entropy, Nonequilibrium, Chaos and Infinitesimals, (Oporto7/9/6)

Boltzmann (1866-1884): ⇒ second law (see Gibbs’ introduction) and
linked his work to Helmoltz (1884): extends and formalizes key idea
of finding mechanical “analogies” of Thermodynamics.

Define quantities p,U, V, T as time averages of suitable observable as-
sociated with mechanical system (small or large, simple or complex)
s.t. varying control parameters (e.g. U = energy, V = volume)

dU + p dV

T
= exact differential

Maybe trivial (!) for small systems but interesting for large: i.e. Ther-
modynamics is a “symmetry” of Hamiltonian systems: e.g. for 1D

p = 〈−∂V ϕ〉, T = 〈K〉, S = 2 log

∮
pdq

If V = volume then p ≡ 〈−∂V ϕ〉 = average force per unit surface,
T = 〈K〉 in general provided the motion visits “all phase space”, e.g.
if motions are periodic.
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If not periodic? B. 1866: aperiodic motion = periodic at ∞ period !.
Meaning ? → “ergodic hypothesis”

Boltzmann (1868-1877) : Phase space is discrete and time evolution
maps, actually permutes, “cells” ∆ into cells: S∆ = ∆′.

Ergodicity ⇒ one cycle permutation ⇒ description of equilibrium
state = average are computed as integrals over the energy surface:
in other words equilibrium states identified with the uniform distribu-
tions µU,V over the energy surface. Such averages (p,U, V, T ) satisfy
(dU + p dV )/T = exact.

The collection of the distributions µU,V generates a model of Thermo-
dynamics with the correct interpretation of p,U, V, T, S. Therefore
Boltzmann introduces macrostates as a family E of prob. distr. µU,V

on ph. sp. i.e. on microstates: (p,q) ∈ V 3N × R3N and E gives a
model of Thermodynamics. They form what is now the microcanonical
ensemble.
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B. 1884 realizes ∃ many analogues of Thermodynamics: i.e.

many collections E of distr. µα,β with two parameters α, β such that
defining p as the average specific force on the walls, V as the volume
occupied, T = 〈K〉 as the average kinetic energy and U = 〈H〉, then
varying the parameters by dα, dβ it is dU+pdV

T
= exact.

Collection E is an Orthode (“looking right”): Ergode=microcanonical
and holode=canonical. Many Thermodynamics? no: equivalence! i.e.

µmc
U,V ∼ µβ,V if 〈H〉µc

β,V
= U

B was aware of the impossibility of “each point visiting the whole
energy surface”. Erg. Hyp. not inconsistent because

Discrete vision die Zahl der lendigen Kräft ist eine diskrete, (1968):
phase space consists of small cells whose evolution is simply a per-
mutation: Boltzmann even “counted” (following (?) Thomson) the

number of cells and estimated the recurrence time (101019

ages of the
Universe for 1cm3 of normal H2) (Thomson).
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Question: Possible the “same” out of equilibrium ?

Restrict to generalize equilibrium states to stationary states

ẋ = f(x)

Cannot be ε(x) = −
∑

i div∂xi
fi(x) = 0 hence no invariant distrib.

with density.

1-th : restrict to “hyperbolic systems” & discrete time: paradigm of
chaotic motions.

Hyperbolic ⇒ ∃ a partition P1, P2, . . . , Pn = {Pσ}
n
σ=1 “Markovian”

with transition matrix Mσσ′ = 0, 1:

(1) if σ = {σi}
∞
−∞ and Mσi,σi+1

≡ 1 ⇒ unique x s.t. Six ∈ Pσi
and

(2) viceversa up to a set of 0 volume.

Given a precision h let ∆ = Pσ−Nh
,...,σNh

=
⋂Nh

j=−Nh
S−jPσj

: natural
coarse cells on phase space. So small that the relevant observables
are constant → h-dependent coarse graining
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Th.(Sinai): a. all data x have a (x indep.) statistics µ:

lim
τ→∞

1

τ

τ−1∑
j=0

F (Sjx) =

∫
µ(dy)F (y)

However it is not possible to regard motion as coarse cell permutation.
Not even if Hamiltonian (i.e. in equilibrium) unless h is very small.

To do so coarse cells must be divided into extremely small equal boxes
δ “microcells” (as done in simulations where microcells are to be iden-
tified with the machine-represented points). OK for Hamiltonian but
bf not if “dissipative”:
.

ε+
def
= 〈ε〉 > 0.

Not Hamiltonian and not true that Sδ = δ′ is a permutation no matter
how small the size of the microcells δ. The microcells merge if ε(x)
has positive time average

Picture:
S

However eventually S becomes a permutation: ⇒ attractor. Transitiv-
ity ⇒ permutation can be chosen cyclic.
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How many cells on the cycle? N :

Consistency: The number of surviving microcells in each coarse cell ∆
is ∼ NΛe(∆,Nh)−1 proportional to expansion rate along the unstable
manifold in ∆.

⇒ privileged distribution: equal probability 1
N

on the microcells: the
SRB distr.

Gordian node (CG95) cut:

Chaotic hypothesis: motion of a chaotic system on its attracting set
can be regarded as hyperbolic transitive (“Anosov”).

Same spirit as “while one would be very happy to prove ergodicity be-
cause it would justify the use of Gibbs’ microcanonical ensemble, real-
systems perhaps are not ergodic but behave nevertheless in much the
same way and are well described by Gibbs’ ensemble...” (Ruelle, 72,
Boltzmann conference).

⇒ explicit expression for the statistics: essentially it becomes a Markov
proces on the space of the symbolic sequences

Useful for establishing relations, at least.
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Example:

p
def
=

1

τ

τ−1∑
j=0

ε(Sjx)

ε+
, 〈p〉 ≡ 1, P (p ∈ A) ∝ eτ maxA ζ(p′)

has a large deviation rate ζ(p) (Sinai) convex and analytic in (p1, p2)
and −∞ for p 6∈ [p1, p2].

If reversible, i.e. ∃ isometry I such that

IS = S−1I ⇒ (p1, p2) = (−p∗, p∗), p∗ ≥ 1

Fluctuation theorem (CG95): If transitive hyperbolic and reversible:

ζ(−p) = ζ(p) − pε+

Symmetry property: no parameters. Can be tested in simulations and
recently even in real experiments.
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Interest: defining Q̇ to be the heat extracted from the system from the
thermostat at temperature T per unit time the quantity p is propor-

tional to Q̇
T

i.e. to the entropy rate of change of the thermostat.

Given an initial distribution p0(η) on the microcells it evolves towards
p(η) = 1

N
. Hence −

∑
η

pη(t) log pη(t) evolves towards its maximum
logN .

Whether Hamilt. or not ! ⇒: unification bewteen equilibrium &
stationary non equilibrium.

Also: chaotic systems admit a Lyapunov function for their evolution
towards stationarity: extends

log P was well defined whether or not the system is in equilibrium, so
that it could serve as a suitable generalization of entropy (Klein, 73)
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Can this be used to define entropy of nonequilibrium stationary states
at least?

Necessary that logN is independent of the precision h: but this hap-
pens only in equilibrium where changing the precision of coarse grain-
ing changes logN by an h-dependent (only) constant.

This is not the case for stationary nonequilibrium (Ga04).

The H theorem of Boltzmann can be generalized to nonequilibrium.

But H plays the role of a Lyapunov function and entropy, as a function
of state, does not seem to be defined.

Here it seems that we have an instance of (Pop. Schr.)

“Differential equations require, just as atomism does, an initial idea
of a large finite number of numerical values and points ...... Only af-
terwards it is maintained that the picture never represents phenomena
exactly but merely approximates them more and more the greater the
number of these points and the smaller the distance between them. Yet
here again it seems to me that so far we cannot exclude the possibility
that for a certain very large number of points the picture will best rep-
resent phenomena and that for greater numbers it will become again
less accurate, so that atoms do exist in large but finite number.”

http://ipparco.roma1.infn.it
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