Nonequilibrium and Entropy

Ergodic hypothesis = theory of equilibrium

A nonequilibrium state = stationary and transport # 0 (electric,
heat, mass, chemical currents) under forcing E

Ezxamples: (a) wire with e.m. force and steady current
(b) “Joule’s experiment”

(¢) Developed turbulence in a liquid

(d) Goldburg et al. experiment

Lagrangian flow on surface

1
: water X = u(x, t)
/ﬁﬁ - '>ﬁ - '>ﬁ 71"~/ with u turbulent
. “Kraichnan flow”

Not to be confused with “approach” or “return” to equilibrium.
Problem: properties of (E-dependent) time averages?
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with x “random” (with respect to volume). u called the SRB statistics.



Classical results (De Groot-Mazur)

(a) Onsager reciprocity and Green-Kubo formulae (J; = 0g, 0(s))
1 [ee
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(b) Onsager-Machlup, results on probability of patterns

Probability(|J(t) — f(t)| < 6), —% <t<
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No results for E # 0!

Turbulence “same”, example NS incompress. flow £ = u. u are finte
dimensional (OK41). z random w.r. to volume = SRB statistics

/ O(S;x) dt—>/ (dv)O

Key SRB statistics is well understood in paradigmatic cases “hyper-
bolic systems”. Hope to understand results of simulations or material
experiments.

Non Equilibrium Thermodynamics means “finding relations between
(F),(G),{0),...” model independent.

Since 80’s various attempts at connecting with the SRB theory



(I) difficult: need model of thermostat. Nosé—Hoover, Evans—Morriss.

Example
a = 55— “Gaussian”
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a = v “viscous”
“Drude”: speed renormalized at
collisions to \/3kpT/m

Gaussian case is particularly interesting: reversible I(x,x) = (x, —x)
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Important: thermostat models = “no Liouville theorem”.
The — divergence is

E-J
div(z) = ———
() T
Note hysical interpretation of entropy increase of the thermostat.
= difficult to imagine phase space as decomposed into “coarse grain

cells” which are permuted by the evolution. But for “hyperbolic
systems” coarse grain can be made precise.



Then 3 a partition Py, Ps, ..., P, = {P,}!_; “Markovian” with tran-
sition matrix M,, = 0, 1:

(1) if o = {0:}>°, and My, »,,, =1 = unique x s.t. S"x € P,, and
(2) wviceversa up to a set of 0 volume.
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Given a precision h let A = Py_ .\ = ﬂ;vzh_ N, S ~I Py, natural

coarse cells. So small that the relevant observables are constant.

Th.(Sinai): a. all data x have a x independent statistics ji:

T—1

lim %ZF(SJ'X) -~ / pldy) F(y)
j=0

Not possible to regard motion as coarse cell permutation. Not even if
Hamiltonian (i.e. in equilibrium).

To do so coarse cells must be divided into extremely small equal boxes
0 “microcells” (as done in simulations). OK for Hamiltonian.

Not Hamiltonian: Not true that S6 = §’ is a permutation. The micro-
cells merge if div(x) has positive time average
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div, “ (div(z)) > 0.

===

However eventually S is a permutation: = attractor. Transitivity
= permutation can be chosen cyclic. Consistency: the number of
surviving microcells in each coarse cell A

Picture:

x Ao(A,Np) 7t = e~ re(BNR)

inv. proportional to expansion of A = privileged dist.: equal prob-
ability - on the microcells: the SRB distr. Gordian node (CG95)
cut:

Chaotic hypothesis: motion of a chaotic system on its attracting
set can be regarded as hyperbolic transitive (“Anosov”).

Same spirit as “while one would be very happy to prove ergodicity be-
cause it would justify the use of Gibbs’ microcanonical ensemble, real-
systems perhaps are not ergodic but behave nevertheless in much the
same way and are well described by Gibbs’ ensemble...” (Ruelle, 72,
Boltzmann conference).



= explicit expression for statistics, useful for establishing relations

e MBI F(A
) = B4

SRB = equal weight on all microcells on the attractor , unifi-
cation equilibrium-nonequilibrium. So what ¢

Experimental result (Evans,Cohen,Morriss 93). Study fluctuations of
entropy creation rate in dissipative syst. (divy > 0)

1 (7 di
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T Jo divy

The probability P, (p) is (Sinai th) Py (p) ~ e™¢(®)
The Fluctuation Theorem on reversible hyperbolic systems implies the
fluctuation relation

C(p) = ¢(=p) = pdivy

Can be tested in simulations.

This is a symmetry relation, no free parameters. If E — 0 it degerates
and becomes Green-Kubo relation. Its validity = test of the Chaotic
Hypothesis.

More?
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arrow marks mean square deviation of the distribution P, (p), ({p)
(Bonetto, Garrido, G., 96)



In “all” cases phase space contraction = entropy rate of increase of
reservoir. Problem: reversible model of reservoir acting on all parti-
cles is unphysical. Hence theory only for simulations !! Thermostats
very often only act through the boundaries of the container: only so
the statistics of the system could possibly be independent of the ther-
mostats.

Led to remarkable mechanical interpretation of phase space contrac-
tion. General model of thermostat:

T
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T3 XOi:_aiUO(XO)_Zj 0:U;(X0,X;)+F;

X;i=—0;U;(X;)—0;U;(X0,X;)—a; X ;

Fig.1Reservoirs occupy finite regions outside Co, €.g. sectors Cj C RS, ] =
1,2.... Their particles (with mass 1) are constrained to have a total kinetic
energy K j constant, by suitable forces, so that the reservoirs “temperatures” T;
are well defined. Fixed j the label 2 isin 1,... .Nj.

Thermostat forces o; X; are so defined that total kinetic energy K ;=
%X? in each thermostat is strictly constant = §Nj kgT};. Such forces

will be imagined realized by Gauss’ principle: o = WQJ I;UJ
J




Then W; can be interpreted as the heat (); ceded to the thermostats
and the divergence is

def

div(X) = ) +R(X) = e(X)+R(X), RX)=)_ Ui
>0

kT,

The infinite time average (div(X)) = () (because (R), = w —
0) and finite time average

T . —
p = %/o ;f;—(j?dt_'_ RT) — R(O) =p+O(T™)

T

Therefore p’ and p have the same asymptotic distribution with rate
((p) and by CH FR should hold for the measurable p.

Other extensions are towards the Onsager-Machlup theory. A remark-
able result (CH+ reversibility): let ¢1(t),...,¢n(t) be n patterns, de-
fined for —% <t < % and let Fi(z),...,F,(z) be n observables odd
under time reversal

_ eTp€+

Prob(|F;(Ssx) — pi(t)| < 6,p)
Prob(|F;(Siz) + pi(—t)| < 8, —p)
independent of F;!
and (Bonetto identity) (eP7¢+)=1 asymptotically.
Quantum ?




Preprints & reprints
http://ipparco.romal.infn.it
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