
Thermostats and entropy

Recent developments in nonequilibrium S.M. due to

a) Steady states (rather then approach to equilibrium or to steady)

b) thermostat models (finite → simulations)

Steady State = probability dist. µ: use ⇒ average values

Collections of µ’s generalize ensembles (non eq.)

Empirically a thermostat is a device that fixes, by mechanical action,

the temperature in some part of a system under study or in parts of

systems interacting with it

In early works the thermostat forces act globally:

ẍi = −∂xiU(X) + E − αẋi

U = potential energy, E the nonconservative positional force, X =

(x1, . . . , xN ) and α is
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α =
−U̇(X) + E · Ẋ

Ẋ2
,

so defined that K = 1
2Ẋ

2 = 3
2NkBT , is exactly constant.

Dating back to early days is another example (“Drude’s thermo-

stat”). “Charged h.c. particles” enclosed in a toral annulus (“electric

wire”), subject to a (“electromotive force”) and to collisions among

each other or with array of fixed hard sphere obstacles (“crystal

background”),

ẍi = elastic coll. + E + dissipation

dissip. = at collision speed rescaled to v =
√

3kBT= thermostat

force: av. kinetic energy per particle ∼ 3
2kBT .

Other model is “viscous thermostat”

ẍi = elastic coll. + E − νẋi

ν = constant adjusted so that av. 〈K〉 = 3
2NkBT . The Nosé-Hoover

thermostat .. All are global

External models ?

General model with thermostats that are “external” to system C0 sur-

rounded by particles interacting via short range interactions, through

portions ∂iC0 of the surface of C0, and subject to constraint that the

Ni particles in i-th thermostat have K.E. Ki = 1
2Ẋ

2
i = 3

2NikBTi.
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Particles in C0 (“system”) interact with particles in shaded regions (“thermostats”)

constrained to fixed total K.E.

The equations of motion will be

Ẍ0 = − ∂X0

(

U0(X0) +
∑

j>0

W0,j(X0,Xj)
)

+ E(X0),

Ẍi = − ∂Xi

(

Ui(Xi) + W0,i(Xi,Xj)
)

− αiẊi

with αi s.t. Ki constant. W0,i interaction potential Ci-C0, U0, Ui

internal energies.

No direct interaction between thermostats. E(X0) = external posi-

tional forces. The contraints give

αi ≡
Qi − U̇i

3NikBTi

the work that particles in C0 exercise on the particles i-th therm. is

Qi
def
= − ∂XiW0,i(X0,Xi) · Ẋi: is interpreted as “amount of heat
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Qi entering” thermostat Ci.

Main feature: thermostats are external to system proper

Similar to imagining thermostat infinite with Gibbs states with as-

signed temperatures Ti at ∞ as their initial states. Conservative but

infinite.

Other feature is reversibility: i.e. if I(X, Ẋ)
def
= (X,−Ẋ) is time re-

versal then if St(X, Ẋ) is solution

ISt ≡ S−tI

17/aprile/2007; 10:59 4



Entropy and divergence

Equations of motion do not conserve phase space volume and will

contract it, at least in average: important exceptionis equilibrium, if

modeled by Hamiltonian eq.

For a physical interpretation to average value of phase space con-

traction restrict to systems with guaranteed existence of averages.

Chaotic hypothesis (CH): Motions developing on the attracting

set of a chaotic system can be regarded as motions of trans. hyperbolic

(also called “Anosov”) system.

⇒ all smooth observables F (X, Ẋ) on phase space all initial data

near an attracting set, with the exception of a set of data with 0 total

volume, admit time av. independent of initial data and define 1-que

probability distribution µ

lim
T→∞

1

T

∫ T

0

F (St(X, Ẋ)) dt =

∫

F (Y, Ẏ) µ(dY, dẎ)

µ is called SRB distribution.
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If σ(X, Ẋ) = − divergence of the equations of motion, we call σ+ its

time average i.e. its µ-integral with respect to µ: system is dissipative

if σ+ > 0.

Since the early works it was clear that there should be a relation

between entropy and phase space contraction. However in general

the two notions are not identical.

Phase space contraction rate, for velocity–position is

σ(Ẋ,X) = ε(Ẋ,X) + Ṙ(X)

where, remarkably, ε(Ẋ,X) is given by

ε(Ẋ,X) =
∑

j>0

Qj

kBTj

and can be interpreted as the entropy creation rate, because of the

meaning of Qi (work performed by system in C0 on thermostat Ci,

while R(X) =
∑

j>0
Uj

kBTj
.

An additive total derivative, Ṙ(X), of a bounded quantity is like

additive constant in equilibrium. It does not affect the long time

fluctuations
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⇒ average contraction and the average entropy creation have same

average σ+ ≡ ε+ and, if ε+ 6= 0, the same large deviations rate

function ζ(p) for

p =
1

σ+τ

∫ τ

0

σ(St(Ẋ,X))dt and
1

ε+τ

∫ τ

0

ε(St(Ẋ,X))dt

the latter is measurable as it concerns heat exchanges.

Remarkable because (thermostats being reversible) p = 1
τ

∫ τ

0
σ(St(Ẋ,X))

σ+
dt

satisfies the fluctuation relation, by the fluctuation theorem ([GC95]):

namely

ζ(−p) = ζ(p) − pσ+, for all |p| < p∗,

where p∗ ≥ 1: ⇒ possibility of test CH in experiments.

Quantum systems

At first seems impossible: in quantum systems average K.E. is not

identified with temperature; and all motions are quasi periodic, so

that no chaos is possible.
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A way out, explored in the literature: thermostats as infinite systems.

However recent progress in N.E.S.M. was sparked by the introduction

of finite size thermostats.

Consider Fig.1 when quantum nature of particles in C0 cannot be

neglected. Let H be the operator on L2(C3N0

0 ), space of symmetric

or antisymmetric wave functions Ψ,

H = − h̄2

2
∆X0

+ U0(X0) +
∑

j>0

(

U0j(X0,Xj) + Uj(Xj)
)

its spectrum consists of En = En({Xj}j>0), for Xj fixed. And a

system–reservoirs model can be the dynamical system on the space

of the variables
(

Ψ, ({Xj}, {Ẋj})j>0

)

defined by (〈·〉Ψ is expectation

in the state Ψ)

− ih̄Ψ̇(X0) = (HΨ)(X0), and for j > 0

Ẍj = −
(

∂jUj(Xj) + 〈∂jUj(X0,Xj)〉Ψ
)

− αjẊj

αj
def
=

〈Wj〉Ψ − U̇j

2Kj

, Wj
def
= − Ẋj · ∂jU0j(X0,Xj)
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Evolution maintains the kinetic energies Kj ≡ 1
2Ẋ

2
j exactly constant

so they define thermostats temperatures Tj via Kj = 3
2kBTjNj , as

in the classical case.

The formal volume element µ0({dΨ}) × ν(dX dẊ) with

µ0(dΨ)
def
=

(

∏

X0

dΨ(X0)
)

δ
(

∫

C0

|Ψ(Y)|2 dY − 1
)

ν(dX dẊ)
def
=

∏

j>0

(

dXj dẊj δ(Ẋ2
j − 3NjkBTj)

)

conserved, by the unitary property of the wave functions evolution,

just as in the classical case, up to the volume contraction in the

thermostats.

Solutions will not be quasi periodic and the Chaotic Hypothesis can

be assumed: hence dynamics should select an invariant distribution

µ, the SRB.

Furthermore reversibility will imply the fluctuation relation for the

phase space contraction given again by σ =
∑

j

Qj

kBTj
+ Ṙ with Qj =

〈Wj〉Ψ.
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Check: if only one thermostat and no forces. At least one station-

ary distribution equivalent to canonical distribution at the temper-

ature T1 associated with the (constant) K.E. of thermostat: K1 =
3
2kBT1 N1. Candidate is

∞
∑

n=1

e−βEnδ(Ψ − Ψn(X1) eiϕn) dϕn δ(Ẋ2
1 − 2K1)

where Ψ = wave functions in C0 and Ẋ1, X1 positions and velocities

of therm. particles and ϕn ∈ [0, 2π] is a phase, En = En(X1) = n-th

level of H(X1) with Ψn(X1) the eigenfunction. However the above

is not invariant under evolution. Difficult to find explicit invariant

distribution.

Nevertheless under adiabatic approximation eigenstates of Hamilto-

nian at time 0 simply follow the variations of H(X(t)) due to the mo-

tion of the thermostats particles without changing quantum numbers

(rather than evolving following the Schödinger equation and become,

therefore, different from the eigenfunctions of H(X(t))).
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Hence in adiabatic limit (classical motion of thermostat particles on

a time scale much faster than the quantum evolution) distribution is

invariant as the variation of the energy levels (supposed non degen-

erate) is compensated by the phase space contraction in thermostat.

Under evolution X1 at time ε > 0 becomes X1 + εẊ1 + O(ε2) and,

if non degeneracy, En(X1) changes, by perturbation analysis, into

En + ε en + O(ε2) with

en
def
= − ε〈Ẋ1 · ∂X1

U01〉Ψn
− εẊ1 · ∂X1

U1

and at the same time phase space contracts by e
−ε

3N1en
2K1 . Therefore

if β is chosen such that β = (kBT1)
−1 distribution is stationary.

In adiabatic approximation, interaction with single thermostat at T1

admits at least one stationary state. This is, by construction, a Gibbs

state of thermodynamic equilibrium with a special kind (random

X1, Ẋ1) of boundary condition and temperature T1.
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http://ipparco.roma1.infn.it
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