Finite thermostats in nonequilibrium
(classical and quantum)

Progress (recent) due to

(a) Study of stationary states out of equilibrium (as opposed to de-
viation and return to equilibrium), [EMS89].

(b) Modeling thermostats in terms of finite systems, [No84|,[Ho85]

Finite thermostats have been essential. Rationale: the properties of
the system should not Ydepend on the special way thermostats are
imagined to work.

Equations of motion: NOT Hamiltonian = phase space contraction
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o(x) no direct physical meaning: as changes with coordinates:

o' (x) =o(x) — %F(m)

only time averages over long times can have “intrinsic” meaning:
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1 [ o(S;z) identified to entropy creation rate
Q;
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Several reasons: for instance consider general thermostat model

def .
Average o, = lim
T—+00
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Fig.1: Particles in Cy (“system”) interact with particles in shaded regions

(“thermostats”) constrained to fixed total kinetic energy.

The equations of motion will be (all masses equal)

mXo = — 0%, (UO(XO) + Z Wo,;(Xo, Xg)) + E(X)),
>0

mX; = — Ox, <U7,(Xz) + Wo.:(Xo, Xz)) — a;X;
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mXo = — 0x, (UO(XO) + Z Wo,;(Xo, Xg)) + E(Xo),
i>0

mX; = — Ox, <U7,(Xz) + Wo.:(Xo, Xz)) — a;X;

with «; such that K; = %Nik‘BTi is a constant. E(Xg) are external
positional forces stirring Cy. The contraints on the thermostats give

e 3 [ Uz
K,; = const def §Nik‘BTi — o = W

where @); is the work per unit time that particles outside the ther-
mostat C; (hence in Cy) exercise on the particles in it, is

de y
Qi = X, - Ox,Wo.i(Xo, X,;)

The model identifies the “temperature of the thermostats”,
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cx.X)= £(X, X) +rxX), (X, X)=)" kfj%
j=1"""7

Measurable by calorimetric and thermometric experiments. No need
of of the equations of motion.
Important feature: preservation of time reversal symmetry.

Useful? Fluctuations in average

1 (7 1T R(T) — R(0)
- /O o(Sir) = 7 /0 e(Sur) + =

Therefore for large T' same fluctuations statistics. Not just (o) = (€)

30/giugno/2007; 18:19 5



A general theory of fluctuations of ¢ «— general theory of fluctua-
tions of e

Chaotic hypothesis (CH): Motions developing on the attracting
set of a chaotic system can be regarded as motions of a transitive
hyperbolic (also called “Anosov”) system.[GC95]

from Dynamical systems:

(1) Existence of averages and “volume” statistics u (SRB statistics)

%/0 F(Si) dt 7= /AF ()u(dy) < (F)

(2) Coarse graining rigorous — SRB = equidistribution on attracting
set (= variational principle and existence of Lyapunov function)

(3) p admits an explicit representation so that averages can be writ-
ten and compared (without computing them)
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(4) large deviations law holds: f; et - fOT F;(Six)dt

Prob(f € A) = Prob((f1,.--,fn) € A) Xr_ o €7 M¥FEA ¢(f)

¢ defined in a convex open set I', analytic and convex.

(5) define p = L [ B = ¢(p)

(6) in time reversal invariant cases FT ([GC95]): (F; odd)

C(—£) = ¢(E) = (e)p 5 ZZZE% _ bt

provided 0 = ¢(F) and (¢) > 0 (e.g. F} = ). No free parameters.
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Fluids
(1) Fluid equations are not reversible. Equivalence conjecture:

u+u-du=vAu—-0p+g,

11+1N1-Qu:oz(u)Au—ap+g, o= fu.g = fu2:5:const

[w?
Same statistics for “local observables”: F local = F depends on
finitely many Fourier comp. of u.

Same statistics = as R — oo if £ is chosen = ([ u2>u (equiva-

lence): “Gaussian NS eq.” or “GNS”. So far only numerical tests in
strongly cut off equations and d = 2 (Rondoni,Segre).

Problem: can reversibility be detected? Assume K41
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K41 = # of degrees of freedom is # of k’s s.t. |k| < R1
Divergence: o ~v Y., 2|k|*> = v (2%)28%1%15/4

By FT probability (relative) to see “wrong”’ friction for a time 7 is

327’(’3 15
Probg., ~ exp ( — TV £72 Rz )
( cgs units: cm, sec (data for air)
2
v=15102C v =102 L =100.em
< sec sec
R =6.6710%, ¢ =3.6610"sec™!
| Probg, =e™ 97 = e 366 108, if =100

Viscosity is —v during 10~%s (say) with probability P above: similar
to the recurrence times estimates.
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Compatibility? near equil. entropy creation independently defined
(DeGroot-Mazur)

kB <€> :kBgclassic + S:

oT'\ 2 1
kBEclassic =/ (Ii = +77—7"-3u> dx
(5 (F) g g

Quantum systems: temperature and heat are defined by the spe-
cial apparata that measure them.

However important in meso-physics and nano-physics.

Model with finite thermostat?? and Dynamical system? (= CH &
FT)
A natural model is in the previous Figure 1
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H operator on Lo(C3N°), (symm./antisymm.) wave funct.s ¥,

h2
H = —— Ax, + Uo(Xo) + D (U (X0, X5) + Uj(X;) + K;)

7>0
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Spectrum consists of eigenvalues E,, = E,,({X,};>0), for X; fixed.
dynamical sys. on (¥, ({X,}, {X;});>0) defined by ( (-)y = (¥]-|T))

— ihU(Xo) = (HU)(Xy), and for j >0
X; = = (005 (X;) + (05U5(X0, X))y ) — X,

def <WJ>\I/ — Uj

o _ def
g 2K

: W; = =X 0;U0;(Xo0, X;)

Evolution keeps K; = %X? exactly constant (defining therm. tem-
peratures T via K; = %k BTjN;, as classical case).

NOT a time dep. Schrodinger eq.: essential interaction syst-thermos.

Q;

Divergence: o(x) =3_; "o T

U, :
+ 5 (same as classical)
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Equations are reversible and chaotic: CH = SRB + FT

Consistency: system interacting with a single thermostat the SRB
distribution should be equivalent to the canonical distribution. True
in classical case).

Candidate for u: probability proportional to d¥ dX; dX; times

Y e PP XIS(U — W, (Xy) ) dipr, 6(XT — 2K7)

n=1

= expectation of O is a Gibbs state of therm. equil. with a special
kind (random X7, X;) of boundary condition and temperature 77 .

(0), = Z71 [ 3 =B X (W, (X,)| 0] W, (X1))5 (X2 —2K7 )dX, X

n=1
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(0) =27 [ 5 e PE X0 (W, (X,)|O] W, (X1))6(X3 — 2K,)dX X,

However is not invariant under evolution: difficult to exhibit explic-
itly an invariant distribution (why should it be easy? Aesopus)

Nevertheless if adiabatic approzimation (i.e. the classical motion of
the thermostat particles is on a time scale much slower than the
quantum evolution of the system).

Eigenstates at time 0 evolve following the variations of Hamilto-
nian H(X(t)) due to thermostats particles motion, without changing
quantum numbers.
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[Under time evolution a time ¢ > 0 infinitesimal:

X1 — X1 —|—tX1 —|—O(t2)
E,(X,) — E,+te,+0O(t*)  with

de . . )
€n :f <X1 . 8X1U01>‘Ifn —|—tX1 . 8X1U1 = —¢ (Ql + Ul)

e_BEn(Xl) N e_ﬁten

3Nie
5
thermostat phase space contracts by e’ = e’ 2kK1

Therefore if 3 is chosen such that 8 = g’gi = (kpTy)~! the distribu-
tion (), is stationary.]

Conjecture: true SRB is also equivalent to Gibbs at temp. (kp3)~!
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