Fluctuations in nonequilibrium: classical and quantum
Nonequilibrium SM ? Recent progress on NE based on

(a) focus on steady states under forcing
(b) focus on finite thermostats = simulations NESS in 980’s

Equil. States = prob. distr. on phase space providing averages (F').

Project:

(1) identify the Stationary States (extending Gibbs’ equilibrium assum.)
(2) universal laws merely reflect symmetry properties which may have
deep consequences in large systems.
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Ezxample 1: roots of second Law can be found, [Bo866], in the simple
properties of the pendulum motion (Hamiltonian H = K + W)
Changing control parametes, for pendulum could be, for intance,

V = { = pendulum arm length

U energy og the pendulum

if one calls p = —(Oy W), T = (K), averages on the peridic orbt with
parameters ¢, U, then

dU + pdV
T

a model of macroscopic thermodynamics.

= EXACT

Soon rediscovered by Clausius, and later? by Helmholtz 7777 Conclusion:
I1-d law is a symmetry of H above (of course the I-th too): valid and
trivial for d = 1, very important for d = 1019,

Universal laws reflect symmetries of Nature. What was missing in 1866
is the extension to d > 1: this later 1868,1871 and finally 1884: ergodic
hypothesis and theory of ensembles (what about Gibbs?)
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Ezxample 2: Time reversal; defined as isometric map I anticommuting

with evolution

2=1,  SJI=IS, [e.g. 1(Z,7) s (&, —7)

Reciprocal relations of Onsager, reflect time reversal.
Time reversal leads to the quantitative form of reciprocity expressed by

“fluctuation dissipation theorems”, i.e. by the Green-Kubo formulae..

“Extension” to Nonequilibrium? Main difficulty: microscop. description

& = f(x) cannot be Hamiltonian.

In finite thermostats dissipation manifests by nonvanishing divergence

o(z) == 0, filx)

of the equations and of its time average o > 0.
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Physical meaning of ¢7 no direct one: changes with coordinates:

o' (r) =o(x) — %F(aj)

only time averages over long times can have “intrinsic” meaning:

1 /OT o' (Siz) = 1 /OT o(Sx) + L(Sre) - T() T ! /OT o(Siz)

T T T T

d : : : .
Average o 2y hrf % fOT o(Stz) identified to entropy creation rate
T—T00

)

oL =
=k
Why? for instance consider general thermostat model

Particularly interesting because model independent and measurable
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A general model for a system in contact with thermostats is in Fig.1

T
I T2 X07X17"'7Xn
T3 XOi:—aiUo(Xo)—Zj &-Uj (Xo,Xj)'i‘Ei

X;ji=—0;U;(X;)—0:U;(Xo0,X;)—a; X5

Fig.1: Co (“system”) interact with shaded T} (“thermostats”) constrained fixed K.E.

E(X() external stirring forces; a; s.t. K; = %NikBT,- = const.

ef 3 i — Ui
def SNk, ai_Q—

cons SN kT,

(Q; = work per unit time of Cy on C;:

de :
Qi 2 X, - 0x,Wop.i(Xo, X;)
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Important feature: preservation of time reversal symmetry !!.

[thermostat can even act uniformly inside Cy: eg. electric conduction
(Drude)]

Divergence (by algebraic means)

(X X)= (X, X) +#x), e(X,X) =
Calorimetry and thermometry measures. No need of equations of motion!

Useful? Fluctuations in average

1 [T 17 R(T) — R(0)
T/O O'(St.CC) = T/O S(StCU) + T

Therefore for large T same fluctuations statistics. Not just (o) = (e).

A general theory of fluctuations of ¢ «— general theory of fluct. of ¢
Howto?
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Need the distribution for averages: i.e. need extension of EH.
Ruelle’s turbulence theory extension to Stat. Mech. (Cohen-G.)

Chaotic hypothesis (CH) Motions developing on attracting set of chao-

tic system may be regarded as motions of transitive hyperbolic system. =

(1) unique distribution p (SRB)*such that outside a set of zero volume

T—00 T

.17 _
lim _/0 F(Stx)dt—/ﬂ(dy)F(y)

(2) and p has an “explicit” express. “similar to the equil. Gibbs distrib.”
(3) Nontrivial because p is concentrated on a 0 volume “attractor”
*SRB — Sinai-Ruelle-Bowen

Hyperb. systems: paradigm of chaos as harmonic oscill. of order.
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Let f < L [T F(S,x)d

Fluctuation law: f is in [a,b] with probab. Prob,(f € |a,b])
lim — logProb (f €la,b]) = fm[aﬁ] Cr(f), ~ P(f) = e
T—00 T €la,

More g., given n observables of TR parity n; = *+1,

ef 1 7
R = nk), 5L [ RS
0

-
= Prob(f € A) = Prob((f1,---, fn) € A) Xr_ o €7 1XfEA ¢(f)

¢ defined in a convex open set I', analytic and convex (Sinai).

¢ is a kind of thermodynamic function.
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Possibility of an “explicit” formal expression of 1 allows giving an explicit

(“uncomputable”) expression of stationary averages (F) ,.
Assume average phase space contraction positive oy > 0 and time re-

d T
versal symmetry; let F} = i and p o] fi= % 0 %f)dt. Then

Fluctuation Theorem (FT): (Cohen, G.)
¢(=p) =<C(p) —poy,  Ipl<p"

More generauy C(_p7 772,}6‘27 e 777nfn) — C(p7 f27 ceey fn) — PO+

Interest?
Physical interpretation of poy as entropy creation % fOT > ; g;—(z?dt.
J

= Measurable independently of model.

17/ottobre/2007; 11:38 9



Some consequences

(1) In stationary states of reversible dynamics heat exchanges constrained

T Q;(t)
_fo j kBTj dt

=1, (log{) v=0)

(e

Bonetto: similar (but different) from Jarzinsky’s relation (and stronger

than just positivity of o ):

kT

J

— (Q;)

>0
1 J

Not to be confused with the formulae of Bockhov-Kuzovlev (and the later
developments) dealing with properties of equilibrium distributions or of

distributions with density in phase space.

(2) FR implies Fluctuation-Dissipation. It is rather general and testable.
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Quantum systems?
temperature? finite Thermostats? are CH and FT possible?

An example of a nanoscale device to measure temperature

Amplifier
T AFM
Controller
I{: Thase
Q .
g Fig.2

Power amplifier

Amplifier  Square-root

Differential
T.C. ||
Heater

Fig.2: Block diagr. of feedback system from NS02 (Nakabeppu-Suzuki:) a “thermome-

ter” operating above room temperature and performing on a scale of 10nm = 10A°.

Conceptual problem: what does the measurement apparatus really do?
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Thermostat: just a device to keep temperature constant in a system
receiving heat from a (stationary state) non equilibrium system.

How that is done precisely should not matter.

H operator on LQ(C’S’NO), symm. or antisymm. waves VU,

hZ
H = == Ax, + Uo(Xo) + > (Uoj(Xo, X)) + Uj(X;) + K;)

§>0
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Dynamical system
phase space consists of the points (\Il, {X,}, {Xj})j>o):

—ihW¥(Xo) = (H¥)(Xo),
Xj=- (3jUj(Xj) + <<9jUj(Xo,Xj)>q/) —o;X; >0
Constraint of constant K; =

ef (Wi _U € 5
def J;\;( LW, Y X 0,U0;(X0, X))

o(X,X)= (X Z kBT

Chaotic and reversible = FT

@

Consistency: single thermostat equivalent to Gibbs?
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Attempt: probability proportional to d¥ dX; dX; times

D e ERS (T — 0, (Xy) €7) gy, 6(XT — 2K7)

n=1

Stationary in the adiabatic approrimation only.

(0), =21 [ 3 e BB, (X,) |0, (X0))6(X3 — 26, )dX, dX,
n=1

=71 / Tr (e A HXD0) §(X2 — 2K;)dX dX,

Nevertheless if adiabatic approximation (i.e. classical motion in therm. is

on a time scale much slower than the quantum evolution of the system).

Conjecture: true SRB is also equiv. to Gibbs at temp. (kg3)~?
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= possibility of defining the temperature via the FT if () is measurable
or @) if T is measurable (originally suggested by Crisanti and Ritort as
a possible application of FR to define temperature in spin glasses), then

setting p = fOT Q<g>l ) d77/ then ((p) is its large deviation rate and

¢p) —¢(=p) _ (@)
D kBT

a “device independent” definition of absolute temperature possibly useful

in microscale systems.
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Check of cancellation in adiabatic approzx.

Eigenstates at time 0 evolve following variations of Hamiltonian H (X(t))
due to thermostats particles motion, without changing quantum numbers.
{Under time evolution a time ¢ > 0 infinitesimal:

X; — X; +tX; +O0(t?)

E.(Xy) — E,+te,+0(t*)  with

de . . .
en = (X1 0x,Un)y, + X1 - 0x, U1 = —t(Q1 + U7)

e_BEn(Xl) SN e_/Bten

3N16n
to = et 2K

thermostat phase space contracts by e

IF (3 is chosen B = g’%i = (kgTy)~! the distribution (), is stationary.

Alternatives: infinite thermostats (Feynman-Vernon, 1963, Eckmann-Pil-
let-Rey-Bellet 1999, Hanggi-Ingold, 2005). Problem: thermostats must
be free systems = problematic (see Abraham-Baruch-G-MartinLof, 1972)
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