
Thermostats, entropy and chaotic hypothesis

nonequilibrium system: mechanical sys. & non conserv. forces: is there a “Ther-

modynamics?”. Key points:

(a) realization that the analogue of equilibrium statistical mechanics should be the

study of stationary states, or steady states

(b) simulations on steady states performed in the 80’s after the essential role played

by finite thermostats was fully realized.

Steady State
def
= probability dist. µ: used ⇒ average values

Collections of µ’s generalize ensembles (non eq.)

Empirically a thermostat is a device that fixes, by mechanical action, the temper-

ature in some part of a system
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General model: thermostats “external” to C0. Particles mutually interacting and

through portions ∂iC0 of the surface of C0, with Ci: constraint that the Ni particles

in i-th thermostat have K.E. Ki = m
2 Ẋ2

i = 3
2NikBTi.
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Particles in C0 (“system”) interact with Ci shaded (“thermostats”) constrained fixed total K.E.
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The equations of motion will be

mẌ0 = − ∂X0

(

U0(X0) +
∑

j>0

W0,j(X0,Xj)
)

+ E(X0),

mẌi = − ∂Xi

(

Ui(Xi) + W0,i(Xi,Xj)
)

− αiẊi

with αi s.t. Ki constant. W0,i inter. potential Ci-C0, U0, Ui intern. energ. I.e.

αi ≡
Qi − U̇i

3NikBTi

⇒ Ki ≡ const
def
=

3

2
NikBTi

where Qi
def
= − Ẋi · ∂Xi

W0,i(X0,Xi) = work of C0 on i-th thermostat
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Qi
def
= − ∂Xi

W0,i(X0,Xi) · Ẋi

is interpreted as “amount of heat Qi entering” thermostat Ci.

Main features

a) thermostats are external to system proper

b) time reversible: i.e. if I(X, Ẋ)
def
= (X,−Ẋ) is the time reversal then if St(X, Ẋ)

denotes the solution then

ISt ≡ S−tI

Unphysical? infinite thermostats? (with Gibbs states at temperatures Ti at ∞ )

→ BUT progress through simulations made possible by finite thermostats.

First question is which will be the steady state distribution µ describinng steady

statistics? from an initial (Ẋ,X)

Statistical properties are the ones of randomly chosen data with distribution with

density over the volume on phase space (fact?).
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Is there a privileged invariant distribution? in equilibrium yes: Liouville!

BUT equations of motion do not conserve phase space volume and will contract it,

at least in average: important exception is equilibrium, modeled by Hamiltonian

eq. Ergodic Hypothesis. Idea: extend the ergodic hypothesis

Chaotic hypothesis (CH): Motions developing on the attracting set of a chaotic

system can be regarded as motions of trans. hyperbolic (also called “Anosov”)

system.

⇒ all smooth observables F (X, Ẋ) on phase space all initial data near an attract-

ing set, with the exception of a set of data with 0 total volume, admit time av.

independent of initial data and define 1-que probability distribution µ

lim
T→∞

1

T

∫ T

0

F (St(X, Ẋ)) dt =

∫

F (Y, Ẏ)µ(dY, dẎ)

µ is the SRB distribution, ie statistics of a.a. motions.
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Properties: (for instance) given observables Fi, smooth and with nonzero time

average Fi,+ =
∫

Fi dµ 6= 0, one can consider their finite time averages

fi =
1

τ

∫ τ
2

−
τ
2

Fi(St(X, Ẋ))

Fi,+
dt

then ∃ a convex open set C and SRB-probability that f = (f1, . . . , fn) ∈ ∆ ⊂ C

probµ(f ∈ ∆) = const eτ maxf∈∆ ζF(f)+O(1)

where ζF(f) is analytic and convex in C and is −∞ for f 6∈ C.

fi has by its definition average 1 ⇒ 1 = (1, . . . , 1) ∈ C.

Hence ζF(f) has maximum at f = 1

A large deviations rule with “rate ζF(f)”.
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If 1 ∈ C and D−1 def
= ζ ′′

F
(1) > 0 ⇒ “central limit theorem” for ϕ

def
=

√
τ (f − 1),

i.e.

probµ(ϕ ∈ Γ) −−−→τ→∞

∫

Γ

e−(c,(2D)−1
c) dc√

2π det D

but ζ(f) informs on the very large fluctuations too,

where f = (f1, . . . , fn) attains size O(
√

τ).

If Fi are odd under time reversal then C is symmetric around O.
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Fluctuation Theorem: [GC95] If F1 = σ(X, Ẋ) then set p ≡ f1 and σ+ ≡ F1,+

(hence p = 1
τ

∫ τ

0
σ(Sτ (Ẋ,X))

σ+
dτ)

ζσ(−p) = ζσ(p) − pσ+, for all |p| < p∗

More general: if Fi are odd under time reversal ζF(f) = ζF(−f) − p σ+

Application: divergence is σ(Ẋ,X) = ε(Ẋ,X) + Ṙ(X) is, remarkably, observable

ε(Ẋ,X) =
∑

j>0

Qj

kBTj

and can be interpreted as the entropy creation rate, because of the meaning of

Qi
def
= − Ẋi · ∂Xi

W0,i(X0,Xi), while R(X) =
∑

j>0
Uj

kBTj
.
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⇒ average contraction and the average entropy creation have same average σ+ ≡
ε+ and, if ε+ 6= 0, the same large deviations rate function ζ(p) for

p =
1

σ+τ

∫ τ

0

σ(St(Ẋ,X))dt ≡ 1

ε+τ

∫ τ

0

ε(St(Ẋ,X))dt +
R(τ) − R(0)

σ+τ

the latter is measurable as it concerns heat exchanges (calorimeters).

Remarkable because (thermostats being reversible)

p =
1

τ

∫ τ

0

σ(St(Ẋ,X))

σ+
dt

satisfies the fluctuation relation: namely

ζ(−p) = ζ(p) − pσ+, for all |p| < p∗,

where p∗ ≥ 1: ⇒ possibility of test CH in experiments.

Quantum systems?
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At first seems impossible: in quantum systems average K.E. is not identified with

temperature; and all motions are quasi periodic, so that no chaos is possible.

A way out, explored: thermostats as infinite systems. However · · · · · · !

Consider quantum C0. Let H on L2(C3N0

0 ), space of symm./antisym. Ψ(X0),

H({Xj}j>0) = − h̄2

2
∆X0

+ U0(X0) +
∑

j>0

(

U0j(X0,Xj) + Uj(Xj) + Kj

)

its spectrum consists of En = En({Xj}j>0), for Xj fixed.
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System–reservoirs: dynamical system on the space of
(

Ψ, ({Xj}, {Ẋj})j>0

)

def.

−ih̄Ψ̇(X0) = (H({Xj}j>0)Ψ)(X0), and for j > 0

Ẍj = −
(

∂jUj(Xj) + 〈∂jUj(X0,Xj)〉Ψ
)

− αjẊj

αj
def
=

〈Wj〉Ψ − U̇j

2Kj

, Wj
def
= − Ẋj · ∂jU0j(X0,Xj)
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Evolution maintains the Kj ≡ 1
2Ẋ

2
j exactly Kj = 3

2kBTjNj , as classical case.

“Formal volume element” µ0({dΨ}) × ν(dX dẊ) with

δ
(

||Ψ||2 − 1
)(

∏

X0

dΨ(X0)
)

×
∏

j>0

(

dXj dẊj δ(Ẋ2
j − 3NjkBTj)

)

conserved, by unitarity, up to thermostats volume contraction σ

σ =
∑

j

Qj

kBTj

+ Ṙ with Qj = 〈Wj〉Ψ

with Qj = 〈−Ẋj · ∂Xj Wj(X0,Xj)〉Ψ, as classical.

Chaotic Hyp. ⇒ dynamics selects invariant distribution µ, the SRB

and reversibility will imply fluctuation relation for σ =
∑

j
Qj

kBTj
+ Ṙ

Measurable by calorimetry.
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A check? only one thermostat T1, no forces. Candidate is

∞
∑

n=1

e−βEnδ(Ψ − Ψn(X1) eiϕn) dϕn δ(Ẋ2
1 − 2K1)

where ϕn ∈ [0, 2π] is a phase, En = En(X1) = n-th level of H(X1) with Ψn(X1)

eigenfunction.

This is, by construction, a Gibbs state of thermodynamic equilibrium with a special

kind (random X1, Ẋ1) of boundary condition and temperature T1.

However not invariant. Difficult to find explicit inv. distribution.

Nevertheless under adiabatic approximation eigenstates of H at time 0 follow ari-

ations of H(X(t)) due to the motion of X without changing quantum numbers
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In adiabatic limit (classical motion of thermostat particles on a time scale much

slower than the quantum evolution) ⇒ invariant: variation of the energy levels is

compensated by the therm. phase space contraction.

Under evolution X1 at time t > 0 becomes X1+tẊ1+O(t2) and, if non degeneracy,

En(X1) changes, by perturbation analysis, into En + t en + O(t2) with

en
def
= t〈Ẋ1 · ∂X1

U01〉Ψn
+ tẊ1 · ∂X1

U1 ≡ −t(Q1 + U̇1)

while phase space contracts by e
t
3N1en
2K1 . Therefore if β chosen β = (kBT1)

−1 the

Boltzmann factor changes by e−βten and exactly compensates the contraction

3N1

2K1
= β ⇒ e−βten × e

t
3N1en
2K1 = 1

→ distribution stationary.
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water

Lagrangian flow on a 2D surface

ẋ = u(x, t)

with u turbulent

“Kraichnan flow”

The water in a container of 1m × 1m × 0.3m size is set into a turbulent state.

generate the “lagrangian trajectories” of the surface flow, solutions of the equations

ẋ = u(x, t)

σ(x(t), t) = −divu(x(t), t) whose time av. is exper. measured to be σ+ = Ω > 0.

p =
1

τ

∫ τ

0

σ(x(t), t)

Ω
dt

for τ ≫ τc = “characteristic time of turbulence evolution”.
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Results for τ = 5, 10, 15, 20 times τc for the turbulent flow (∼ 20ms)

http://ipparco.roma1.infn.it
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