
Entropy, Nonequilibrium, Chaos and Infinitesimals

Ergodic hypothesis ⇒ theory of equilibrium

Boltzmann (1868-1877) : Phase space is discrete and time evolution
maps, actually permutes, “cells” ∆ into cells: S∆ = ∆′.

Ergodicity ⇒ one cycle permutation

Boltzmann (1866-1884): ⇒ second law (see Gibbs introduction) and
linked his work to Helmoltz (1884): extends and formalizes key idea
of finding mechanical “analogies” of Thermodynamics.

Define quantities p,U, V, T associated with mechanical system (small
or large, simple or complex) s.t. control parameters (e.g. U, V )

dU + p dV

T
= exact differential

Maybe trivial (!) for small systems but interesting for large: i.e. Ther-
modynamics is a “symmetry” of Hamiltonian systems: e.g. for 1D

p = 〈−∂V ϕ〉, T = 〈K〉, S = 2 log

∮
pdq
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Also (1884) ⇒ ergodic hypothesis, actually periodicity, not necessary
(except to interpret the value of p as a time average).

If not periodic? B. 1866: aperiodic motion = periodic with ∞ period !

microstate: (p,q) ∈ V 3N × R3N and macrostates: family E of prob.
distr. µ on ph. sp. yielding the averages depending on two parameters
(eg U, V or T, V )

B. 1884 realized ∃ many analogues of Thermodynamics: i.e.

many collections E of distr. such that defining p as the average force
on the walls, V as the volume occupied, T = 〈K〉 as the kinetic energy
and U = 〈H〉 then varying the parameters ⇒

dU + pdV

T
= exact

Collection E is an Orthode (“looking right”): Ergode=mcirocanonical
and holode=canonical. Equivalence.
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B was aware of the impossibility of “each point visiting the whole
energy surface”.

Discrete vision: phase space consists of small cells whose evolution
is simply a permutation is essential: Boltzmann “counted” (following
(?) Thomson) the number of cells and estimated the recurrence time

(101019

ages of the Universe for 1cm3 of normal H2) (Thomson).

Possible the “same” out of equilibrium ?

Restrict to generalize equilibrium states to stationary states

ẋ = f(x)

Cannot be ε(x) = −
∑

i div∂xi
fi(x) = 0 hence no invariant distrib.

with density. 1-th : restrict to hyperbolic systems & discrete time.
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Then ∃ a partition P1, P2, . . . , Pn = {Pσ}
n
σ=1 “Markovian” with tran-

sition matrix Mσσ′ = 0, 1:

(1) if σ = {σi}
∞
−∞ and Mσi,σi+1

≡ 1 ⇒ unique x s.t. Six ∈ Pσi
and

(2) viceversa up to a set of 0 volume.

Given a precision h let ∆ = Pσ−Nh
,...,σNh

=
⋂Nh

j=−Nh
S−jPσj

: natural
coarse cells on phase space. So small that the relevant observables are
constant.

Th.(Sinai): a. all data x have a x indep. statistics µ:

lim
τ→∞

1

τ

τ−1∑
j=0

F (Sjx) =

∫
µ(dy)F (y)

However it is not possible to regard motion as coarse cell permutation.
Not even if Hamiltonian (i.e. in equilibrium).

To do so coarse cells must be divided into extremely small equal boxes
δ “microcells” (as done in simulations). OK for Hamiltonian.
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Not Hamiltonian: Not true that Sδ = δ′ is a permutation. The micro-
cells merge if ε(x) has positive time average

ε+
def
= 〈ε〉 > 0.

Picture:
S

However eventually S is a permutation: ⇒ attractor. Transitivity ⇒
permutation can be chosen cyclic.

Consistency: The number of surviving microcells in each coarse cell ∆
is ∼ NΛe(∆,Nh)−1 proportional to expansion rate along the unstable
manifold in ∆.

⇒ privileged distribution: equal probability 1
N

on the microcells: the
SRB distr.

Gordian node (CG95) cut.
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Chaotic hypothesis: motion of a chaotic system on its attracting set
can be regarded as hyperbolic transitive (“Anosov”).

Same spirit as “while one would be very happy to prove ergodicity be-
cause it would justify the use of Gibbs’ microcanonical ensemble, real-
systems perhaps are not ergodic but behave nevertheless in much the
same way and are well described by Gibbs’ ensemble...” (Ruelle, 72,
Boltzmann conference).

⇒ explicit expression for the statistics. Useful for establishing rela-
tions, at least. Example:

p
def
=

1

τ

τ−1∑
j=0

ε(Sjx)

ε+
, 〈p〉 ≡ 1, P (p ∈ A) ∝ eτ maxA ζ(p′)

has a large deviation rate ζ(p) (Sinai) convex and analytic in (p1, p2)
and −∞ for p 6∈ [p1, p2].

If reversible, i.e. ∃ isometry I such that

IS = S−1I ⇒ (p1, p2) = (−p∗, p∗), p∗ ≥ 1
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Fluctuation theorem (CG95): If transitive hyperbolic and reversible:

ζ(−p) = ζ(p) − pε+

Symmetry property: no parameters.

Given an initial distribution p0(η) on the microcells it evolves towards
p(η) = 1

N
. Hence −

∑
η

pη(t) log pη(t) evolves towards its maximum
logN .

Whether Hamilt. or not ⇒: unification equilib. & stationary non
equil.

Chaotic systems admit a Lyapunov function for their evolution towards
stationarity

log P was well defined whether or not the system is in equilibrium, so
that it could serve as a suitable generalization of entropy (Klein, 73)
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Can this be used to define entropy of nonequilibrium stationary states
at least?

Necessary that logN is independent of the precision h: but this hap-
pens only in equilibrium where changing the precision of coarse grain-
ing changes logN by an h-dependent (only) constant.

This is not the case for stationary nonequilibrium (Ga04).

The H theorem of Boltzmann can be generalized to nonequilibrium.

But H plays the role of a Lyapunov function and entropy, as a function
of state, does not seem to be defined.

http://ipparco.roma1.infn.it
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