
Finite thermostats in nonequilibrium Statistical Mechanics

Progress due to

(a) Study of stationary states out of equilibrium (as opposed to deviation and return to equilib-

rium), [EM89].

(b) Modeling thermostats in terms of finite systems, [DGM84],[No84],[Ho85]

Finite thermostats have been essential. Rationale: the properties of the system should not depend

on the special way thermostats are imagined to work.

Equations of motion are NOT Hamiltonian.

Mechanical interpretation of phase space contraction:

σ(x)
def
= − div f(x) = −

3N∑

j=1

∂ifi(x)

“Empirical fact”: σ(x) is related to the phase space contraction. Not equal because σ(x) is not

intrinsic: changing metric

σ′(x) = σ(x)−
d

dt
Γ(x)

so that only time averages over long times can have “intrinsic” meaning:

1

τ

∫ τ

0

σ′(Stx)dt =
1

τ

∫ τ

0

σ(Stx)dt+
Γ(Sτx)− Γ(x)

τ
−−−−−→τ→+∞

1

τ

∫ τ

0

σ(Stx)dt

The average

σ+
def
= lim

τ→+∞

1

τ

∫ τ

0

σ(Stx)dt
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has been identified with entropy creation rate

σ+ = 〈
∑

j

Qj

Tj
〉

Several reasons: for instance consider the thermostat model

T1

T2

T3

C0
fig.1

Fig.1: Particles in C0 (“system particle”) interactwith the particles in the shaded regions (“thermostats particles”)

which are constrained to have a fixed total kinetic energy.

The equations of motion will be (all masses equal for simplicity)

mẌ0 =− ∂X0

(
U0(X0) +

∑

j>0

W0,j(X0,Xj)
)
+E(X0),

mẌi =− ∂Xi

(
Ui(Xi) +W0,i(X0,Xi)

)
− αiẊi

with αi such that Ki is a constant. Here W0,i is the interaction potential between particles in Ci
and in C0, while U0, Ui are the internal energies of the particles in C0, Ci respectively. We imagine

that the energies W0,j , Uj are due to smooth translation invariant pair potentials; repulsion from

the boundaries of the containers will be elastic reflection. It is assumed that there is no direct

interaction between different thermostats: their particles interact directly only with the ones in

C0. Here E(X0) denotes possibly present external positional forces stirring the particles in C0. The

contraints on the thermostats kinetic energies give
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αi ≡
Qi − U̇i

3NikBTi
←→ Ki ≡ const

def
=

3

2
NikBTi

where the work per unit time that particles outside the thermostat Ci (hence in C0) exercise on the

particles in it, is

Qi
def
= − Ẋi · ∂XiW0,i(X0,Xi)

The model identifies the “temperature of the thermostats” with their total kinetic energy via

Ki
def
= 3

2NikBTi which is possible since Ki is a constant of motion.

Hence

σ(X, Ẋ) ≡ ε(X, Ẋ) + Ṙ(X, Ẋ)

and

ε(X, Ẋ) =

n∑

j=1

Qj

kBTj

Measurable by calorimetric and thermometric experiments: independent of the equations of motion.

Useful? Fluctuations in average

1

T

∫ T

0

σ(Stx) ≡
1

T

∫ T

0

ε(Stx) +
R(T )−R(0)

T

Therefore for large T same flactuations statistics.

〈σ〉 ≡ 〈ε〉
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A general theory of fluctuations of σ ←→ general theory of fluctuations of ε

Chaotic hypothesis (CH): Motions developing on the attracting set of a chaotic system can be

regarded as motions of a transitive hyperbolic (also called “Anosov”) system.

(1) Existence of time averages and their statistics µ (SRB statistics)

1

T

∫ T

0

F (Stx) dt −−−−→T→∞

∫

A

F (y)µ(dy)
def
= 〈F 〉

(2) Coarse graining is rigorously definable and SRB is, consequently, interpretable as equidistribu-

tion on the attracting set (⇒ variational principle and existence of Lyapunov function)

(3) µ admits an explicit representation so that averages can be written and compared (without

computing them)

(4) large deviations law holds: fj
def
= 1

τ

∫ τ

0 Fj(Stx)dt

Prob(f ∈ ∆) = Prob((f1, . . . , fn) ∈ ∆) ∝τ→∞ eτ maxf∈∆ ζ(f)

ζ defined in a convex open set Γ and analytic there and ζ = −∞ outside Γ

(6) in time reversal invariant cases FT: (Fj odd)

ζ(−f) = ζ(f) − 〈ε〉 ←→
Prob(f)

Prob(−f)
= epσ+τ

provided σ = ϕ(F) and 〈ε〉 > 0 (e.g. F1 = σ. No free parameters. More surprisingly

Probµ(Fj(Stx) ∼ ϕ(t), t ∈ [0, τ ])

Probµ(Fj(Stx) ∼ −ϕ(τ − t), t ∈ [0, τ ])
∝ e

∫
t

0
σ(Stx)dt
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Applications (to fluids)

(1) Fluid equations are not reversible. Equivalence conjecture:

u̇+ u
˜
· ∂
˜
u = ν∆u− ∂ p+ g,

u̇+ u
˜
· ∂
˜
u = α(u)∆u− ∂ p+ g, α =

∫
u · g∫
(∂ u)2

⇒

∫
u2 = E = const

Same statistics for “local observables”: F local⇒ F depends on finitely many Fourier comp. of u.

Same statistics ⇒ as R → ∞ if E is chosen = 〈
∫
u2〉µν

(equivalence): “Gaussian NS eq.” or

“GNS”. So far only numerical tests in strongly cut off equations and d = 2 (Rondoni,Segre).

Problem: can reversibility be detected?

Assume K41

then the number of degrees of freedom is the momenta with |k| < R
3
/
4

Divergence σ ∼ ν
∑

k
2|k|2 = ν (2πL )2 8π

5 R15/4

By FT probability (relative) to see wrong friction for a time τ is

P ∼ e−τν 32π3

L2 R
1
5 4

So (air)

CGS units (data for air)

ν =1.5 10−2, v = 10. L = 100.

R =6.67 104, g = 3.66 1014

P =e−gτ = e−3.66 108 , if τ = 10−6

Viscosity is −ν during 10−6s with probability e−.25 106 : similar to the recurence times calculatioon
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Compatibility? near equil. entropy creation independently defined (DeGroot-Mazur)

kB〈ε〉 = kBεclassic + Ṡ, kBεclassic =

∫

C0

(
κ
(∂T
T

)2
+ η

1

T
τ

˜
′ · ∂
˜
u
)
dx

.
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Bandi-Cressman-Goldburg experiment

water

Lagrangian flow on a 2D surface

ẋ = u(x, t)

with u turbulent

“Kraichnan flow (space-time colored)”

Turbulent water in 1m× 1m× 0.3m. Generate “Lagrangian trajectories” on surface

ẋ = u(x, t)

σ(x(t), t) = −divu(x(t), t) whose time av. is exper. measured to be σ+ = Ω > 0.

p =
1

τ

∫ τ

0

σ(x(t), t)

Ω
dt, ? ζ(−p) = ζ(p)− pΩ

for τ ≫ τc = “characteristic time of turbulence evolution”.

(1) a definitely non Gaussian statistics for the variable p = 1
τ

∫ τ

0
σ(x(t),t)

Ω dt.

(2) remarkably large fluctuations of p for values of τ up to 800ms.

(3) the obstacle of not knowing the quantity p because the equations of motion are usually not

known is not present: FR prediction, no free parameters.

(4) the statistics is quite large as about 8× 104 Lagrangian trajectory staying in the field of vision

for a time length T = 6s are observed. Dividing T into k = T/τ “segments”, with time duration τ ,

8 × 104 k averages of velocity divergences are obtained, with k varying between 60 and 15 (where

60 corresponds to τ = 100ms). Small statistics so far had been a major obstacle to FR tests.

Theory: Chetrite,Delannoy,Gawedzki, Bonetto,Gentile,G.
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