
Finite thermostats in nonequilibrium
(classical and quantum)

Progress (recent) due to

(a) Study of stationary states out of equilibrium, [EM89].

(b) Modeling thermostats in terms of finite systems, [No84],[Ho85]

Finite thermostats have been essential.
Rationale: properties should not depend on how thermostats are
imagined to work.

Equations of motion: NOT Hamiltonian ⇒ phase space contraction

σ(x)
def
= − div f(x) = −

3N∑

i=1

∂ifi(x)
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σ(x) no direct physical meaning: as changes with coordinates:

σ′(x) = σ(x) −
d

dt
Γ(x)

only long time averages can have “intrinsic” meaning:

1

τ

∫ τ

0

σ′(Stx) =
1

τ

∫ τ

0

σ(Stx) +
Γ(Sτ x)− Γ(x)

τ
−−−−−→τ→+∞

1

τ

∫ τ

0

σ(Stx)

Average σ+
def
= lim

τ→+∞

1
τ

∫ τ

0
σ(Stx) interpreted as entropy creation

σ+ = 〈
∑

j

Qj

kBTj
〉

Important achievement: mechanical meaning of entropy creation
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Fig.1: Particles in C0 (“system”) interact with particles in shaded regions

(“thermostats”) constrained to fixed total kinetic energy.

The equations of motion will be (all masses equal)

mẌ0 =− ∂X0

(
U0(X0) +

∑

j>0

W0,j(X0,Xj)
)

+ E(X0),

mẌi =− ∂Xi

(
Ui(Xi) + W0,i(X0,Xi)

)
− αiẊi
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mẌ0 =− ∂X0

(
U0(X0) +

∑

j>0

W0,j(X0,Xj)
)

+ E(X0),

mẌi =− ∂Xi

(
Ui(Xi) + W0,i(X0,Xi)

)
− αiẊi

with αi ⇒ Ki = 3
2NikBTi is a constant. E(X0) stirring forces.

Ki ≡ const
def
=

3

2
NikBTi ←→ αi ≡

Qi − U̇i

3NikBTi

where Qi is work per unit time of C0 on Ci = “heat”

Qi
def
= − Ẋi · ∂Xi

W0,i(X0,Xi)

Gauss’ principle preserves time-reversal symmetry;
time reversibility is unrelated to dissipation
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σ(X,Ẋ)≡ ε(X, Ẋ) +ṙ(X), ε(X, Ẋ) =
n∑

j=1

Qj

kBTj
, r=

∑
j

Uj (Xj)

kBTj

Measurable by calorimetric and thermometric experiments. No need
of of the equations of motion.

Important feature: preservation of time reversal symmetry.

Useful? Finite time averages:

1

T

∫ T

0

σ(Stx) ≡
1

T

∫ T

0

ε(Stx) +
R(T )−R(0)

T

Therefore for large T same fluctuations statistics. Not just 〈σ〉 ≡ 〈ε〉
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General theory of fluctuations of σ ←→ general theory of fluct. of ε.

Chaotic hypothesis (CH): Motions developing on the attracting
set of a chaotic system can be regarded as motions of a transitive
hyperbolic (also called “Anosov”) system.[GC95]

(From Ruelle’s “Nature of turbulence”). Dynamical systems ⇒:

(1) Existence of averages and “volume” statistics µ (SRB statistics)

1

T

∫ T

0

F (Stx) dt −−−−→
T→∞

∫

A

F (y)µ(dy)
def
= 〈F 〉

(2) Coarse graining rigorous→ SRB = equidistribution on attracting
set (⇒ variational principle and existence of Lyapunov function)

(3) µ admits an explicit representation so that averages can be writ-
ten and compared (without computing them)
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(4) large deviations law holds: fj
def
= 1

τ

∫ τ

0
Fj(Stx)dt

Prob(f ∈ ∆) = Prob((f1, . . . , fn) ∈ ∆) ∝τ→∞ eτ maxf∈∆ ζ(f)

ζ defined in a convex open set Γ, analytic and convex (Sinai).

(5) Let F1(x) = ε(x)
〈ε〉

. Call p = 1
τ

∫ τ

0
ε(Stx)
〈ε〉

: ⇒ ζ(p)

(6) in time reversal invariant cases FT (CG): (Fj odd)

ζ(−f) = ζ(f)− 〈ε〉p ←→
Prob(f)

Prob(−f)
= epσ+τ

provided σ = ϕ(F) and 〈ε〉 > 0 (e.g. F1 = σ). No free parameters.

(7) Bonetto formula: 〈exp−
∫ T

0

∑
j

Qj

kBTj
〉 = 1
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Not to be confused with the formulae of Evans-Searles and Jarzynski
resp. dealing with properties of the equilibrium distributions

The latter actually started in 1981 by a remarkable work of Bockhov-
Kuzovlev (by Hänggi) and were not extended to steady states possi-
bly because at the time the SRB theory on the nature of turbulence
was not well known
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Fluids
(1) Fluid equations are not reversible. Equivalence conjecture:

u̇ + u
˜
· ∂

˜
u = ν∆u− ∂ p + g,

u̇ + u
˜
· ∂

˜
u = α(u)∆u − ∂ p + g, α=

∫
u·g∫

(∂ u)2
⇒

∫
u

2=E=const

Same statistics for “local observables”: F local ⇒ F depends on
finitely many Fourier comp. of u.

Same statistics ⇒ as R → ∞ if E is chosen = 〈
∫

u2〉
µν

(equiva-

lence): “Gaussian NS eq.” or “GNS”. So far only numerical tests in
strongly cut off equations and d = 2 (Rondoni,Segre).

Problem: can reversibility be detected? Assume K41

5/luglio/2007; 16:12 9



K41 ⇒ # of degrees of freedom is # of k’s s.t. |k| < R
3
4

Divergence: σ ∼ ν
∑

k
2|k|2 = ν (2π

L )2 8π
5 R15/4

By FT probability (relative) to see “wrong” friction for a time τ is

Probsrb ∼ exp
(
− τν

32π3

5L2
R

15
4

)





ν =1.5 10−2 cm2

sec , v = 10. cm
sec L = 100. cm

R =6.67 104, g = 3.66 1014 sec−1

Probsrb =e−gτ = e−3.66 108

, if τ = 10−6

(Air). Viscosity is −ν during 10−6s (say) with probability P above:
similar to the recurrence times estimates.
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Compatibility? near equil. entropy creation independently defined
(DeGroot-Mazur)

kB〈ε〉 =kBεclassic + Ṡ,

kBεclassic =

∫

C0

(
κ

(∂T

T

)2
+ η

1

T
τ

˜
′ · ∂

˜
u
)

dx

5/luglio/2007; 16:12 11



Quantum systems: temperature and heat are defined by the spe-
cial apparata that measure them.
However important in meso-physics and nano-physics.
Finite thermostat?? and Dynamical system? (⇒ CH & FT)
A natural model is in the previous Figure 1

T1

T2

T3

C0
fig.1

H operator on L2(C
3N0
0 ), (symm./antisymm.) wave funct.s Ψ,

H = −
h̄2

2
∆X0

+ U0(X0) +
∑

j>0

(
U0j(X0,Xj) + Uj(Xj) + Kj

)
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Dynamical sys. on
(
Ψ, ({Xj}, {Ẋj})j>0

)
(if 〈·〉Ψ ≡ 〈Ψ| · |Ψ〉)

−ih̄Ψ̇(X0) = (H({Xj}j>0)Ψ)(X0), j > 0

Ẍj =−
(
∂jUj(Xj) + 〈∂jUj(X0,Xj)〉Ψ

)
− αjẊj , j > 0

αj
def
=
〈Wj〉Ψ − U̇j

2Kj
, Wj

def
= − Ẋj · ∂jU0j(X0,Xj)

Evolution: Kj ≡
1
2Ẋ

2
j

def
= 3

2kBTjNj exact constant, as classical).

NOT a time dep. Schrödinger eq.: essential interaction syst-thermos.

Divergence: σ(x) =
∑

j

( Qj

kBTj
+

U̇j

kBTj

)
(same as classical)
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Equations are reversible and chaotic: CH ⇒ SRB + FT

Consistency: system with a single thermostat→ SRB distrib. should
be equivalent to a canonical distribution. (True in classical case).

Candidate for µ: probability proportional to dΨ dX1 dẊ1 times

∞∑

n=1

e−βEn(X1)δ(Ψ−Ψn(X1) eiϕn) dϕn δ(Ẋ2
1 − 2K1)

⇒ expectation of O is a Gibbs state of therm. equil. with a special
kind (random X1, Ẋ1) of boundary condition and temperature T1.

〈O〉µ = Z−1
∫ ∞∑

n=1
e−βEn(X1)〈Ψn(X1)|O|Ψn(X1)〉δ(Ẋ

2
1−2K1)dX1Ẋ1
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〈O〉 = Z−1
0

∫ (
Tr e−βH(X1) O

)
dX1

However is not invariant under evolution: difficult to exhibit explic-
itly an invariant distribution (why should it be easy? Aesopus)

Nevertheless if adiabatic approximation (i.e. classical motion in ther-
mostat on a time scale much slower than quantum evolution).

Eigenstates at time 0 follow variations of Hamiltonian H(X1(t)) due
to thermostats motion, without changing quantum numbers.
Conjecture: true SRB is also equivalent to Gibbs at temp. (kBβ)−1

⇒ possibility of defining temperature via the FT if Q is measurable
or Q if T is measurable (originally suggested by Cugliandolo and
Kurchan as a possible appl of FT to spin glasses)
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In presence of forcing and a single thermostat measure 〈Q〉 and if

ζ(−p) − ζ(p) = −pσ+

use slope σ+ to set

kBT =
〈Q〉

σ+
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[Under time evolution a time t > 0 infinitesimal:

X1 → X1 + tẊ1 + O(t2)

En(X1) → En + t en + O(t2) with

en
def
= 〈Ẋ1 · ∂X1

U01〉Ψn
+ tẊ1 · ∂X1

U1 = −t (Q1 + U̇1)

e−βEn(X1) → e−βten

thermostat phase space contracts by etσ ≡ e
t
3N1en
2K1

Therefore if β is chosen such that β = 3N1

2K1
≡ (kBT1)

−1 the distribu-
tion 〈·〉µ is stationary.]
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