Thermostats, entropy and chaotic hypothesis

nonequilibrium system: mechanical sys. & non conserv. forces: is there a "Thermodynamics?". Key points:

- (a) realization that the analogue of equilibrium statistical mechanics should be the study of stationary states, or steady states
- (b) simulations on steady states performed in the 80's after the essential role played by *finite thermostats* was fully realized.

Steady State $\stackrel{def}{=}$ probability dist. μ : used \Rightarrow average values Collections of μ 's generalize ensembles (non eq.)

Empirically a thermostat is a device that fixes, by mechanical action, the temperature in some part of a system

1

 $20/maggio/2007;\ 11:54$

General model: thermostats "external" to C_0 . Particles mutually interacting and through portions $\partial_i C_0$ of the surface of C_0 , with C_i : constraint that the N_i particles in i-th thermostat have K.E. $K_i = \frac{m}{2}\dot{\mathbf{X}}_i^2 = \frac{3}{2}N_ik_BT_i$.

Particles in C_0 ("system") interact with C_i shaded ("thermostats") constrained fixed total K.E.

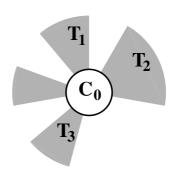


Fig1

The equations of motion will be

$$m\ddot{\mathbf{X}}_{0} = -\partial_{\mathbf{X}_{0}} \left(U_{0}(\mathbf{X}_{0}) + \sum_{j>0} W_{0,j}(\mathbf{X}_{0}, \mathbf{X}_{j}) \right) + \mathbf{E}(\mathbf{X}_{0}),$$

$$m\ddot{\mathbf{X}}_{i} = -\partial_{\mathbf{X}_{i}} \left(U_{i}(\mathbf{X}_{i}) + W_{0,i}(\mathbf{X}_{i}, \mathbf{X}_{j}) \right) - \alpha_{i}\dot{\mathbf{X}}_{i}$$

with α_i s.t. K_i constant. $W_{0,i}$ inter. potential C_i - C_0 , U_0 , U_i intern. energ. I.e.

$$\alpha_i \equiv \frac{Q_i - \dot{U}_i}{3N_i k_B T_i} \quad \Rightarrow \quad K_i \equiv const \stackrel{def}{=} \frac{3}{2} N_i k_B T_i$$

where $Q_i \stackrel{def}{=} -\dot{\mathbf{X}}_i \cdot \partial_{\mathbf{X}_i} W_{0,i}(\mathbf{X}_0, \mathbf{X}_i) = \text{work of } \mathcal{C}_0 \text{ on } i\text{-th thermostat}$

$$Q_i \stackrel{def}{=} -\partial_{\mathbf{X}_i} W_{0,i}(\mathbf{X}_0, \mathbf{X}_i) \cdot \dot{\mathbf{X}}_i$$

is **interpreted** as "amount of heat Q_i entering" thermostat C_i .

Main features

- a) thermostats are external to system proper
- b) time reversible: i.e. if $I(\mathbf{X}, \dot{\mathbf{X}}) \stackrel{def}{=} (\mathbf{X}, -\dot{\mathbf{X}})$ is the time reversal then if $S_t(\mathbf{X}, \dot{\mathbf{X}})$ denotes the solution then

$$IS_t \equiv S_{-t}I$$

Unphysical? infinite thermostats? (with Gibbs states at temperatures T_i at ∞) \to BUT progress through simulations made possible by finite thermostats.

First question is which will be the steady state distribution μ describing steady statistics? from an initial $(\dot{\mathbf{X}}, \mathbf{X})$

Statistical properties **are** the ones of randomly chosen data with distribution with density over the volume on phase space (fact?).

20/maggio/2007; 11:54

Is there a privileged invariant distribution? in equilibrium yes: Liouville!

BUT equations of motion do not conserve phase space volume and will contract it, at least in average: important exception is equilibrium, modeled by Hamiltonian eq. Ergodic Hypothesis. Idea: extend the ergodic hypothesis

Chaotic hypothesis (CH): Motions developing on the attracting set of a chaotic system can be regarded as motions of trans. hyperbolic (also called "Anosov") system.

 \Rightarrow all smooth observables $F(\mathbf{X}, \dot{\mathbf{X}})$ on phase space all initial data near an attracting set, with the exception of a set of data with 0 total volume, admit time av. independent of initial data and define 1-que probability distribution μ

$$\lim_{T \to \infty} \frac{1}{T} \int_0^T F(S_t(\mathbf{X}, \dot{\mathbf{X}})) dt = \int F(\mathbf{Y}, \dot{\mathbf{Y}}) \mu(d\mathbf{Y}, d\dot{\mathbf{Y}})$$

 μ is the SRB distribution, ie statistics of a.a. motions.

Properties: (for instance) given observables F_i , smooth and with nonzero time average $F_{i,+} = \int F_i d\mu \neq 0$, one can consider their *finite time averages*

$$f_i = \frac{1}{\tau} \int_{-\frac{\tau}{2}}^{\frac{\tau}{2}} \frac{F_i(S_t(\mathbf{X}, \dot{\mathbf{X}}))}{F_{i,+}} d$$

then \exists a convex open set C and SRB-probability that $\mathbf{f} = (f_1, \dots, f_n) \in \mathbf{\Delta} \subset C$

$$prob_{\mu}(\mathbf{f} \in \boldsymbol{\Delta}) = const \, e^{\tau \, \max_{\mathbf{f} \in \boldsymbol{\Delta}} \zeta_{\mathbf{F}}(\mathbf{f}) + O(1)}$$

where $\zeta_{\mathbf{F}}(\mathbf{f})$ is analytic and convex in C and is $-\infty$ for $f \notin \overline{C}$.

 f_i has by its definition average $1 \Rightarrow \mathbf{1} = (1, \dots, 1) \in \overline{C}$.

Hence $\zeta_{\mathbf{F}}(\mathbf{f})$ has maximum at $\mathbf{f} = \mathbf{1}$

A large deviations rule with "rate $\zeta_{\mathbf{F}}(\mathbf{f})$ ".

 $20/maggio/2007;\ 11:54$

If $\mathbf{1} \in C$ and $D^{-1} \stackrel{def}{=} \zeta_{\mathbf{F}}''(\mathbf{1}) > 0 \Rightarrow$ "central limit theorem" for $\boldsymbol{\varphi} \stackrel{def}{=} \sqrt{\tau} (\mathbf{f} - \mathbf{1})$, *i.e.*

$$prob_{\mu}(\varphi \in \Gamma) \xrightarrow{\tau \to \infty} \int_{\Gamma} e^{-(\mathbf{c},(2D)^{-1}\mathbf{c})} \frac{d\mathbf{c}}{\sqrt{2\pi \det D}}$$

but $\zeta(\mathbf{f})$ informs on the *very large fluctuations* too, where $\mathbf{f} = (f_1, \dots, f_n)$ attains size $O(\sqrt{\tau})$.

If F_i are odd under time reversal then C is symmetric around \mathbf{O} .

Fluctuation Theorem: [GC95] If $F_1 = \sigma(\mathbf{X}, \dot{\mathbf{X}})$ then set $p \equiv f_1$ and $\sigma_+ \equiv F_{1,+}$ (hence $p = \frac{1}{\tau} \int_0^{\tau} \frac{\sigma(S_{\tau}(\dot{\mathbf{X}}, \mathbf{X}))}{\sigma_+} d\tau$)

$$\zeta_{\sigma}(-p) = \zeta_{\sigma}(p) - p\sigma_{+},$$
 for all $|p| < p^{*}$

More general: if F_i are odd under time reversal $\zeta_{\bf F}({\bf f}) = \zeta_{\bf F}(-{\bf f}) - p\,\sigma_+$

Application: divergence is $\sigma(\dot{\mathbf{X}}, \mathbf{X}) = \varepsilon(\dot{\mathbf{X}}, \mathbf{X}) + \dot{R}(\mathbf{X})$ is, remarkably, observable

$$\varepsilon(\mathbf{\dot{X}}, \mathbf{X}) = \sum_{j>0} \frac{Q_j}{k_B T_j}$$

and can be interpreted as the *entropy creation rate*, because of the meaning of $Q_i \stackrel{def}{=} -\dot{\mathbf{X}}_i \cdot \partial_{\mathbf{X}_i} W_{0,i}(\mathbf{X}_0, \mathbf{X}_i)$, while $R(\mathbf{X}) = \sum_{j>0} \frac{U_j}{k_B T_j}$.

 \Rightarrow average contraction and the average entropy creation have same average $\sigma_{+} \equiv \varepsilon_{+}$ and, if $\varepsilon_{+} \neq 0$, the same large deviations rate function $\zeta(p)$ for

$$p = \frac{1}{\sigma_{+}\tau} \int_{0}^{\tau} \sigma(S_{t}(\mathbf{\dot{X}}, \mathbf{X})) dt \equiv \frac{1}{\varepsilon_{+}\tau} \int_{0}^{\tau} \varepsilon(S_{t}(\mathbf{\dot{X}}, \mathbf{X})) dt + \frac{R(\tau) - R(0)}{\tau}$$

the latter is measurable as it concerns heat exchanges (calorimeters).

Remarkable because (thermostats being reversible)

$$p = \frac{1}{\tau} \int_0^{\tau} \frac{\sigma(S_t(\dot{\mathbf{X}}, \mathbf{X}))}{\sigma_+} dt$$

satisfies the *fluctuation relation*: namely

$$\zeta(-p) = \zeta(p) - p\sigma_+, \quad \text{for all } |p| < p^*,$$

where $p^* \geq 1$: \Rightarrow possibility of test CH in experiments.

Quantum systems?

At first seems impossible: in quantum systems average K.E. is *not* identified with temperature; and all motions are quasi periodic, so that no chaos is possible.

A way out, explored: thermostats as infinite systems. However · · · · · !

Consider quantum C_0 . Let H on $L_2(C_0^{3N_0})$, space of symm./antisym. $\Psi(\mathbf{X}_0)$,

$$H(\{\mathbf{X}_j\}_{j>0}) = -\frac{\hbar^2}{2} \Delta_{\mathbf{X}_0} + U_0(\mathbf{X}_0) + \sum_{j>0} \left(U_{0j}(\mathbf{X}_0, \mathbf{X}_j) + U_j(\mathbf{X}_j) + K_j \right)$$

its spectrum consists of $E_n = E_n(\{\mathbf{X}_j\}_{j>0})$, for \mathbf{X}_j fixed.

System–reservoirs: dynamical system on the space of $(\Psi, (\{\mathbf{X}_j\}, \{\dot{\mathbf{X}}_j\})_{j>0})$ def.

$$-i\hbar\dot{\Psi}(\mathbf{X}_{0}) = (H(\{\mathbf{X}_{j}\}_{j>0})\Psi)(\mathbf{X}_{0}), \quad \text{and for } j > 0$$

$$\ddot{\mathbf{X}}_{j} = -\left(\partial_{j}U_{j}(\mathbf{X}_{j}) + \langle\partial_{j}U_{j}(\mathbf{X}_{0}, \mathbf{X}_{j})\rangle_{\Psi}\right) - \alpha_{j}\dot{\mathbf{X}}_{j}$$

$$\alpha_{j} \stackrel{def}{=} \frac{\langle W_{j}\rangle_{\Psi} - \dot{U}_{j}}{2K_{j}}, \quad W_{j} \stackrel{def}{=} -\dot{\mathbf{X}}_{j} \cdot \partial_{j}U_{0j}(\mathbf{X}_{0}, \mathbf{X}_{j})$$

Evolution maintains the $K_j \equiv \frac{1}{2}\dot{\mathbf{X}}_j^2$ exactly $K_j = \frac{3}{2}k_BT_jN_j$, as classical case.

"Formal volume element" $\mu_0(\{d\Psi\}) \times \nu(d\mathbf{X} \, d\mathbf{\dot{X}})$ with

$$\delta\Big(||\Psi||^2 - 1\Big) \left(\prod_{\mathbf{X}_0} d\Psi(\mathbf{X}_0)\right) \times \prod_{j>0} \left(d\mathbf{X}_j d\dot{\mathbf{X}}_j \delta(\dot{\mathbf{X}}_j^2 - 3N_j k_B T_j)\right)$$

conserved, by unitarity, up to thermostats volume contraction σ

$$\sigma = \sum_{j} \frac{Q_{j}}{k_{B}T_{j}} + \dot{R}$$
 with $Q_{j} = \langle W_{j} \rangle_{\Psi}$

with $Q_j = \langle -\dot{\mathbf{X}}_j \cdot \partial_{\mathbf{X}_j} W_j(\mathbf{X}_0, \mathbf{X}_j) \rangle_{\Psi}$, as classical.

Chaotic Hyp. \Rightarrow dynamics selects invariant distribution μ , the SRB and reversibility will imply fluctuation relation for $\sigma = \sum_j \frac{Q_j}{k_B T_j} + \dot{R}$ Measurable by calorimetry.

A check? only one thermostat T_1 , no forces. Candidate is

$$\sum_{n=1}^{\infty} e^{-\beta E_n} \delta(\Psi - \Psi_n(\mathbf{X}_1) e^{i\varphi_n}) d\varphi_n \, \delta(\dot{\mathbf{X}}_1^2 - 2K_1)$$

where $\varphi_n \in [0, 2\pi]$ is a phase, $E_n = E_n(\mathbf{X}_1) = n$ -th level of $H(\mathbf{X}_1)$ with $\Psi_n(\mathbf{X}_1)$ eigenfunction.

This is, by construction, a Gibbs state of thermodynamic equilibrium with a special kind (random $\mathbf{X}_1, \dot{\mathbf{X}}_1$) of boundary condition and temperature T_1 .

However not invariant. Difficult to find explicit inv. distribution.

Nevertheless under adiabatic approximation eigenstates of H at time 0 follow ariations of $H(\mathbf{X}(t))$ due to the motion of \mathbf{X} without changing quantum numbers

In *adiabatic limit* (classical motion of thermostat particles on a time scale much slower than the quantum evolution) \Rightarrow *invariant*: variation of the energy levels is compensated by the therm. phase space contraction.

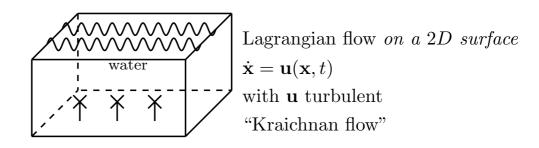
Under evolution \mathbf{X}_1 at time t > 0 becomes $\mathbf{X}_1 + t\dot{\mathbf{X}}_1 + O(t^2)$ and, if non degeneracy, $E_n(\mathbf{X}_1)$ changes, by perturbation analysis, into $E_n + t e_n + O(t^2)$ with

$$e_n \stackrel{def}{=} t \langle \dot{\mathbf{X}}_1 \cdot \partial_{\mathbf{X}_1} U_{01} \rangle_{\Psi_n} + t \dot{\mathbf{X}}_1 \cdot \partial_{\mathbf{X}_1} U_1 \equiv -t(Q_1 + \dot{U}_1)$$

while phase space contracts by $e^{t\frac{3N_1e_n}{2K_1}}$. Therefore if β chosen $\beta = (k_BT_1)^{-1}$ the Boltzmann factor changes by $e^{-\beta te_n}$ and exactly compensates the contraction

$$\frac{3N_1}{2K_1} = \beta \qquad \Rightarrow \qquad e^{-\beta t e_n} \times e^{t\frac{3N_1 e_n}{2K_1}} = 1$$

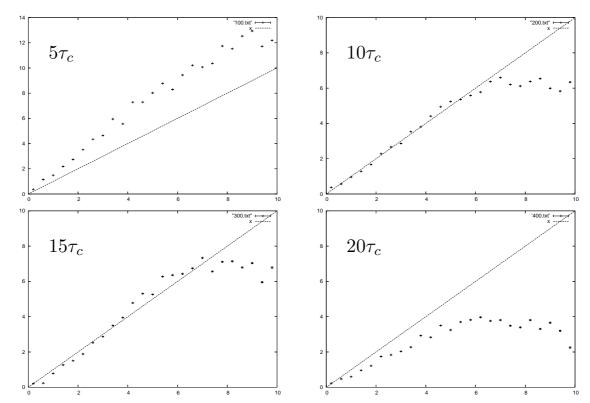
 \rightarrow distribution stationary.



The water in a container of $1m \times 1m \times 0.3m$ size is set into a turbulent state. generate the "lagrangian trajectories" of the surface flow, solutions of the equations

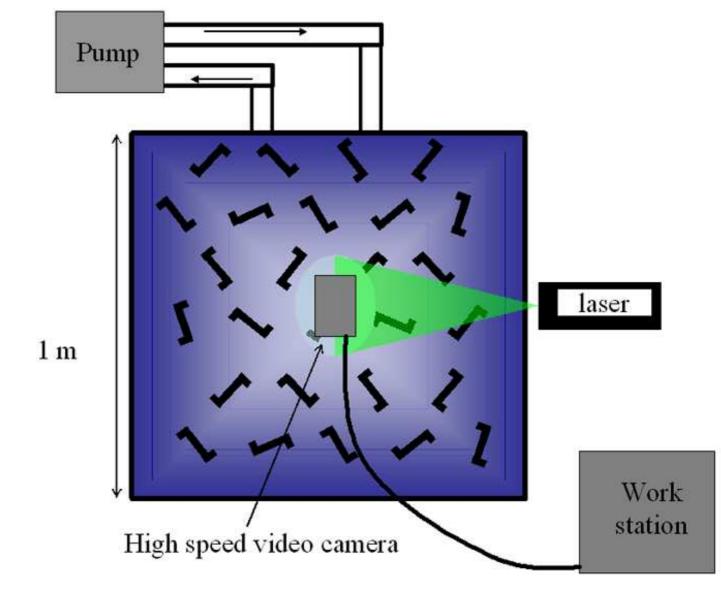
$$\dot{\mathbf{x}} = \mathbf{u}(\mathbf{x}, t)$$

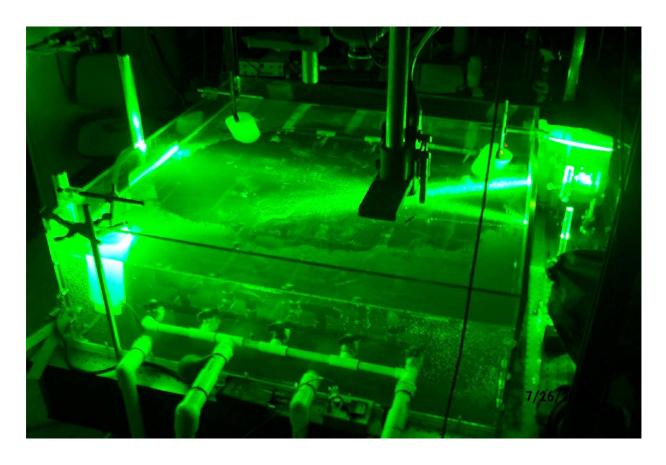
 $\sigma(\mathbf{x}(t),t) = -\text{div}\mathbf{u}(\mathbf{x}(t),t)$ whose time av. is exper. measured to be $\sigma_+ = \Omega > 0$.



Results for $\tau = 5, 10, 15, 20$ times τ_c for the turbulent flow ($\sim 20ms$)

http://ipparco.roma1.infn.it





 $20/maggio/2007;\ 11:54$