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Boltzmann’s Heat Theorem and Fluctuation Theorem:
from order to chaos

Averages (F') observ. depend on control param. a, e.g. volume, energy..

Heat Theorem: (HT) Then can define mechanical quantities U, V, P,'T
so that o — a + da induces changes dU, dV, with

dU + pdV
T

if p = —average(Oy W), T = average(K).

= exact

Assumptions: H = K(p) + W(Z) and
(a) (1866) all motions are periodic and nonperiodic motions can be re-
garded periodic with infinite period ([Bo866)).
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(a) (1866) all motions are periodic and “nonperiodic motions can be re-
garded periodic with infinite period” ([Bo866]). (!)
(b) (1868-1871) ergodic hypothesis: motion visits all phase space of given

total energy
(c) (1871-1884) theory of statistical ensembles [Bo884].
Modern terminology: ergodic hypothesis (EH) = Equil. Stat. Mech.

Guiding idea: HT true for ALL systems with Hamilt. H = K 4+ W:
whether having few (1) or many (101°) degrees of freedom, as long as EH

I.e. HT = trivial consequence of Hamilt. nature.

It is a symmetry property
Equil. States = prob. distr. on phase space providing averages (F').
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Some (?7) universal laws merely reflect symmetry properties which may
have deep consequences in large systems: roots of second Law can be

found, [Bo866], in the simple properties of the pendulum motion.

Another example: Time reversal; defined as isometric map I anticom-

muting with evolution

=1, SI=1IS, [e.g. 1(Z,7) — (%, —7)

Reciprocal relations of Onsager, reflect time reversal.

Time reversal leads to the quantitative form of reciprocity expressed by
“fluctuation dissipation theorems”, i.e. by the Green-Kubo formulae..
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Nonequilibrium SM ? Recent progress on NE based on

(a) focus on steady states under forcing
(b) focus on finite thermostats = simulations NESS in 980’s

Main difficulty: microscop. description cannot be Hamiltonian.

In finite thermostats dissipation manifest by nonvanishing divergence

o(z) =~ 0, filx)

of the equations and of its time average o, > 0.
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Physical meaning of ¢7 no direct one: changes with coordinates:

o' (r) =o(x) — %F(aj)

only time averages over long times can have “intrinsic” meaning:

1 /OT o' (Siz) = 1 /OT o(Sx) + L(Sre) - T() T ! /OT o(Siz)

T T T T

d : : : .
Average o 2y hrf % fOT o(Stz) identified to entropy creation rate
T—T00

)

o+ = ks,

Why? for instance consider general thermostat model
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Fig.1: Co (“system”) interact with shaded T} (“thermostats”) constrained fixed K.E.

The equations of motion will be (all masses equal, E= “stirring forces”)

mXy = — 0x, (Uo(Xo) + ) Wo ;i (Xo, Xj)) + E(Xo),

7>0

sz = — 8Xl- (Uz(XZ) + WO,,'(X(), Xz)> — Oszz
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mXy = — 0%, (Uo(Xo) + > W (Xo, Xj)) + E(Xo),

7>0
sz = — 8Xl- (Uz(XZ) + WO,Z'(X(), Xz)> — azXz

E(X() external stirring forces; a; s.t. K; = %NikBT,- = const.

_ QiU

ef 3
K; = const def §NikBTZ- — o = SN AT,

(; = work per unit time of Cy on C;:

de :
Qi 2 X - 0x,; Wo.i(Xo, X;)

Important feature: preservation of time reversal symmetry !!.

[thermostat can even act uniformly: eg. electric conduction (Drude)]
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Divergence (by algebraic means)

n
‘ : : Qi oy
(X, X)= (X, X) +7(x), &(X,X) = Z kBCJFj, =3, S
j=1
Calorimetry and thermometry measures. No need of equations of motion!

Useful? Fluctuations in average

7 ot = [ etsia + HOZEO
0 0

T

Therefore for large T' same fluctuations statistics. Not just (o) = ().
A general theory of fluctuations of ¢ «— general theory of fluct. of
Howto?
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Need the distribution for averages: i.e. need extension of EH.
Ruelle’s turbulence theory extension to Stat. Mech. (Cohen-G.)

Chaotic hypothesis (CH) Motions developing on attracting set of chao-

tic system may be regarded as motions of transitive hyperbolic system. =

(1) unique distribution p (SRB)*such that outside a set of zero volume

T—00 T

.17 _
lim _/0 F(Stx)dt—/ﬂ(dy)F(y)

(2) AND p has an “explicit” express. “similar to the equil. Gibbs distrib.”

(3) Nontrivial because p is concentrated on a 0 volume “attractor”

*SRB — Sinai-Ruelle-Bowen
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Hyperb. systems: paradigm of chaos as harmonic oscill. of order.

Let fd— 1 fo (Syx)dt

Fluctuation law: f is in [a,b] with probab. Prob,(f € [a,b])

lim —logProb (f €la,b]) = max (p(f), ~ P(f) = e )

T—00 T f€la,b]

More generally, given n odd observables, let f; ef1 fo (Six)dt =,
Prob(f € A) = Prob((fi,...,fn) € A) 000 7 WXt 6(E)

¢ defined in a convexr open set I', analytic and convexr (Sinai).

( is a kind of thermodynamic function.
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Possibility of an “explicit” formal expression of 1 allows giving an explicit

(“uncomputable”) expression of stationary averages (F) ,.
Assume average phase space contraction positive oy > 0 and time re-

d T
versal symmetry; let F} = i and p o] fi= % 0 %f)dt. Then

Fluctuation Theorem (FT): (Cohen, G.)
¢(=p) =<C(p) —poy,  Ipl<p"

More generauy C(_p7 _f27 sy _fn) = C(p7 f27 SR fn) — PO+

Interest?

Physical interpretation of poy as entropy creation % fOT > ; g; (zé) dt.
J

= Measurable independently of model.
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Some consequences

(1) In stationary states of reversible dynamics heat exchanges constrained

[T Q;(t) 1
X Gy~ Clog() w0 0)
T

(e

Bonetto: stronger than Ruelle’s:

" (Q)
25, =

Not to be confused with the formulae of Bockhov-Kuzovlev (and the later

developments) dealing with properties of equilibrium distributions or of
distributions with density in phase space.

(2) FR implies Fluctuation-Dissipation Theorem
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Fluids

(1) Fluid equations are not reversible. Equivalence conjecture:
u+u-du=vAu—-0p+g,

u+u -Qu:a(u)Au—ap-l-g, a= fu.g = fuzzé':const

Same statistics for “local observables”: F' local = F' depends on finitely

many Fourier comp. of u.
Same statistics = as R — oo if £ is chosen = ([ u2>u (equivalence):
“Gaussian NS eq.” or “GNS”. So far only numerical tests in strongly cut

off equations and d = 2 (Rondoni,Segre).

Problem: can reversibility be detected? Assume K41
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K41 = # of degrees of freedom is # of k’s s.t. |k| < Ri

Divergence: o ~ v Y, 2[k|? = v (2 )22 R15/4

By FT probability (relative) to see “wrong”’ friction for a time T is

3273
Probg., ~ exp ( — TV 552 R14_5) =e 97
( _, cm? cm
vr=15107"——, v=10.— L =100.cm
sec sec
4 R =6.6710*, ¢ =3.6610"sec™!
| Probg, =e 97 = ¢ 366 108, if 7=10"°

Viscosity is —v during 107 %s (say) with probability P above:

similar to the recurrence times estimates.
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Quantum systems?

temperature? finite Thermostats? are CH and FT possible?

T
:
T;
H operator on LQ(C’S’NO), symm. or antisymm. waves VU,
52
H = == Ax, + Us(Xo) + > (U;(Xo, X5) + Ui (X;) + K)

§>0
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Dynamical system on (¥, ({X,}, {Xj})j>0):
—ihW(Xo) = (HV)(Xo),

X, = _(ajUj(Xj) + <ajUj(Xo,Xj)>\p) —a;X; j>0

Constraint of constant K

def (W B U de
o :f< J;\I[l( J) W; lef - X ajUOj(X07XJ>
J
o(X,X)= e(X X) + +(X) = Q; + ..
’ kBTj

Chaotic and reversible = FT

Consistency: single thermostat equivalent to Gibbs?
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Attempt: probability proportional to d¥ dX; dX; times

> e PEn(T — W, (Xy) €m) dy, 6(XT — 2K7)

n=1

Stationary in the adiabatic approrimation only.

(0), =271 [ 3 e PEX(W,, (X,)|0)W,(X1))6(X3 — 2K;)dX1dX,
n=1
=z! / Tr (e HXV0) §(XT - 2K;)dX1dX4

Nevertheless if adiabatic approximation (i.e. classical motion in therm. is

on a time scale much slower than the quantum evolution of the system).

Conjecture: true SRB is also equiv. to Gibbs at temp. (kg3)~!
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= possibility of defining the temperature via the FT if () is measurable or
Q if T is measurable (originally suggested by Cugliandolo and Kurchan
as a possible application of FT to define temperature in spin glasses)

¢p) —¢(=p) _ (Q)
D kBT

a “device independent” definition of absolute temperature possibly useful

in microscale systems empirically thermostatted by a single thermostat

and subject to action of a nonconservative stirring force.
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Check of cancellation in adiabatic approzx.

Eigenstates at time 0 evolve following variations of Hamiltonian H (X(t))
due to thermostats particles motion, without changing quantum numbers.

[ Under time evolution a time ¢ > 0 infinitesimal:

X: — Xi+tX;+ Ot
B, (X)) — E,+te,+O0(t?)  with

de . . )
€n :f <X1 ) 8X1U01>\I;n + tXl . aXIUl = —¢ (Ql + U1>

e_BEn(Xl) SN 6_/8ten

3Nien
to = et 2K

thermostat phase space contracts by e
Therefore if 3 is chosen such that 3 = % = (kgTy)~! the distribution

(), is stationary.]
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