
Nonequilibrium and Entropy

Ergodic hypothesis ⇒ theory of equilibrium

A nonequilibrium state ⇒ stationary and transport 6= 0 (electric,
heat, mass, chemical currents) under forcing E

Examples: (a) wire with e.m. force and steady current
(b) “Joule’s experiment”
(c) Developed turbulence in a liquid
(d) Goldburg et al. experiment

water

Lagrangian flow on surface

ẋ = u(x, t)

with u turbulent

“Kraichnan flow”

Not to be confused with “approach” or “return” to equilibrium.

Problem: properties of (E-dependent) time averages?

〈A〉 = lim
T→∞

1

T

∫ T

0

A(Stx)dt =

∫

µ(dy)A(y)

with x “random” (with respect to volume). µ called the SRB statistics.
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Classical results (De Groot-Mazur)

(a) Onsager reciprocity and Green–Kubo formulae (Jk = ∂Ek
σ(s))

∂Eh
〈Jk〉

∣

∣

E=0
=

1

2

∫ ∞

−∞

〈Jh(·)Jk(·)〉dt

(b) Onsager-Machlup, results on probability of patterns

Probability(|J(t) − f(t)| < δ), −
τ

2
≤ t ≤

τ

2

No results for E 6= 0 !

Turbulence “same”, example NS incompress. flow x = u. u are finte
dimensional (OK41). x random w.r. to volume ⇒ SRB statistics

1

t

∫ T

0

O(Stx)dt−−−→
t→∞

∫

µ(dv)O(v)

Key SRB statistics is well understood in paradigmatic cases “hyper-
bolic systems”. Hope to understand results of simulations or material
experiments.

Non Equilibrium Thermodynamics means “finding relations between
〈F 〉, 〈G〉, 〈O〉, . . .” model independent.

Since 80’s various attempts at connecting with the SRB theory
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(I) difficult: need model of thermostat. Nosé–Hoover, Evans–Morriss.
Example

ẍi = fi(x) + E − α(ẋ)ẋi

α =
E·

∑

i
ẋi

∑

i
ẋ2

i

“Gaussian”

α = ν “viscous”

“Drude”: speed renormalized at

collisions to
√

3kBT/m

Gaussian case is particularly interesting: reversible I(x, ẋ) = (x,−ẋ)

I St x = S−t I x

Important: thermostat models ⇒ “no Liouville theorem”.
The − divergence is

div(x) =
E · J

kBT

Note hysical interpretation of entropy increase of the thermostat.

⇒ difficult to imagine phase space as decomposed into “coarse grain
cells” which are permuted by the evolution. But for “hyperbolic
systems” coarse grain can be made precise.
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Then ∃ a partition P1, P2, . . . , Pn = {Pσ}
n
σ=1 “Markovian” with tran-

sition matrix Mσσ′ = 0, 1:

(1) if σ = {σi}
∞
−∞ and Mσi,σi+1

≡ 1 ⇒ unique x s.t. Six ∈ Pσi
and

(2) viceversa up to a set of 0 volume.

S

Given a precision h let ∆ = Pσ−Nh
,...,σNh

=
⋂Nh

j=−Nh
S−jPσj

: natural
coarse cells. So small that the relevant observables are constant.

Th.(Sinai): a. all data x have a x independent statistics µ:

lim
τ→∞

1

τ

τ−1
∑

j=0

F (Sjx) =

∫

µ(dy)F (y)

Not possible to regard motion as coarse cell permutation. Not even if
Hamiltonian (i.e. in equilibrium).

To do so coarse cells must be divided into extremely small equal boxes
δ “microcells” (as done in simulations). OK for Hamiltonian.

Not Hamiltonian: Not true that Sδ = δ′ is a permutation. The micro-
cells merge if div(x) has positive time average
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div+
def
= 〈div(x)〉 > 0.

Picture:
S

However eventually S is a permutation: ⇒ attractor. Transitivity
⇒ permutation can be chosen cyclic. Consistency: the number of
surviving microcells in each coarse cell ∆

∝ Λe(∆,Nh)−1 = e−λe(∆,Nh)

inv. proportional to expansion of ∆ ⇒ privileged dist.: equal prob-
ability 1

N
on the microcells: the SRB distr. Gordian node (CG95)

cut:

Chaotic hypothesis: motion of a chaotic system on its attracting
set can be regarded as hyperbolic transitive (“Anosov”).

Same spirit as “while one would be very happy to prove ergodicity be-
cause it would justify the use of Gibbs’ microcanonical ensemble, real-
systems perhaps are not ergodic but behave nevertheless in much the
same way and are well described by Gibbs’ ensemble...” (Ruelle, 72,
Boltzmann conference).
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⇒ explicit expression for statistics, useful for establishing relations

〈F 〉 =

∑

∆ e−λe(∆)F (∆)
∑

∆ e−λe(∆)

SRB = equal weight on all microcells on the attractor , unifi-
cation equilibrium-nonequilibrium. So what ?

Experimental result (Evans,Cohen,Morriss 93). Study fluctuations of
entropy creation rate in dissipative syst. (div+ > 0)

p =
1

τ

∫ τ

0

div(Stx)

div+
dt

The probability Pτ (p) is (Sinai th) Pτ (p) ≈ eτζ(p)

The Fluctuation Theorem on reversible hyperbolic systems implies the
fluctuation relation

ζ(p) − ζ(−p) = pdiv+

Can be tested in simulations.
This is a symmetry relation, no free parameters. If E → 0 it degerates
and becomes Green-Kubo relation. Its validity ⇒ test of the Chaotic
Hypothesis.
More?
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arrow marks mean square deviation of the distribution Pτ (p), (〈p〉 ≡ 1)
(Bonetto, Garrido, G., 96)
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In “all” cases phase space contraction = entropy rate of increase of
reservoir. Problem: reversible model of reservoir acting on all parti-
cles is unphysical. Hence theory only for simulations !! Thermostats
very often only act through the boundaries of the container: only so
the statistics of the system could possibly be independent of the ther-
mostats.

Led to remarkable mechanical interpretation of phase space contrac-
tion. General model of thermostat:

X0,X1, . . . ,Xn

Ẍ0i=−∂iU0(X0)−
∑

j
∂iUj(X0,Xj)+Fi

Ẍji=−∂iUj(Xj)−∂iUj(X0,Xj)−αjẊji

T1

T2

T3

C0

Fig.1Reservoirs occupy finite regions outside C0, e.g. sectors Cj ⊂ R3, j =
1, 2 . . .. Their particles (with mass 1) are constrained to have a total kinetic

energy Kj constant, by suitable forces, so that the reservoirs “temperatures” Ti

are well defined. Fixed j the label i is in 1, . . . .Nj .

Thermostat forces αiẊi are so defined that total kinetic energy Kj =
1
2Ẋ

2
j in each thermostat is strictly constant ≡ 3

2NjkBTj . Such forces

will be imagined realized by Gauss’ principle: αj ≡
Wj−U̇j

2Kj
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Then Wj can be interpreted as the heat Qj ceded to the thermostats
and the divergence is

div(X) =
∑

j>0

Qj

kBTj

+ Ṙ(X)
def
= ε(X) + Ṙ(X), R(X) =

∑

j>0

Uj

kBTj

The infinite time average 〈div(X)〉 ≡ 〈ε〉 (because 〈Ṙ〉T = R(T )−R(0)
T

→
0) and finite time average

p′ =
1

t

∫ T

0

∑

j>0

Qj(t)

kBTj

dt +
R(T ) − R(0)

T
= p + O(T−1)

Therefore p′ and p have the same asymptotic distribution with rate
ζ(p) and by CH FR should hold for the measurable p.

Other extensions are towards the Onsager-Machlup theory. A remark-
able result (CH+ reversibility): let ϕ1(t), . . . , ϕn(t) be n patterns, de-
fined for − τ

2
< t < τ

2
and let F1(x), . . . , Fn(x) be n observables odd

under time reversal

Prob(|Fi(Stx) − ϕi(t)| < δ, p)

Prob(|Fi(Stx) + ϕi(−t)| < δ,−p)
= eτ p ε+

independent of Fi!
and (Bonetto identity) 〈epτε+〉=1 asymptotically.
Quantum ?
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Preprints & reprints
http://ipparco.roma1.infn.it
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